problem set solution 7

Upload: andres-molina

Post on 04-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Problem Set Solution 7

    1/6

    18.324 QuantumFieldTheoryII

    ProblemSet7Solutions

    1. (a) Changingthevariable =()wecanfind usingthechainruleofdifferentiation. Wefind,()=d

    d =dd

    dd =()

    dd .

    Thus transformslikeacontravariantvector. Forexample,recallhow inGRV transformslikeV(x)=V(x)x

    x .

    (1)

    (2)(b) Using(1),togetherwith

    =+a22 +a33 +... (3)and

    =b22 +b33 +b44 +..., (4)wefind

    =(b22 +b33 +b44..)(1+2a2+3a32 +...), (5)whichtofourthordergives

    =b22 +(b3 +2a2b2)3 +(b4 +2a2b3 +3a3b2)4 +O(5).Wemustexpress intermsof. Insteadoffindingintermsofwecalculate

    2 =2 +2a23 +(2a3 +a22)4 +...3 =3 +3a24 +..4

    =4.andrecallingthat=b22 +b33 +b44 +...wefindthat

    (6)

    (7)

    b2 =b2, b3 =b3, and b4 =b4a2b3 +a3b2a22b2.sothatwecanmake b4 anythingwewantbytweakingtheas.The fixedpoint of a renormalizationflow is defined by (f)=0 which implies (f)=0 (ifexist,whichweassume). Finally

    ()= dd

    ()d

    d

    = dd

    ()d

    dd

    d =()+()dd

    d2d2 .

    dd

    (8)

    and dd

    (9)so

    that,

    at

    a

    fixed

    point

    (f)=(f). (10)

    (c) Wehavedg

    d =bg2cg3dg4 +... . (11)Forconvenience,redefiningthecouplingandthescale

    bg, and tlog(/1), (12)

  • 8/13/2019 Problem Set Solution 7

    2/6

    +

    2werewritethedifferentialequationas

    d c ddt =2b23b34. . .. (13)

    Wethenrearrangeasd 1 d c d

    dt= (14)+. . .=d2 2 b2

    2+

    . . .

    c 1 +

    +

    2 3b b

    Thisequationcanbeintegratedtoyield1 c

    t=constant+ + ln+O() +.., (15) b2

    wheretheconstant is independentoft(i.e. ). Thismeansthattheconstant isRG invariant. Rewritingtheresult intheoriginalvariables,andabsorbing ln1 intothedefinitionoftheconstant,wehave

    1 cln=constant+ + log[bg()]+O(g()). (16)

    bg() b2SettingtheconstantequaltotheRG invariantscale,weget

    1 cln = + log[bg()]+O(g()). (17) bg() b2

    = g(),m1(d) In a generic QFT one would have where m1 is a parameter of the theory with, . . .[m1]=1. Contrarytothemostgeneralform,inatheorywithoutmassparameters,wehave

    dg(g) = (18)

    dwhich implies

    dg d= (19)

    (g) integratingbothsidesgivesomefunctionofgontheleft(whichcontainsnodimensionfulparameters),anda logwithauniversalconstantscaleof integrationontherightgiving

    F(g)=log (20)

    Invertingthisrelationgivesthatg issomefunctionofthe log, i.e.

    g=f log . (21)

    2. TheLagrangian is

    L=21 (0)2

    21m0220 +g6006

    1 1 A B g2C2g()2 m22 + 6 ()2 22 6 (22)+= m

    2 2 6 2 2 6with

    2(1+A)2(1+C)Thustocalculatethebetafunction,weneedonlycalculateAandC. This involvescalculatingthemomentumdependent part of the two point function, and the three point function. Both of these relevant computations

    3g0 =g (23)

  • 8/13/2019 Problem Set Solution 7

    3/6

    3have been done in class and/or in previous problem sets. In class, we found that the two point function was(withD=m2 +x(1x)p2)

    g2(2d) 12

    d1

    Ap2m2Bdx= dD22 22(4) 0 1

    DdxAp2Bm2=finite 0

    =finiteorp independentp2Ap2 (24)6

    thus A= ina minimalsubtraction scheme. Similarly, inthe previous homework we foundthat thethree6

    pointfunctionwas2

    =g+gC+finite+g dxdydz(x+y+z1)

    =finite+g C+ (25)thus inMS,C=

    . To lowestnontrivialorder3 2

    1 122

    g0 =g=g

    63

    14 (26)

    Usingthescale independenceofbarequantities,we logdifferentiateeachside,whichgives9 g 3

    20 =g 1 14 (27)+4 2

    Multiplyingby(1+94)andtakingthe0limitgives

    g =34g (28)

    Usingthechainruleandthedefinitionofgives =3

    22 +O(3) (29)whichimpliesthatthetheoryisasymptoticallyfree.

    3. (a) Wehave

    L= 12

    (1)2 +(2)2

    4!(41 +42)24!(2122) (30)

    Wecanusemostoftheresultswehavederivedpreviously inthecoursewithregardto4 theory,theonlysubtlety here is with symmetry factors. Once again each vertex comes with a factor ofi. However,becausetherearefewercombinatorialsymmetries,eachvertexcomeswithafactorofi42 =i4! 3.Let us renormalize the vertex. For concreteness, consider 1 external lines (it does not matter which).Wewillhaves,t,uchannelcontributionswithbothtypesofparticlesrunningintheloop. Theresultwillgivesomething likePS(10.21)

    2=ii(2 + )(V(t) +V(s) +V(u))i (31)

    9AllVshavethesameinfinitepartindimensionalregularization(seeegPS(10.23))

    1V

    162+finite (32)

  • 8/13/2019 Problem Set Solution 7

    4/6

    4which implies,intheMSscheme

    2 3 = 2 + (33)

    9 162We thus have (there is no wavefunction renormalization coming from the two point function at one-looporder)

    0 =(+)2 3= + 2 + (34)9 162

    which implies2 3 2 3

    0 =(1+2) + + 2 + + (35)9 162 9 162

    Rearranging,andusingthefactthatthebetafunctionsareO(,),to lowestorderthisimplies2 3 2 3

    + + (36) = 29 162 9 162

    We now calculate the renormalization of . Two of the loop diagrams are O() and have one type ofparticlerunningintheloop. TheothertwoareO(2)andhavetwotypesofparticlesintheloop. Wemustmultiplytheselasttwodiagramsbyafactoroftwotoaccountforthechangeinsymmetryfactor. Intotalweget

    2 =finitei 2Vi 4Vi

    3 9 3=finite

    3

    2i

    16

    12 i2

    4

    9 1612 i

    3 (37)which implies,intheMSscheme

    2 = +

    82 1220 = 1 + +2 (38)

    82 3Once

    again,

    differentiating

    and

    manipulating

    to

    lowest

    order,

    we

    get

    1 2 1

    = 1 +82 3 82 (39)

    Substituting(39)into(36)to lowestorderandtakingthe 0limitgives3 2

    = 2+ (40)162 9

    substitutingintheoppositewaygives = 1 +22 (41)

    82 3(b) Usingthechainrule,weget

    1 =2()

    =3 1 (42)482

    whichhaszerosat/={0,1,3}. Wewrotetheresult inthis form,becausestability impliesthat >0,while it is harder to say anything definite about thesign of . This beta function ispositive for /

  • 8/13/2019 Problem Set Solution 7

    5/6

    5(c) Wehavealreadyestablishedtheexistenceofthesefixedpoints; onlytheasymptoticallysymmetricone is

    IR stable. In 4 dimensions, we can read off the beta functions from above (before taking the 0limit)

    2 3 =+ 2 + (43)

    9 162 =+ 1 +22 (44)

    82 3Yoursketchshould involvea simultaneousplotof and , ora line of / withsomearrows to indicatetheflowtotheIR.Atfinitebutsmall,youshouldfindthatthereisastableIRfixedpointatfinite,.Inmyplotthefixedpointsare(obtainedfromthezerosofthe functions):

    A = 0 A = 0 AisIRunstable (45)162

    B = B = 0 B hasoneunstabledirection (46)3

    82C = C = 82 C hasoneunstabledirection (47)

    3242 242

    D = D = D isIRstable. (48)5 5

    We conclude that we get an emergent O(2) symmetry asymptotically in the IR, if we start from theappropriateparameterrange. Thebasinof attraction is calleduniversalityclass inthe statisticalphysicsliterature. Bytuningwecangetalargerangeofenergy,wherethefixpointsBorCdeterminethebehaviorofthe theory. Thereare other universality classes in this spaceofcouplings thatwe cannot explore withtheexpansiontechniques,astheylieinthestrongcouplingregimeofthetheory.

    0 20 40 60 80 100

    0

    20

    40

    60

    80

    100

    A B

    C

    D

    FIG.1. TheRGflowofthetheory.

  • 8/13/2019 Problem Set Solution 7

    6/6

    MIT OpenCourseWarehttp://ocw.mit.edu

    8.324 Relativistic Quantum Field Theory IIFall2010

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/