probing the faraday screen in the nuclear region of 3c 84 · 2018-08-22 · probing the faraday...

22
Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam  &  Sascha Trippe Seoul National University 2018 Radio telescope user’s meeting | Aug. 16-17. 2018

Upload: others

Post on 30-Dec-2019

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

Probing the Faraday screen in the nuclear region of 3C 84

Minchul Kam  &  Sascha TrippeSeoul National University

2018 Radio telescope user’s meeting | Aug. 16­17. 2018

Page 2: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

HST 1.73’ view of  NGC 1275

z ~ 0.018d ~ 75 Mpc

VLBA 22GHz 

http://pc.astro.brandeis.edu/images/3c84.html

Page 3: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

VLBA 22 GHz 

http://pc.astro.brandeis.edu/images/3c84.html

VLBA 43 GHz3 

mas

 = 1

 pa r

sec

● 3C 84 – central region of NGC 1275

https://www.bu.edu/blazars/VLBA_GLAST/0316.html

Page 4: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● 3C 84 is an interesting target !

1) very close (z~0.018, d~75 Mpc)     → 1 pc scale structure of the central region 

        is resolved!

        core : bright, upstream region 

                  where the jet begins

        hotspot : the local­brightest region in the 

                        bowshock­like structure 

2) low polarization

     → depolarization by Faraday rotation?

1 pc

Page 5: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● Polarization angle (EVPA) is rotated by B­field.

B­fieldpolarized emission

RM ∝∫ n Blos dl

φ 1=φ 0+λ12 RM

φ 2=φ 0+λ22 RM

Δφ=λ2 RM

polarization distribution at different frequencies → spatially resolved information of electron density & magnetic field

φ 2−φ 1=(λ12−λ2

2)RM

Page 6: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● Data information 

1. Very Long Baseline Array (VLBA) – 10 antennas with baselines up to 8000 km  Period : Jun. 2014 ~ Sep. 2017 (35 epochs)

     Freq : 43.008 / 43.087 / 43.151 / 43.215 GHz

2. Korea VLBI Network (KVN) – 3 antennas with baselines up to 480 km  The KVN Large Program (PAGaN)  Freq : 22 / 43 / 86 / 129 GHz

Page 7: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

Images of VLBA 43 GHz data (Dec. 2016 ~ Sep. 2017)

Page 8: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

Images of KVN 86 GHz (Dec. 2016 ~ Dec. 2017)

Page 9: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● VLBA 43.008 / 43.088 / 43.151 / 43.215 GHz (Jan. 2017)

Page 10: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● VLBA 43.008 / 43.088 / 43.151 / 43.215 GHz (Jan. 2017)

Page 11: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● The RM at the hotspot 

2015

|RM|∼4.4×105 rad /m2

Page 12: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● VLBA 43.008 / 43.088 / 43.151 / 43.215 GHz (Jun. 2017)

Page 13: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● VLBA 43.008 / 43.088 / 43.151 / 43.215 GHz (Jun. 2017)

Page 14: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● The RM at the core

|RM|∼6.6×105 rad /m2

Page 15: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● Point I ­ The core RM is lower than the expectation.

RM core=6.6×105 rad /m2RM hsp=4.4×105 rad /m2

The same order of the RMs even though the distance from the SMBH are different !

RM ∝∫ne Bφ dl

Page 16: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● Point II ­ Detection of the negative core RM.

Only positive core RM at 220 & 340 GHz

  a. SMA (220 & 340 GHz)       ­ 8 radio telescopes in Hawaii

  b. CARMA (220 GHz)       ­ 23 radio telescopes in California

Plambeck+ 2014 

Though SMA & CARMA cannot resolve the core,

they assumed that most of the emission at 

220 & 340 GHz originates from the core region.

Page 17: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● Point II ­ Detection of the negative core RM.

Plambeck+ 2014 

We detected both positive & negative RM at 43 GHz   inconsistent with →the RM at 220 & 340 GHz 

Page 18: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● Estimation of m% of hotspot at 220 GHz

m=m0|sin RM λ2

RM λ2 | m=m0|sin 2 RM λ2

2 RM λ2 |

I. external screen + regular B­field (with RM gradient)

II. internal screen + regular B­field

22 GHz   : 24.4 Jy43 GHz   : 13.5 Jy86 GHz   :   4.8 Jy129 GHz :   3.1 Jy230 GHz :   1.6 Jy

43 GHz   : 0.3 %86 GHz   : 2.2 %230 GHz : 9.0 %

43 GHz   : 0.3 %86 GHz   : 2.2 %230 GHz : 16.4 %

hotspot flux

m% (86   220 GHz) increases at least 4 times. →Flux (86   220 GHz) decrease to 1/3. →

The polarized emission at 220 GHz might be dominated by the hotspot emission.

(x4) (x8)(x1/3)

Page 19: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● The RM at the hotspot 

Most of the RMs at the hotspot are POSITIVE ! 

Considering all the RMs at 220 & 340 GHz are POSITIVE, this supports the possibility that the polarized emission at 220 GHz might bedominated by the hotspot emission. 

Page 20: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● Faraday screen I : Emitting region itself (internal Faraday rotation)

Burn 1966

Except the case that emitting region is slab with zero random component of B­field, EVPA rotation is saturated at low frequencies.

 → RM will increase at higher frequency where the EVPA rotation is less saturated.

u∝λ

Faraday screen : slab Faraday screen : sphere

,  μ : random magnetic field component

Page 21: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● Faraday screen II : Hot accretion flow (external Faraday rotation)

Li+ 2016

hot accretion flow ­ geometrically thick & optically thin                                 low accretion rate                                turbulent 

If polarized emission from the core passes through this accretion flow, (1) non­detection or underestimation of the core RM, (2) both positive & negative RM       can be explained.

         → RM will not increase at higher frequency.

Page 22: Probing the Faraday screen in the nuclear region of 3C 84 · 2018-08-22 · Probing the Faraday screen in the nuclear region of 3C 84 Minchul Kam & Sascha Trippe Seoul National University

● To probe the Faraday screen..

  Case I : internal to the jet – RM will increase at higher frequency.

  Case II : external to the jet – RM will not increase at higher frequency.

        →Multi­frequency polarimetric observations are necessary !

● KVN observation at frequencies higher than 43 GHz

We proposed multi­frequency KVN observation at 86 ­ 90 ­ 94 & 129 ­ 138 ­ 142 GHz.

 → The first attempt to obtain the core RM at this high frequency range.