procedure, authors and general notes during calculation

16

Upload: others

Post on 22-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Procedure, authors and general notes during calculation
Page 2: Procedure, authors and general notes during calculation
Page 3: Procedure, authors and general notes during calculation

Pág. 1

Guide for calculate the basic remote sensing indices in ArcGIS and QGIS.

Procedure, authors and general notes during calculation

By Alan García Haro

This document presents the basic equations for retrieving land indices from Landsat,

Sentinel and MODIS satellites images. Particularly, the document presents basic

characteristics of the satellite, authors and brief explanation of the input criteria for each

calculation.

CONTENT

BANDS PROPERTIES ................................................................................................... 2

Landsat-8 OLI/TIRS ..................................................................................................... 2

Landsat-7 ETM ............................................................................................................. 2

Landsat-4-5 TM ............................................................................................................ 3

Sentinel-2 ....................................................................................................................... 3

MODIS products ........................................................................................................... 4

NATURAL COLOR ........................................................................................................ 4

DIGITAL NUMBERS TO UNITS ................................................................................. 5

LANDSAT-8 Top of Atmosphere Reflectance ............................................................. 5

LANDSAT-8 Top of Atmosphere Radiance (Spectral Radiance) ............................... 6

Sentinel-2 Top of Atmosphere Reflectance .................................................................. 6

LAND COVER INDICATORS ...................................................................................... 7

Normalized Difference Vegetation Index (NDVI) ....................................................... 7

Normalized Difference Vegetation Index (NDVI) from MODIS ................................ 7

Normalized Difference Building Index (NDBI) .......................................................... 7

Normalized Difference Water Index (NDWI) .............................................................. 7

Modified Normalized Difference Vegetation Index (MNDWI) .................................. 8

Enhanced Built-Up and Bareness Index (EBBI) ........................................................ 8

Soil-adjusted Vegetation Index (SAVI) ........................................................................ 8

Index based Built up Index (IBI) ................................................................................. 9

Shortwave Albedo .......................................................................................................... 9

THERMAL INDICATORS .......................................................................................... 10

Land Surface Temperature (LST) from Landsat imagery by emissivity correction

method ......................................................................................................................... 10

Brightness Temperature ............................................................................................. 10

Surfaces Radiation Constant (Plancks – Boltzman) ................................................. 10

Emissivity By Simplified NDVI Theresholds Method ............................................... 11

Land Surface Temperature (LST) from MODIS ....................................................... 12

REFERENCIAS ............................................................................................................ 13

Page 4: Procedure, authors and general notes during calculation

Pág. 2

BANDS PROPERTIES

Landsat-8 OLI/TIRS

2013- present

Bands Landsat 8 Wavelength

(micrometers)

Resolution

(meters)

Band 1 - Ultra Blue (coastal/aerosol) 0.435 - 0.451 30

Band 2 – Blue 0.452 - 0.512 30

Band 3 – Green 0.533 - 0.590 30

Band 4 – Red 0.636 - 0.673 30

Band 5 - Near Infrared (NIR) 0.851 - 0.879 30

Band 6 - Shortwave Infrared (SWIR) 1 1.566 - 1.651 30

Band 7 - Shortwave Infrared (SWIR) 2 2.107 - 2.294 30

Band 8 - Panchromatic 0.503 - 0.676 15

Band 9 – Cirrus 1.363 - 1.384 30

Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 * (30)

Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 * (30)

(Barsi, Lee, Kvaran, Markham, & Pedelty, 2014)

Landsat-7 ETM

1999-present

Bands Landsat 7 Wavelength

(micrometers)

Resolution

(meters)

Band 1 – Blue 0.45 - 0.52 30

Band 2 – Green 0.52 - 0.60 30

Band 3 – Red 0.63 - 0.69 30

Band 4 - Near Infrared (NIR) 0.77 - 0.90 30

Band 5 - Shortwave Infrared (SWIR) 1 1.55 - 1.75 30

Band 6 – Thermal 10.40 – 12.50 60*(30)

Band 7 - Shortwave Infrared (SWIR) 2 2.09 - 2.35 30

Band 8 - Panchromatic 0.52 - 0.90 15

(Barsi, Lee, Kvaran, Markham, & Pedelty, 2014)

Page 5: Procedure, authors and general notes during calculation

Pág. 3

Landsat-4-5 TM

1982-2011

Bands Landsat 4 & 5 Wavelength

(micrometers)

Resolution

(meters)

Band 1 – Blue 0.45 - 0.52 30

Band 2 – Green 0.52 - 0.60 30

Band 3 – Red 0.63 - 0.69 30

Band 4 - Near Infrared (NIR) 0.76 - 0.90 30

Band 5 - Shortwave Infrared (SWIR) 1 1.55 - 1.75 30

Band 6 - Thermal 10.40 – 12.50 120*(30)

Band 7 - Shortwave Infrared (SWIR) 2 2.08 - 2.35 30

(Barsi, Lee, Kvaran, Markham, & Pedelty, 2014)

Sentinel-2

2015-present

Sentinel-2A Sentinel-2B

Sentinel-2 bands

Central

wavelength

(nm)

Bandwidth

(nm)

Central

wavelength

(nm)

Bandwidth

(nm)

Spatial

resolution

(m)

Band 1 – Coastal aerosol 442.7 21 442.2 21 60

Band 2 – Blue 492.4 66 492.1 66 10

Band 3 – Green 559.8 36 559.0 36 10

Band 4 – Red 664.6 31 664.9 31 10

Band 5 – Vegetation red edge 704.1 15 703.8 16 20

Band 6 – Vegetation red edge 740.5 15 739.1 15 20

Band 7 – Vegetation red edge 782.8 20 779.7 20 20

Band 8 – NIR 832.8 106 832.9 106 10

Band 8A – Narrow NIR 864.7 21 864.0 22 20

Band 9 – Water vapour 945.1 20 943.2 21 60

Band 10 – SWIR – Cirrus 1373.5 31 1376.9 30 60

Band 11 – SWIR 1613.7 91 1610.4 94 20

Band 12 – SWIR 2202.4 175 2185.7 185 20

(European Spacial Agency (ESA), 2017)

Page 6: Procedure, authors and general notes during calculation

Pág. 4

MODIS products

Terra 1999-present; Aqua 2002-present

Level 1

MODIS Raw Radiances

MODIS Calibrated Radiances

MODIS Geolocation Fields

MODIS Atmosphere Products

MODIS Aerosol Product

MODIS Total Precipitable Water

MODIS Cloud Product

MODIS Atmospheric Profiles

MODIS Atmosphere Joint Product

MODIS Atmosphere Gridded Product

MODIS Cloud Mask

MODIS Land Products

MODIS Surface Reflectance

MODIS Land Surface Temperature and

Emissivity (MOD11)

MODIS Land Surface Temperature and

Emissivity (MOD21)

MODIS Land Cover Products

MODIS Vegetation Index Products (NDVI and

EVI)

MODIS Thermal Anomalies - Active Fires

MODIS Fraction of Photosynthetically Active

Radiation (FPAR) / Leaf Area Index (LAI)

MODIS Evapotranspiration

MODIS Gross Primary Productivity (GPP) / Net

Primary Productivity (NPP)

MODIS Bidirectional Reflectance Distribution

Function (BRDF) / Albedo Parameter

MODIS Vegetation Continuous Fields

MODIS Water Mask

MODIS Burned Area Product

MODIS Cryosphere Products

MODIS Snow Cover

MODIS Sea Ice and Ice Surface Temperature

MODIS Ocean Products

MODIS Sea Surface Temperature

MODIS Remote Sensing Reflectance

MODIS Chlorophyll-a Concentration

MODIS Diffuse Attenuation at 490 nm

MODIS Particulate Organic Carbon

MODIS Particulate Inorganic Carbon

MODIS Normalized Fluorescence Line Height

(FLH)

MODIS Instantaneous Photosynthetically

Available Radiation

MODIS Daily Mean Photosynthetically Available

Radiation

(National Aeronautics and Space Administration (NASA), 2017)

NATURAL COLOR

Bands combination for generate natural color view of the imagery.

Color

Infrared:

NIR,

RED,

GREEN

Natural

Color:

RED,

GREEN,

BLUE

(U.S. Geological Survey, 2016)

Page 7: Procedure, authors and general notes during calculation

Pág. 5

DIGITAL NUMBERS TO UNITS

LANDSAT-8 Top of Atmosphere Reflectance

FORMULA (Rouse, Haas, Schell, & Deering, 1974) (U.S. Geological Survey, 2016)

𝜌 = 𝑀𝜌 × 𝑄𝑐𝑎𝑙 + 𝐴𝜌

𝜌: spectral reflectance without sun correction

𝑀𝜌: reflectance multiplicative scaling factor

𝐴𝜌: reflectance additive scaling factor

𝑄𝑐𝑎𝑙: band DN values

SUN ELEVATION CORRECTION (U.S. Geological Survey, 2016):

𝜌𝜆 =𝜌

sin(𝜃𝜋 180⁄ )

𝜌𝜆: spectral reflectance corrected

𝜃: sun elevation in degrees 𝜃𝜋

180: function to turn degrees into radians

CALCULATION:

1. REFLECTANCE

=(REFLECTANCE_MULT*DN_BAND+REFLECTANCE_ADD)

2. SUN ELEVATION CORRECTION

=(REFLECTANCE)/(Sin(SUN_ELEVATION*π/180)

3. NEGATIVE VALUES TO CERO

=Con(REFLECTANCE<0.0,0.0,REFLECTANCE)

ArcGIS code

integrated:

Con(((BAND * 0.00002 -

0.1)/(Sin(SUN_ELEVATION*3.141592654/180)))<0.0,0.0,((BAND

* 0.00002 - 0.1)/(Sin(SUN_ELEVATION*3.141592654/180))))

QGIS code:

(((BAND*0.00002-0.1)/(sin(

SUN_ELEVATION*3.141592654/180)))>=0)*((BAND*0.00002 -

0.1)/(sin(SUN_ELEVATION*3.141592654/180)))

Page 8: Procedure, authors and general notes during calculation

Pág. 6

LANDSAT-8 Top of Atmosphere Radiance (Spectral Radiance)

BAND TIRS1 preferred (Barsi, y otros, 2014)

FORMULA (U.S. Geological Survey, 2016):

𝐿𝜆 = 𝑀𝐿 × 𝐷𝑁𝑏𝑎𝑛𝑑 + 𝐴𝐿

𝐿𝜆: spectral radiance

𝑀𝐿: radiance multiplicative scaling factor (RADIANCE_MULT_BAND)

𝐴𝐿: radiance additive scaling factor (RADIANCE_ADD_BAND)

𝐷𝑁𝑏𝑎𝑛𝑑: raw band digital numbers

CALCULATION:

1. RADIANCE_MULT_BAND*DN_BAND+RADIANCE_ADD_BAND

GIS code Landsat-8:

TIR1 * 0.0003342 + 0.1

Sentinel-2 Top of Atmosphere Reflectance

Level 1C of Sentinel-2 imagery is already preprocessed in TOA reflectance values and

geometrically corrected. Although it still needed to apply a scale factor to the

downloaded raw images (European Space Agency (ESA), 2015).

𝜌𝜆 =𝑄𝑐𝑎𝑙

𝐹𝜌

𝜌𝜆: spectral reflectance geometrically corrected

𝐹𝜌: reflectance scaling factor (Sentinel-2 1C = 10000)

𝑄𝑐𝑎𝑙: band DN values geometrically corrected

ArcGIS code:

Float(BAND)/10000

QGIS code:

BAND/10000

Page 9: Procedure, authors and general notes during calculation

Pág. 7

LAND COVER INDICATORS

Normalized Difference Vegetation Index (NDVI)

REFLECTANCE BANDS RED & NIR. FORMULA (Weier & Herring, 2000):

𝑁𝐷𝑉𝐼 =(𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑)

(𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑)

𝜌𝑏𝑎𝑛𝑑: spectral reflectance of band

GIS code: (NIRref - REDref) / (NIRref + REDref)

Normalized Difference Vegetation Index (NDVI) from MODIS

Scaling correction (National Aeronautics and Space Administration (NASA), 2017):

𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼𝐷𝑁 ∗ 0.0001

𝑁𝐷𝑉𝐼𝐷𝑁: raw MODIS NDVI in digital number

GIS code: MODIS_NDVIdn * 0.0001

Normalized Difference Building Index (NDBI)

REFLECTANCE BANDS NIR & SWIR1. FORMULA (Zha, Gao, & Ni, 2003):

𝑁𝐷𝐵𝐼 =(𝜌𝑆𝑊𝐼𝑅1 − 𝜌𝑁𝐼𝑅)

(𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑁𝐼𝑅)

𝜌𝑏𝑎𝑛𝑑: spectral reflectance of band

GIS code: (SWIR1ref - NIRref) / (SWIR1ref + NIRref)

Normalized Difference Water Index (NDWI)

Reflectance bands GREEN & NIR. FORMULA (McFeeters, 1996):

𝑁𝐷𝑊𝐼 =(𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅)

(𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅)

𝜌𝑏𝑎𝑛𝑑: spectral reflectance of band

GIS code: (GREENref - NIRref) / (GREENref + NIRref)

Page 10: Procedure, authors and general notes during calculation

Pág. 8

Modified Normalized Difference Vegetation Index (MNDWI)

REFLECTANCE BANDS GREEN & SWIR1. FORMULA (Xu, 2006):

𝑀𝑁𝐷𝑊𝐼 =(𝜌𝑔𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1)

(𝜌𝑔𝑟𝑒𝑒𝑛 + 𝜌𝑆𝑊𝐼𝑅1)

𝜌𝑏𝑎𝑛𝑑: spectral reflectance of band

GIS code: (GREENref - SWIR1ref) / (GREENref + SWIR1ref)

Enhanced Built-Up and Bareness Index (EBBI)

DIGITAL NUMBERS BANDS SWIR1, NIR AND TIR1

The index +1 >-1 scale depends of the digital numbers of previous 8-bits imagery. That

is why a 256 division is need it to adjust values. A little loss of data is expected in scaling.

FORMULA (As-syakur, Adnyana, Arthana, & Nuarsa, 2012):

𝐸𝐵𝐵𝐼 =(𝐷𝑁𝑆𝑊𝐼𝑅1 − 𝐷𝑁𝑁𝐼𝑅)

10√𝐷𝑁𝑆𝑊𝐼𝑅1 − 𝐷𝑁𝑇𝐼𝑅1

𝐷𝑁𝑏𝑎𝑛𝑑: digital numbers of band (8 bits)

ArcGIS code: (SWIR1dn-NIRdn)/(10*SquareRoot(SWIR1dn+TIR1dn))

ArcGIS 8-bits

correction

(Landsat-8):

((SWIR1dn/256)-

(NIRdn/256))/(10*SquareRoot((SWIR1dn/256)+(TIR1dn/256)))

QGIS code: (SWIR1dn-NIRdn)/(10*sqrt(SWIR1dn+TIR1dn))

QGIS code 8-

bits correction

(Landsat-8):

((SWIR1dn/256)-

(NIRdn/256))/(10*sqrt((SWIR1dn/256)+(TIR1dn/256)))

Soil-adjusted Vegetation Index (SAVI)

REFLECTANCE BANDS GREEN & SWIR1. FORMULA (Xu, 2006):

𝑆𝐴𝑉𝐼 = [𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝜌𝑟𝑒𝑑 + 𝐿] × (1 + 𝐿)

𝜌𝑏𝑎𝑛𝑑: spectral reflectance of band

𝐿: soil brightness correction (Landsat = 0.5)

GIS code: ((NIRref – REDref) / (NIRref + REDref + 0.5))*1.5

Page 11: Procedure, authors and general notes during calculation

Pág. 9

Index based Built up Index (IBI)

REFLECTANCE BANDS GREEN & SWIR1

FORMULA (Xu H. , 2008):

𝐼𝐵𝐼 = [𝑠𝑁𝐷𝐵𝐼 − (𝑠𝑆𝐴𝑉𝐼 + 𝑠𝑀𝑁𝐷𝑊𝐼)/2]

[𝑠𝑁𝐷𝐵𝐼 + (𝑠𝑆𝐴𝑉𝐼 + 𝑠𝑀𝑁𝐷𝑊𝐼)/2]

𝑠𝑖𝑛𝑑𝑒𝑥: rescaled index values to 0 to 1, instead of -1 to 1 as the index usually is

𝑠𝑖𝑛𝑑𝑒𝑥 =𝑖𝑛𝑑𝑒𝑥 + 1

2

Or IBI in one touch

𝐼𝐵𝐼 =[

2 × 𝜌𝑆𝑊𝐼𝑅1

𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑁𝐼𝑅− (

𝜌𝑁𝐼𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷+

𝜌𝐺𝑅𝐸𝐸𝑁

𝜌𝐺𝑅𝐸𝐸𝑁 + 𝜌𝑆𝑊𝐼𝑅1)]

[2 × 𝜌𝑆𝑊𝐼𝑅1

𝜌𝑆𝑊𝐼𝑅1 + 𝜌𝑁𝐼𝑅+ (

𝜌𝑁𝐼𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑅𝐸𝐷+

𝜌𝐺𝑅𝐸𝐸𝑁

𝜌𝐺𝑅𝐸𝐸𝑁 + 𝜌𝑆𝑊𝐼𝑅1)]

𝜌𝑏𝑎𝑛𝑑: spectral reflectance of band

GIS code

index

based:

(((NDBI+1)/2)-(((SAVI+1)/2)+ ((MNDWI+1)/2))/2)/

(((NDBI+1)/2)+(((SAVI+1)/2)+ ((MNDWI+1)/2))/2)

GIS code

IBI one

touch:

(((2 * SWIR1ref )/( SWIR1ref + NIRref ))-( NIRref /( NIRref + REDref

))+( GREENref /( GREENref + SWIR1ref )))/(((2* SWIR1ref )/(

SWIR1ref + NIRref ))+(( NIRref /( NIRref + REDref ))+( GREENref /(

GREENref + SWIR1ref ))))

Shortwave Albedo (Landsat TM/ETM+)

Reflectance of BLUE, RED, NIR, SWIR1 & SWIR2 BANDS

FORMULA (Liang, 2001) & NORMALIZED BY (Smith, 2010):

𝛼𝑠ℎ𝑜𝑟𝑡

=0.356𝜌𝑏𝑙𝑢𝑒 + 0.130𝜌𝑟𝑒𝑑 + 0.373𝜌𝑁𝐼𝑅 + 0.085𝜌𝑆𝑊𝐼𝑅1 + 0.072𝜌𝑆𝑊𝐼𝑅2 − 0.0018

0.356 + 0.130 + 0.373 + 0.085 + 0.072 − 0.0018

𝛼𝑠ℎ𝑜𝑟𝑡: shortwave radiance reflected (albedo). Best than visible or NIR albedo (Liang, 2001).

𝜌𝑏𝑎𝑛𝑑: spectral reflectance of band

GIS code: ((0.356*BLUEref)+(0.130*REDref)+(0.373*NIRref)+(0.085*SWIR1ref)+(

0.072*SWIR2ref)-(0.0018))/(1.016)

Page 12: Procedure, authors and general notes during calculation

Pág. 10

THERMAL INDICATORS

Land Surface Temperature (LST) from Landsat imagery by emissivity correction

method

BAND TIRS1, TIRS2 Landsat 8 excluded by light contamination (Barsi, y otros, 2014).

FORMULA (Artis & Carnahan, 1982):

𝐿𝑆𝑇 = (𝑇𝐵

1 + (𝜆𝑇𝐵 𝛼⁄ ) ln 𝜀) − 273.15

𝑇: land surface temperature in Celsius

𝑇𝐵: brightness temperature in kelvin

𝜆: center wavelength of emitted radiance (BAND 10 or 11)

𝜀: emissivity (calculated by NDVI thresholds method

𝛼: surfaces radiation constant adjustment

CALCULATION:

1. LST=((BrightnessT)/(1+((CenterWavelenght*BrightnessT)/Planck_Boltzman_C

onstant)*Ln(Emissivity)))-273.15

GIS code: ((BrightTem)/(1+((10.895*(BrightTem)/14380)*Ln(Emissivity))))-273.15

Brightness Temperature

BAND TIRS1, FORMULA (U.S. Geological Survey, 2016):

𝑇𝐵 =𝐾2

ln (𝐾1

𝐿𝜆+ 1)

𝑇𝐵: brightness temperature in kelvin

𝐾1: Thermal conversion constant (K1_CONSTANT_BAND)

𝐾2: Thermal conversion constant (K2_CONSTANT_BAND)

𝐿𝜆: Spectral radiance

ArcGIS code: 1321.08 / Ln(( 774.89 / RADIANCE ) + 1)

QGIS code: 1321.08 / In(( 774.89 / RADIANCE ) + 1)

Surfaces Radiation Constant (Plancks – Boltzman)

FORMULA (Artis & Carnahan, 1982):

𝛼 =𝐻 × 𝑆

𝐶

H = PLANCKS CONSTANT (6.62607004*10^-34m^2 kg/s)

S = BOLTZMAN CONSTANT (1.38064852*10^-23m^2 kg s^-2 K^-1)

C = LIGHTSPEED (2.998*10^8 m/s)

H*C/S = (1.438*10^-34) = 14380

Page 13: Procedure, authors and general notes during calculation

Pág. 11

Emissivity By Simplified NDVI Theresholds Method

FORMULA (Sobrino, Jiménez-Muñoz, & Paolini, 2004):

ελ = {

𝜀𝑠

𝜀𝑠

𝜀𝑠

} = {

𝜀𝑠,𝜀𝑚,

𝜀𝑣

𝜀𝑠: emissivity bare soil (NDVI<0.2)

𝜀𝑣: emissivity vegetation (NDVI>0.5)

𝜀𝑚: emissivity mixed areas (NDVI>0.2 & NDVI<0.5)

𝑃𝑉: vegetation proportion (Carlson & Ripley, 1997)

Calculation of vegetation proportion (Carlson & Ripley, 1997)

𝑃𝑉 = (𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑎𝑥)

2

𝑁𝐷𝑉𝐼𝑚𝑖𝑛: limit to bare soil (0.2)

𝑁𝐷𝑉𝐼𝑚𝑎𝑥: limit to vegetation (0.5)

EMISSIVITY EXPLANATION (Sobrino, Jiménez-Muñoz, & Paolini, 2004):

𝜀 = 𝜀𝑉𝑃𝑉 + 𝜀𝑆(1 − 𝑃𝑉) + 𝑑𝜀

𝑑𝜀: effect of geometrical distribution of surfaces

𝑑𝜀 = (1 − 𝜀𝑠)(1 − 𝑃𝑉)𝐹𝜀𝑉

𝐹: shape factor assumed (0.55) (Sobrino, Caselles, & Becker, 1990)

Emissivity values

LAND COVER TYPE (Sobrino, Jiménez-

Muñoz, & Paolini, 2004)

(Stathopoulou & Cartalis,

2007)

Urban/densely built - 0.946

Suburban/medium built - 0.964

Industrial/commercial - -

Mixed urban area / Urban use* 0.973 0.950

Agriculture / Rural area** 0.990 0.980

Forest - -

Water surface - 0.990

* Emissivity of bare soil

** Emissivity of vegetated surfaces

Page 14: Procedure, authors and general notes during calculation

Pág. 12

Mixed areas (Sobrino, Jiménez-Muñoz, Soria, Romaguera, & Guanter, 2008):

𝜀𝑚 = 0.018𝑃𝑉 + 0.971

Mixed areas in urban context (Stathopoulou & Cartalis, 2007):

𝜀𝑚 = 0.017𝑃𝑉 + 0.963

Part by part calculation ArcGIS code (urban context):

E Es + Em + Ev

εsNDVI Con(NDVI<0.2, 0.95, 0.0)

εvNDVI Con(NDVI>0.5, 0.98, 0.0)

Pv Square((NDVI-0.2) / (0.5-0.2))

εmNDVI Con((NDVI>=0.2 & NDVI<=0.5), (0.017 * Pv + 0.963,0.0),0.0)

Full code:

ArcGIS:

(Con(NDVI<0.2, 0.95, 0.0))+(Con((NDVI>=0.2) & (NDVI<=0.5),

0.017*(Square((NDVI-0.2)/(0.5-0.2)))+0.963,0.0))+(Con(NDVI>0.5, 0.98,

0.0))

QGIS:

( ( NDVI < 0.2 ) * 0.95 ) + ( ( NDVI> 0.5) * 0.98 ) + ( ( ( NDVI>= 0.2 )

AND (NDVI<= 0.5 ) ) * ( 0.017 * ( ( ( NDVI-0.2 ) / ( 0.5 -0.2 ) ) * ( (

NDVI-0.2 ) / ( 0.5 -0.2 ) ) ) + 0.963 ) )

Land Surface Temperature (LST) from MODIS

Scaling correction (National Aeronautics and Space Administration (NASA), 2017):

𝐿𝑆𝑇𝐶 = (𝐿𝑆𝑇𝐷𝑁 ∗ 0.02) − 273.15

𝐿𝑆𝑇𝐶: land surface temperature in Celsius

𝐿𝑆𝑇𝐷𝑁: raw MODIS land surface temperature in digital number

GIS code:

MODIS_LSTdn * 0.02 - 273.15

Page 15: Procedure, authors and general notes during calculation

Pág. 13

REFERENCIAS

Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in

thermography of urban areas. Remote Sensing of Environment, 12(4), 313-329.

doi:10.1016/0034-4257(82)90043-8

As-syakur, A. R., Adnyana, I. W., Arthana, I. W., & Nuarsa, I. W. (2012). Enhanced

Built-Up and Bareness Index (EBBI) for Mapping Built-Up and Bare Land in an

Urban Area. Remote Sensing, 4(10), 2957-2970. doi:10.3390/rs4102957

Barsi, J., Lee, K., Kvaran, G., Markham, B., & Pedelty, J. (2014). The Spectral

Response of the Landsat-8 Operational Land Imager. Remote Sensing(6), 10232-

10251. doi:10.3390/rs61010232

Barsi, J., Schott, J., Hook, S., Raqueno, N., Markham, B., & Radocinski, R. (2014).

Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration.

Remote Sensing, 6(11), 11607-11626. doi:10.3390/rs61111607

Carlson, T. N., & Ripley, D. A. (1997). On the relation between NDVI, fractional

vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3),

241-252. doi:10.1016/S0034-4257(97)00104-1

European Space Agency (ESA). (2015). Sentinel-2 User Handbook. Retrieved from

ESA Sentinel Online:

https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook

European Spacial Agency (ESA). (2017). MultiSpectral Instrument (MSI) Overview.

Retrieved from European Space Agency (ESA):

https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument

Liang, S. (2001). Narrowband to broadband conversions of land surface albedo I:

Algorithms. Remote Sensing of Environment, 76(2), 213-238.

doi:10.1016/S0034-4257(00)00205-4

McFeeters, S. (1996). The use of the Normalized Difference Water Index (NDWI) in

the delineation of open water features. International Journal of Remote Sensing,

17(7), 1425-1432. doi:10.1080/01431169608948714

National Aeronautics and Space Administration (NASA). (2017). Data Products.

Retrieved from MODIS. Moderate Resolution Imaging Spectroradiometer:

https://modis.gsfc.nasa.gov/data/dataprod/

Rouse, J., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation sytems in

the great plains with ERTS. Goddard Space Flight Center 3d ERTS-1

Symposium (pp. 309–317). Washington, DC: NASA. Retrieved from

https://ntrs.nasa.gov/search.jsp?R=19740022614

Smith, R. (2010, Marzo). The heat budget of the earth's surface deduces from space.

Center for Earth Observation. Yale University. Retrieved from Center for Earth

Observation. Reference Documents: https://yceo.yale.edu/links/reference-

documents

Page 16: Procedure, authors and general notes during calculation

Pág. 14

Sobrino, J., Caselles, V., & Becker, F. (1990). Significance of the remotely sensed

thermal infrared measurements obtained over a citrus orchard. ISPRS Journal of

Photogrammetry and Remote Sensing, 44(6), 343-354. doi:10.1016/0924-

2716(90)90077-O

Sobrino, J., Jiménez-Muñoz, J., & Paolini, L. (2004). Land surface temperature retrieval

from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434-440.

doi:10.1016/j.rse.2004.02.003

Sobrino, J., Jiménez-Muñoz, J., Soria, G., Romaguera, M., & Guanter, L. (2008). Land

Surface Emissivity Retrieval From Different VNIR and TIR Sensors. IEEE

Transactions on Geoscience and Remote Sensing, 46, 316-327.

doi:10.1109/TGRS.2007.904834

Stathopoulou, M., & Cartalis, C. (2007). Daytime urban heat islands from Landsat

ETM+ and Corine land cover data: An application to major cities in Greece.

Solar Energy, 358-368. Retrieved from

https://doi.org/10.1016/j.solener.2006.06.014

U.S. Geological Survey. (2016, Marzo 26). Landsat 8 Data Users Handbook Version

2.0. Retrieved from Landsat missions. U.S. Geological Survey:

https://landsat.usgs.gov/

Weier, J., & Herring, D. (2000, Agosto 30). Measuring Vegetación (NDVI & EVI).

Retrieved Agosto 17, 2017, from NASA Earth Observatory:

https://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_veg

etation_1.php

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance

open water features in remotely sensed imagery. International Journal of

Remote Sensing, 27(14), 3025-3033. doi:10.1080/01431160600589179

Xu, H. (2008). A new index for delineating built-up land features in satellite imagery.

International Journal of Remote Sensing, 4269–4276.

Zha, Y., Gao, Y., & Ni, S. (2003). Use of normalized difference built-up index in

automatically mapping urban areas from TM imagery. International Journal of

Remote Sensing(24), 583–594.