proceedings of the eleventh lunar and planetary science ...€¦ · ferences which ranged from 1-8%...

16
Reprinted from the Proceedings of the Eleventh Lunar and Planetary Science Conference Pergamon Press New York Oxford Toronto Sydney Paris Frankfurt

Upload: others

Post on 11-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

Reprinted from the

Proceedings of the Eleventh Lunar and Planetary Science Conference

Pergamon Press New York • Oxford • Toronto • Sydney • Paris • Frankfurt

Page 2: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

Proc. Lunar Planet. Sri. Conf. l Ith (1980), p. 1463-1477. Printed in the United States of America

Depth scales for Apollo 15, 16, and 17 drill cores

Judith H. Allton and Stephen R. Waltz

Lunar Curatorial Laboratory, Northrop Services, Incorporated, P.O. Box 34416 Houston, Texas 77034

Abstract—A scale of depth in cm from the surface and of overburden mass in g/cm2 is presented for each drill core based on a review of original sample data, Apollo surface activity videotapes, and examination of flight hardware. The scales presented here are based on laboratory measurements of the soil. The relationship of these depth scales to in situ lunar conditions is somewhat speculative and includes larger uncertainties (±3 cm, Carrier, 1974) in measurements of depth of penetration (instead of length of soil column measured in tube) and insufficient understanding of what happens to lunar soil entering the drill stem (in terms of amount entering the drill, compaction, expansion). The scales for Apollo 15 and Apollo 17 drill cores are well constrained. The Apollo 16 drill core was returned to earth with a substantial void in the bottom of the upper half of the core. The scale presented proposes that significant amounts of soil fell out of the bottom of section 60005 in addition to poor recovery in the upper two sections. The lower half of the core (60001-60004) represents 100% soil recovery at a depth of 102-221 cm below the surface. A table of the weights and lengths for "end of tube" samples is provided for investigators who wish to correlate depths of thin sections continually along the drill string.

INTRODUCTION

Since lunar drill core samples first became available, investigators have used several sources and methods for calculating sample depths. This resulted in dif-ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo 16 and 17 samples. For Apollo 16 there was the additional problem-of-how-tor account-for-the-void space in t le middle of the core. Comparison of calculated depths for the same samples are shown in Table 1. To facilitate interlaboratory comparison of analytical results, a well-constrained depth scale for the Apollo 15 and one for the Apollo 17 drill cores are presented. A less constrained scale for the Apollo 16 drill core is also given. The scales are presented in an abbreviated tabular form in this paper. Computer listings for depths and mass of overburden by sample number are available from the Lunar Sample Curator, and these listings are the most convenient form to use.* These depth scales are based on the length of the soil column measured in the laboratory since these are the depths most easily referenced in locating in-

* Lunar Sample Curator, SN2, Johnson Space Center, Houston, Texas 77058.

1463

Page 3: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

wolj uaNw alam saidwus „awn jo pua„ pun suogoas aloo a4o jo pea Joj sw5ual puu sw8pAtt •sa.100 Ilup ayo jo pro jo wSual twol

Joj pawwns wam suopoas junwAtipw ayo Joj stoSual 041, -wnooau ow! uarl alam sassw Hos umoum •uado paww alam sawn ago alojaq panowaJ saidwrs „aqw jo pua„ ApEa a4l Jojlun000u oo pappu wam s4o8ual uwwoo nos wrydoiddv pamapt ag pinoa nos ayo puu uado pamw Q.13/N saqw aw nip suopoas tunpwpw Joj painsuaw alam sw2ual uwwoo Hos aw 'way pawasald sajeos

1101111H `VINCI AO S3011110S `NOLLV11131V3 10 SUOIELHIN

aaag paluasaid asogi of Juptu!s atu 43!tim (9L61 `312uNI puu aNno) 3oininD ado3 Jvun7 alp u! pagsqqnd alaM sarpos `pauluualap Apia! -noon aim! 0.MM saauds ►on puu papass► aJOM solo° atp laijv -plup dollop,finurtuyodd atp luau stodap aldwPs umo .patp paTeinotpo goal pup sapituus alp

OWOS pan!aoai sIolapsanu! Apra Attew np sum spq map agl a! Iu!nluta IIV •sa►aws nip° puu samonuo!pal pang-hogs 3o sasicipuu loplb loj sagni atp Jo sow jo spua aql Jo ino 2np sum ►os `uari alam skei-x •(£L61 VL61 'uZL6I I3dS1 Pau qEL6I 'clZL6I 'uZL,61 "lu id IINN►IN) suoday d.maps• !CID1111tlyd.ld atp ui patisllqnd pup stidel&)!ppa-x ui pannsgo stpual ►os puu `agnl atp pos 10 sp.pam ssol `aoppris nunl alp uo appal swawainstatu ql2ual uo paspq anm suumloo pos a.loo plup jo stpual puu sitpam isigt aqi

NOLINMIOANI MMHG 31c1INVS 10 S1311110S altIVIIVAV KISROIA3Ild

•uoputulopi soiumpatu pos pup pan/wool ipluaTetu 30 TU30 lad uo pasug passnosm s! `angeinoads AlliAs 'mg luPpodm! Appoppo `suomp -uoo mulll nps ul renm of salvos asap jo cl!gsuo►pial ata •saidures ,saolapsan

ZI7g g£g CIOOOL 0L4 £L4 CZOOOL L6£ 004 C£000L 17Z£ 9Z£ £`17000L 1ST ZSZ CSOOOL 6L1 081 £'9000L 917 OS £91`8000L

CL6I " I" i a 1103d gL6I `ainqiassum puu spanD

(I!os Swss!tu Joj zuJo/2 SS sapwow) c•68z (llos Swsspn Joj papwow 8ww011)1717£Z

(Hos Swsswi Joj ,wo/8 cc sapwow) g•Ezz (Hos Swsswi Joj papwow gumou) g•491

1•£8 £L61 `ssnlj

(llos 2wss!tu Joj ztuo/S 04 sapnIau!) ZLZ

(pos Sulissw, Joj zwo/2 0b sapwoup coz

£8 17L6I to laULIa01S

C£0009

£'170009 £'90009

aldwES ,w3/2 wdaa

•saidiuts awes ato Joj Aisnopiald pasn swum wdap jo uosyudwop •T awl

ZJIDM 'S P" "111V • H f 696/

Page 4: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

Depth scales 1465

original records and photographs in the data packs for each sample maintained in the Lunar Curatorial Laboratory. It was estimated that errors in measurement of length were ± 0.5 mm, and 12-16 mea-surements were needed for each drill core. The balance tolerance for "original weight" of each core tube section was ±0.8 g. For each of the 14-16 "end of tube" samples from each drill string, the balance tolerance was ±0.05 g.

Measurements of the depths of penetration of the drill stems into the lunar surface, including error estimates, were done by Carrier (1974) based on observation of the length of each drill stem still protruding from the lunar surface when drilling was completed (photos, videotapes, astronaut com-ments). Review of the videotapes revealed that the position of the lunar surface in relation to the drill stem was somewhat obscured by soil movement from drilling and astronaut activities. However, Carrier (pers. comm.) believes the soil surface was not altered by more than 2 cm.

SOURCES OF SAMPLE DISTURBANCE

It is emphasized that the scales presented in Tables 2-4 are based on soil column lengths measured after milling open the tubes in the laboratory. Since the soil column length and density was altered during drilling, transport to laboratory, and opening of the tubes, an understanding of parameters affecting the soil during these operations is necessary.

Extensive experimentation to quantify the alteration of soil during drilling has not been done. Soil mechanics investigations indicate that drilling may not always recover all of the material in the path of the drill; some may be pushed aside, depending on the relative density of the soil. For very dense soils, the drill may recover more than what is in the path of the drill. Low relative density and fast drill rates will result in lower sample recovery; high relative density and a slow drill rate will result in higher sample recovery (Carrier et al., 1972). Relative density is an expression of how tightly packed a particular soil is compared to the minimum density and the maximum density to which that soil can be packed (minimum density, loosely packed = 0% relative density; maximum density, tightly packed = 100% relative density) (Carrier et al., 1973). Similar trends regarding per cent recovery, soil density, and drill rate occurred during testing for development of the Apollo Lunar Surface Drill by Martin Marietta Corpo-ration (Crouch, 1971). —During transport. the soil—was not completely confined if the tube were not

full. The uppermost tube was full on Apollo 15, but this was not the case on the other two missions. Plugs used on the bottom ends (the female ends) of tubes, except those with a bit, were hollow and allowed the soil to expand about 1 cm.

In the laboratory, pressure was placed on the ends of the tubes during milling to stabilize them, and this compacted the soil lengths about 5 mm in the Apollo 15 and 16 drill cores (samples from the top ends of the Apollo 17 tubes alleviated the compaction).

PER CENT CORE RECOVERY

To relate the condition of the cores as observed in the laboratory to in situ conditions, the length of the soil column recovered in the drill can be compared

Page 5: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

wolj uaNw alam saidwus „awn jo pua„ pun suogoas aloo a4o jo pea Joj sw5ual puu sw8pAtt •sa.100 Ilup ayo jo pro jo wSual twol

Joj pawwns wam suopoas junwAtipw ayo Joj stoSual 041, -wnooau ow! uarl alam sassw Hos umoum •uado paww alam sawn ago alojaq panowaJ saidwrs „aqw jo pua„ ApEa a4l Jojlun000u oo pappu wam s4o8ual uwwoo nos wrydoiddv pamapt ag pinoa nos ayo puu uado pamw Q.13/N saqw aw nip suopoas tunpwpw Joj painsuaw alam sw2ual uwwoo Hos aw 'way pawasald sajeos

1101111H `VINCI AO S3011110S `NOLLV11131V3 10 SUOIELHIN

aaag paluasaid asogi of Juptu!s atu 43!tim (9L61 `312uNI puu aNno) 3oininD ado3 Jvun7 alp u! pagsqqnd alaM sarpos `pauluualap Apia! -noon aim! 0.MM saauds ►on puu papass► aJOM solo° atp laijv -plup dollop,finurtuyodd atp luau stodap aldwPs umo .patp paTeinotpo goal pup sapituus alp

OWOS pan!aoai sIolapsanu! Apra Attew np sum spq map agl a! Iu!nluta IIV •sa►aws nip° puu samonuo!pal pang-hogs 3o sasicipuu loplb loj sagni atp Jo sow jo spua aql Jo ino 2np sum ►os `uari alam skei-x •(£L61 VL61 'uZL6I I3dS1 Pau qEL6I 'clZL6I 'uZL,61 "lu id IINN►IN) suoday d.maps• !CID1111tlyd.ld atp ui patisllqnd pup stidel&)!ppa-x ui pannsgo stpual ►os puu `agnl atp pos 10 sp.pam ssol `aoppris nunl alp uo appal swawainstatu ql2ual uo paspq anm suumloo pos a.loo plup jo stpual puu sitpam isigt aqi

NOLINMIOANI MMHG 31c1INVS 10 S1311110S altIVIIVAV KISROIA3Ild

•uoputulopi soiumpatu pos pup pan/wool ipluaTetu 30 TU30 lad uo pasug passnosm s! `angeinoads AlliAs 'mg luPpodm! Appoppo `suomp -uoo mulll nps ul renm of salvos asap jo cl!gsuo►pial ata •saidures ,saolapsan

ZI7g g£g CIOOOL 0L4 £L4 CZOOOL L6£ 004 C£000L 17Z£ 9Z£ £`17000L 1ST ZSZ CSOOOL 6L1 081 £'9000L 917 OS £91`8000L

CL6I " I" i a 1103d gL6I `ainqiassum puu spanD

(I!os Swss!tu Joj zuJo/2 SS sapwow) c•68z (llos Swsspn Joj papwow 8ww011)1717£Z

(Hos Swsswi Joj ,wo/8 cc sapwow) g•Ezz (Hos Swsswi Joj papwow gumou) g•491

1•£8 £L61 `ssnlj

(llos 2wss!tu Joj ztuo/S 04 sapnIau!) ZLZ

(pos Sulissw, Joj zwo/2 0b sapwoup coz

£8 17L6I to laULIa01S

C£0009

£'170009 £'90009

aldwES ,w3/2 wdaa

•saidiuts awes ato Joj Aisnopiald pasn swum wdap jo uosyudwop •T awl

ZJIDM 'S P" "111V • H f 696/

Page 6: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

spp pamollu 90051 Pun `SOOSI 'MOS I jo spua wonoq s&nd ino pamollog jo asn -ApOls paioudwoo alam `aoa!d auo su maua o1 pauiniaJ aiam qopim `EOCISI Puu `ZOOSI `1.00SI saioo pun `Apouduo awl um 6.6E tutnwou 0141 wag Amp's papttedxa 900gi puu SCIOS I `b00Si sato° `z algal u! uaas aq two sy

• I •5!A Alluo! -qd-u.t2 papplap uopunns ata •wars wup am Jo uopou.uxa aluppouj 01 aoujans 0141 anoqu 51npnliald aqn1 014130 awos Hat sineualisu alp q2no14l uana jjn3 Aialaid -woo sum aqn1 isowdaddn 0141, •aqn1 Illip all 2upawa law wqmawos pasualoap Apsuap pos 0141 lutp saluollw! puu `Alatiooat ozEHI 01 spuodsailoo spiL •1110 Z• 1

z•LEz sum pauado atom saqm agl Jaiju painsuatu tp2ual uumpo pos teloi 0141, 'um coa SUM palanooal sum pos qopim waij uopumuad jo tpdap Tsawa.12 0141 `snqi, •2uoi wO 5.5 sum `Aloluioqui am In paniasqo uaqm `pion spa •aoujIns Juuni alp uo map alp jo tuouoq jo Trio Haj pos jo wnowu Hums y •(i7L61 `.1a!aseD) aoujlns mum all ow! wo j T_ 9EZ paluilauad 5wps ill.113 SI ollody aqi

31103 TIIIM SI 0110(1V

•sa.in2g tpdap paitoo 01 apuw sum ldwanu uu `atojalaqi 4%a san!5 '17L61 `JaPIRD) V7.8 111 moi Aptruogw2!s sum AJ3A0301 0141 `0.100 111.1p 91 ollody all jo asuo 0141 ui

•a.too 0141 30 1412uai alp lano pawq!.ps!p iguana 9 papa Atm J! JO LIOROUdWOO pOS 10 up am ti!.1alua Lou ssuw pos o1 anp sum aouatapp 0142 j! pa►wialap aq loutruo 1! aows mid& Lou sum .tolouj uopoanoo atu •sap!suap 1.1► 145p4 001 ort .10 stpdap tr! moo' col aq Amu wq `suop!puoo nps u1 0l °solo aae `AJanooat

Limp ssat .1403 uopoalloo ou tp!m 'wag pawasaid sap!suap pos pun °Leos tpdap atp lutp sawo!pu! sn41, •%96 SUM AJOA0301 alp 0103 1pip Li ollody am 114

•patanooal sum Ill.ip alp Jo mud am in nos IIn Alluntnit rutp sTsanns qopim %al sum 0.100 111.113 Si atp JOJ A.I3A003J 0141

.91 ollody .1o3 °%o£ puu LI puu gj ollody .toj %1 woqu Si sawn ul aouatapp 0142 lnq `uopunns anal atp loallat Alawinoor alow Aiquqatd san-au mapsup •U031U1 alam saidtuus ,siow5psanu! Iunp!A!pu! 14op4m Aq (stpdap) stpSuai atp umm wals!suoo aq o1 pauado atam saqm atp nue panlasqo stp2uai lapotis Allunsn 0142 sasn Jaded spp suataqm 'sawn palm AI; um 6.6E Hnj 1.1puno0 slid-x

paniasqo stp2uai uwwoo pos wag saw/wool paluinotuo 071,60 JOUJUJ -000141 Affunou sum wtp uapirupano 014130 Ije pannooaa anuq Lou

Amu .to Auw mip am Imp az!tuaa 0l wupodun s! 1! `Alanooal %001 uutp ssai !Inn& atoo e wag ,wo/2 stpdap aldwus 1.1!sn siolapsanu! JOJ -1415uai ssai Adn000 01 pos 0141 papudwoo ssaoald 2u14pip 0141 Imp .to wup am palm° map 041 jo mud atp pos 0142 Jo Hu Lou mil saluo!pu! 1! 4%001 uutp SS31 A.10A033.1 uaqm

aoujins mum u! uoge.pauad 30 tpdap OM x saqn1 ap!su! uwnioo pos jo tpuai — AJ3A00011

•palanooal sum aidwus qopim wag °owns Juunj am ow! uopullauad jo tpdap am 01

2110,f1 '21 • S pun uoillti ' f 99171

Page 7: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

20,f1 '21 • S ' f 99171 pun uoillti

sum aidwus qopim wag °owns Juunj am ow! uopullauad jo tpdap am 01 •palanooal

saqn1 ap!su! uwnioo pos jo tpuai — AJ3A00011 OM x aoujins mum u! uoge.pauad 30 tpdap

mud atp pos 0142 Jo Hu Lou mil saluo!pu! 1! 4%001 uutp SS31 A.10A033.1 uaqm 01 pos 0141 papudwoo ssaoald 2u14pip 0141 Imp .to wup am palm° map 041 jo atoo e wag ,wo/2 stpdap aldwus 1.1!sn siolapsanu! JOJ -1415uai ssai Adn000 Amu .to Auw mip am Imp az!tuaa 0l wupodun s! 1! `Alanooal %001 uutp ssai !Inn&

Lou -000141 Affunou sum wtp uapirupano 014130 Ije pannooaa anuq 071,60 paniasqo stp2uai uwwoo pos wag saw/wool paluinotuo JOUJUJ

Allunsn 0142 sasn Jaded spp suataqm 'sawn palm AI; um 6.6E Hnj 1.1puno0 slid-x atp umm wals!suoo aq o1 pauado atam saqm atp nue panlasqo stp2uai lapotis mapsup •U031U1 alam saidtuus ,siow5psanu! Iunp!A!pu! 14op4m Aq (stpdap) stpSuai ul aouatapp 0142 lnq `uopunns anal atp loallat Alawinoor alow Aiquqatd san-au

ollody °%o£ %1 .91 .1o3 puu LI puu gj ollody .toj woqu Si sawn IIn Si Alluntnit rutp sTsanns qopim %al sum 0.100 111.113 atp JOJ A.I3A003J 0141

•patanooal sum Ill.ip alp Jo mud am in nos tpdap atp lutp sawo!pu! sn41, •%96 SUM AJOA0301 alp 0103 1pip Li ollody am 114

Limp ssat .1403 uopoalloo ou tp!m 'wag pawasaid sap!suap pos pun °Leos ort .10 stpdap tr! moo' col aq Amu wq `suop!puoo nps u1 0l °solo aae `AJanooat aq loutruo 1! aows mid& Lou sum .tolouj uopoanoo atu •sap!suap 1.1► 145p4 001 pOS 10 up am ti!.1alua Lou ssuw pos o1 anp sum aouatapp 0142 j! pa►wialap

•a.too 0141 30 1412uai alp lano pawq!.ps!p iguana 9 papa Atm J! JO LIOROUdWOO 111 moi Aptruogw2!s sum AJ3A0301 0141 `0.100 111.1p 91 ollody all jo asuo 0141 ui

'17L61 `JaPIRD) V7.8 tpdap paitoo 01 apuw sum ldwanu uu `atojalaqi 4%a san!5 •sa.in2g

31103 TIIIM SI 0110(1V

SI `.1a!aseD) aoujlns mum all ow! wo j T_ 9EZ paluilauad 5wps ill.113 ollody aqi Juuni alp uo map alp jo tuouoq jo Trio Haj pos jo wnowu Hums y •(i7L61 0141 `snqi, •2uoi wO 5.5 sum `Aloluioqui am In paniasqo uaqm `pion spa •aoujIns 'um coa SUM palanooal sum pos qopim waij uopumuad jo tpdap Tsawa.12

z•LEz sum pauado atom saqm agl Jaiju painsuatu tp2ual uumpo pos teloi 0141, •1110 Z• 1 Apsuap pos 0141 lutp saluollw! puu `Alatiooat ozEHI 01 spuodsailoo spiL

, -woo sum aqn1 isowdaddn 0141•aqn1 Illip all 2upawa law wqmawos pasualoap 0141 anoqu 51npnliald aqn1 014130 awos Hat sineualisu alp q2no14l uana jjn3 Aialaid -qd-u.t2 papplap uopunns ata •wars wup am Jo uopou.uxa aluppouj 01 aoujans

• I •5!A Alluo! Amp's papttedxa 900gi puu SCIOS I `b00Si sato° `z algal u! uaas aq two sy `EOCISI Puu `ZOOSI `1.00SI saioo pun `Apouduo awl um 6.6E tutnwou 0141 wag jo asn -ApOls paioudwoo alam `aoa!d auo su maua o1 pauiniaJ aiam qopim spp pamollu 90051 Pun `SOOSI 'MOS I jo spua wonoq s&nd ino pamollog

11

Page 8: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

Lunar surface

Np

w

O

Void

E

E

60 100

0 Vl

a

Ideal 100% recovery

0 iv 200 — Z 0 .0

.c

300

5.5 cm void

0 100 200 300

Lunar surface

Depth in drill stem (cm)

Depth scales 1467

Fig. 1. Apollo 15 drill core depth relationship. Data points determined at top of each core section (e.g., 15006, 15005). Slope of line is not constant throughout length of core; therefore, Table 2 describes each core section separately. Dashed line indicates ideal 100% recovery. Insert shows distribution of soil observed in the laboratory and the position of the drill stem with respect to the lunar surface as observed on the moon. After style of Carrier, 1974.

expansion to occur. The compaction of 15001, 15002, and 15003 occurred after separation of these tubes in the laboratory, probably during the milling procedure, because pressure was put on the ends of the tube to hold it in place during cutting.

The good recovery_indicates that the sample depths--and-densities reported-in Table 2 closely resemble in situ conditions. Table 5 gives the lengths calculated for "end of tube" samples, which are not included in thin sections or peels, for investigators correlating sample depths of peels. Thin sections were not made along the length of the Apollo 15 drill core.

APOLLO 16 DRILL CORE

Unlike the Apollo 15 drill core, the Apollo 16 drill core does not have a straight-forward relationship between soil column length measured in the laboratory and in situ conditions. The poor recovery of 84% is significant and requires correction factors.

Page 9: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

sl aduloap!A 041 u! uaas su ampaoold 5ullipp 341 `samnoup asa141 Jo asnuoas OS ww/wo ocT jo alga 5w11.ip lsuj Alan u 111 ualuT sum um lug •paz!sewwns

`JalliED •ci woJj •wwoo •siad 'llamwodg •9 Aq pawinotuo sami 2ullipp) OL 431 pamois NE.1 041 put illip 041 uo larq plati lneuosisu ato spsumially .(111

09 041 aippuu alp mil Aimois glow am!! u paillip sum WO wouoq .ww/wo T um E -t7ZZ Pawilauad wals pup 0141 `palaidwoo sum 5willip 0141 uatim •uo!pas

uo do 5u!punaul wars Jo um gi inoqu sum 0.1041 puu `414020l 041 ow! 0141 0 sum woo alp aiojaq padduo sum pug dol 141 .(t7L6I `JapluD) aoujIns seuni

d sum 2! alojaq !pp a413o womq alp woij pann000 wo 1> jo ssoi •1no paruf alp Li! paniasqo 1!q 04130 wolwq 0141 u! mon 341 wag paonpap sum sm., •padduo 81Z aq 431 painsuaw sum magma sum iipp alp qouim wag 3104 au .Alowioqui 0141 uaqi, •aio4 am ow! aqoad moll wall 0141 5uuldwp Aq auop sum sm., •daap um alaqm aio143A 2w/toll Juunl alp Jo /pug 0y1 uo Affewozpoq paouid sum aloo •'IME° UOIS!A0101 alp jo main alp uumm pauluwai map 04130 Hey .10M01 0141 ,quo

1.121m L- awigap jug 1424s u S0009 wwg 1-10009 alusedas 431 pasn sum qoualm V laeuansv Aq plc:4u sum Hos jo ssol .t0009 jo dol alp uo pomp sum duo v *vat-

SEM Apo pamds paopou 014 wnowu gip Imp pagputo Jaw! 3H .1u!od sup iu alma _mad& IOU p!p 5unoA uyof sSullmooal • OM JO ma!nal E UI *SUIEJSMIUU Mai Es5ugapqap man am Li! paluo!pu! sr ampaoold aqi jo laud sup 5wmasqo aq 431 sante4 qiog -wow jo womq 0y1 padduo uatii °Ina •(i7L61) laiusup Aq papodai `.1apluD) paddvo 'pun fewozpoq pawl.= an1'4 01 paviodal alam amo alp jo

(17 L61 '170009-10009 Alaialdwoo aoa!d auo su paumal sum 'am my Jo Reg lamoi 014,1,

inq `aoa!d auo su pau.nuai °sir sum `L0009-50009 'mug iaddn ata •1!os jo E* LL 041 • jo 415ua1 341 5uote pawq!lism sum 50009 u! 5 sp!on imuuisqns

-pasn sum Slid )no pamolloq asneoaq w!of ow! papuudxa mSual Hos, 'um 170-z sum laimuum aqui amp,

•wo 5•zi7 sum 100g1 jo Almedup •qoua wo 6'6E sum 9005I-ZOOSI saqw jo Auouduo luau!--6

S'1 T- 40'114 (agulanu) £L'1 817 -T- 5.E17(1 Z.1 -T Z•LEZ Simoi Z8'6EE £61 WZEZ 6.9E E'00Z 10051 175'SLZ 49'1 1'01Z Z'6E 1191 ZOOS1 I CLOZ 17C I O'EZZ £'6E 8' IZI E0051 65'LEI PC I 6'LZZ al '04 L18 170051 E4179 8C1 I '6EZ ,0'117 L'017 50051 0'0 85'1 9'01Z aL'017 0.0 90051

(zwo/5) g(Etuo/ 2) (2) 1112!am u(wo) m2ual (um) uolipas a.wo uonoas umpas jo do! lu AusuaG uo!loas uo!loas jo do) jo aoupns atop

uapinqiano jo 'IM alop alop mopq mdau

'KOLL suxai `uoisnoll `lawaD aords uosuqof `zrqs `.101einD aidwus Juunl ayl woij aiqui!rnu are Jaquimi aiduips uaNnwano jo ssew pug mdap aidturs jo sSupsyi

•aomins _mum am ow! paluipuad mdap ayI jo '/6£0I s! m2uai s!qJ -Alomoqui ayI u! pama!A su uwnioo nos am jo m2uai aya jo Supun000u ue s! afros sna

-woo ci ollodv Joj afros mdaa •z amyl

• II" AI • • S 8961 I'" 110)1111 • H • f 2

Page 10: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

8 cm void

84% recovery

Ideal 100% recovery 0

Lunar surface

Void Sparsely filled

throughout

Lunar surface

E 0

C E 6 100

0

o 200 to' 8 .o

C

E. a)

300 0 100 200

300

Depth in drill stem (cm)

Depth scales 1469

TZ# 'On II

SWITIOA IX OTIOdV

the core tube. Soil in 60006 extended from the top down to 32 cm in the section. The 60007 soil extended from the bottom upward to 22 cm. Figure 2 shows the soil distribution.

Carrier (1974) describes 3 scenarios to account for the voids. Briefly these are:

1. The top of the core sample did not move from its initial position—implying 100% recovery. (There was 18 cm of drill stem exposed when the drilling was completed, and the top of the soil column was found to be 18 cm below the top of the drill stem.) Then when the two halves of the drill stem were separated, soil fell out of the bottom of 60005.

2. This scenario also proposed 100% recovery, but surmises that the soil fell out of the bottom of 60001 (the bit) when the drill was powered in place briefly to clear the flutes of soil and to allow for easier extraction of the core.

Fig. 2. Apollo 16 drill core depth relationship. Solid line data points determined at top of each core tube section (e.g., 60007, 60006). Data for 60004-60001 are accurate. The discontinuity between 60005 and 60004 may be due to a combination of poor recovery and loss of sample from the bottom of 60005. An 8 cm void was found in the bottom of 60006, and 60005 was only partially filled throughout its length. Dashed line represents 100% recovery with no sample loss. Dotted line represents alternate view that 84% recovery was operational throughout length of core. Insert shows distribution of soil and voids as observed in the laboratory and the position of the drill stem with respect to the lunar surface as observed on the moon. After style of Carrier, 1974.

Page 11: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

llagoim) 1! anoqu .13Avi Jawiu alp Jo.; pannbal inyl jo sqynokaa.no /quo sum Jaicul uos ladaap aqi amiauad of pannbw awoj aqi •aoujins 391 jo wo OS umm 10!91 am OZ-SI uos puooas n puu lo!91 wo 01 )noqu Jake! aoujins uos u ano!pu! 0.103 map 0y13o w zz uppm ualui viup laialuomuad 5wpaoow-31as '(E£L6I "11) t 3 Havim) sasiquou w!adlooj uo pasuq suo!ss!uu .10910 unyl .1a9591 s! SValU 101U10131UI 91 ollody In llos jo wa 01-5 laddn alp jo Ansoiod ata (•Ans -uap anuutal mot sano!pu! Aiquqoid Ansolod 9591 5u!puul nun! ou Jo; nil -LUIS arU SUIE12 HOS JO 11131.11110-HAUa pun `ASologdaow `az!s `uou!sodwoo aows .91 000dy loj auop lou wam suoReinoreo Ansuap anuuiw lnq 'EL6I "/0 1a n!-L1ED u! pauodal su fps jo lo!nuyaq reowrqoaw aqi siolwoo `Answodlou `Ansuap anur

.(E£L61 -in id llagonw) Llep Jalawauauad 5wp.loow-jias put? suouulnoluo Ansi:mod w uaas aq Auw Ala/10031100d U Jo; suompuoj •1su3 Alawama sum am Sunup 091 waqm suouoas omi Jaddn alp u! (%og inoqu) Alaitoow Jood AJOA PEE 50009 Jo wolloq 991 woa3 a5umds jo uogewqwoo Aq iso! Aial!! Isom sum pos jo 5 891 „519ss!w„ 0141 •5w.us illap 091 jo woiioq 091 in aould u! Annoow 9/J001 swaswdw 170009-10009 suouoas Hos lnyi s! s!sagiodicq palonuj 391

•woo aqi jo meg wonoq ay) u! plop-undo aq pinom ozi78 jo Aianoow Iood n Imo Alamun swaas 1! 'solo° Lipp Li pun Si ollody asolu 5wiqulasal sau!suap Hos pun woo inup 091 jo Req Jamoi alp jo annu an!sagoo 09130 asnuoaq `as!mal!I •Hos jo ssol wro9p5!s ao3 sispca Ant!q!ssod alp lug '1 wieuaos sE 0009 Jo w01109 ayi wou paopouun pawds 2 891 onj alp 11191 Aimun swaas 31

'2u!Illw 1313E panowal aqn1 woo a91 jo mug „p!i„ alp of wagye 01 45noua 1CN59 paloud sum £0009 u! Hos asnuoaq pun !p&p wo 81z 091 01 pawew!uw sum ajoy 091 asneoaq papnosm s! Z 0IIEL130S •paniasqo sum saqn1 391 u! pos 091 uo uouou uo!ssnoaad-/(011100 alp wou 5umnsal 519qmod 10 SalplUIOS ou `Aollu wnwuip 091 u! wog paillw alp jo ssauq5noi aoujans 091 put; ssaupny 3nal5 391 01 on •adoosam!w ninoowq n lapun sums !pp Aldwa mou 091 jo aoujins lopaw! 091 paupituxa samonu 391 pun uoluED 'S Pfl •sassoi aumds 5wpwoxa Al0A030.1 woo lad E pia!A pinom uouou 5u!11!Ip Aq asumpsuy 091 ow! do pagsnd sum uwwoo llos alp nj m09 Allouxa 519mouN

•al°° IIPP LI oliody alp u! wapyta sum adAi sp.11 jo wawanow •llos jo 5nid n su pauaddeq anuq 1snuu `paim000 1! j! `suo!2w oml asalll u! Hos jo uou1l5m -paqinism Auuw5 lou sum Hos 391 11191 519no!pu! samon.us oNdelku.us nunnui molls 90009 jo land Jaddn 091 u! uo!Sw n pun L000930 land lamoi agi u! uw5a1 y •wawanow llos Einm paulaouoo are 11191 L0009 NE 90009 llos 091 19 panlasqo alOM sammj awos

•pauwwaw aq wumpseq 5w11!ip 09130 suouunIasqo waow awns pun uopoassm wou paweiqo uopuw.Kuu! paqsllqndun mos `1337/(1m n-0.1 are so!nuaos 00.191 asato wojaEl

•laded sp.p palRada.' s! tio!qm jo mos `optuaos youa loj aouappta 5upou.uap pun 5wiloddns san!2 osiu 31-4 •111.9) 09130 0111.1 uouuslauad 95!9 091 qnm wais!suoau! An/wow %001 spuu 13!InD

-uou!sod mug 51! of wags 391 19 plumdn palui5!w Hos ‘padduo sum woo 391 jo Heti dol alp Jauy •o!nuaos p942 s,la!anD 01 Su!ploo -011 wo g6I Apo jo 1115uai uwnioo Hos 1e101 n u! pamnsw Alanoow Jood y •E

2)1n/t1 • 21 • S pun unillV • H •f OL171

Page 12: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

Depth scales 1471

al., 1973a). These hard and soft layers may reflect changes in relative density of the soil (they may also reflect other characteristics such abundance of larger rock fragments). Similar hard/soft layers probably occur at the Apollo 16 drill core site. Two lines of evidence suggest that the same layers indicated in the pene-trometer tests may extend to the drill core site. First, the penetrometer-defined layers can be correlated in a 3 point traverse toward the drill core site (Mitchell et al., 1973a), and second, petrographic composition in 60006-60007 correlates with layers observed in the upper part of nearby (30 m distant) drive tubes 60009 - 60010 which extend to 60 cm depth (J. S. Nagle, pers. comm.).

The idea of loss by both spillage and poor recovery results in an unknown loss of soil from the bottom of 60005, and the location of losses from poor recovery in the core above this point is also unknown (recovery varies with relative den-sity). Therefore, the linear depth of the top of 60004 was arbitrarily set as 102.2 cm below the lunar surface (calculated by a soil length in 60007 of 22.4 cm and 39.9 cm each for 60005 and 60006). Depths below this point were calculated from soil weights and lengths observed in the laboratory. This relationship is illustrated in Fig. 2 and Table 3.

Table 3. Depth scale for Apollo 16 drill core.

The soil column length as viewed in the laboratory was only 84% of the depth penetrated into the lunar surface. This deficit in recovery was compensated for between 60004 and 60005.

Listings of sample depth and mass of overburden by sample number are available from the Lunar Sample Curator, SN2, Johnson Space Center, Houston, Texas 77058.

Core section length (cm)a

Core section weight (g)

Density (g/cm3)b

Wt. of overburden at top of section

(g/cm2)

22.4 105.7 1.44 0.0 32.0 165.6 1.58 32.34 14.6' 77.3d 1.62 83.00

33.2e 168.2 1.551 106.65 38.3 202.7 1.62 . 39.5 215.9g 1.67 220.13 35.8 211.8 1.81 286.15 5.5 30.1 1.67 350.95

221.3 ± 1.4 1177.3 ± 6.4 1.63 (average) 360.16 ± 2.0

Depth below Core surface of top of

section core section (cm)

60007 0.0 60006 22.4 60005 54.4 missing

soil 69.0 60004 102.2 60003 140.5 60002 180.0 60001 215.8 Totals

aLinear capacity of tubes 60007-60003 was 39.9 cm each. Capacity of 60001 + 60002 was 42.5 cm. 'Core tube diameter was 2.04 cm. 'Since the smaller amount of soil in 60005 was distributed along the whole length of the tube, the

density of 60004 was assumed, and the sample length was calculated. °Wt. revised after dissection when flight hardware was reweighed, previous wt. was 76.1 g. 'Length calculated to equal void space observed in 60005-60006. 'Density is average for top three sections. gWt. revised in Lunar Curatorial Laboratory after reweighing gross wt. Lunar Receiving Laboratory

reported wt. was 215.5 g.

Page 13: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

0 004 00Z 00£ 00t, i.0L

Riartooei 0,4,qg x £L61. `ssribi oleos .

£04

LUO/ LOGO

•Ijiguai aloolnotiSnanil Hos jo Annooai %vs sownsse qoulm NUM E UO umoqs osie axe ErEp awes ayL •50009 jo wonoq aye jo

*(17L61) •/" la ginumui Ila.1 2 081 luql sawnsald aleos ssnli Aq paystimnd se (£L61) ssuli Aq alum a uo pauoid axe algold uoponpoid teogaioaqi put net) um •Alanooal %vs JO alU3S qulap WO3 illip 91 (mod's/ uo erep uyg •f '213

atoo atp intp idpostren a2oloa5 an u! swatuwoo man 1411M Ham saalge anwpsa aqi .wo I T_ goE pannauad was II!-'P an imp panwnsa (qEL6I) • 1" id Haqouv

31103 TIRIU LI 011[0dV

•d!qs -uonniai s!tp anoldsm _to .toj poddns molts of auop aq cn spaau vom irwatupad -r3 •EL6i d!tisuonniat tudap s!tp pasodold niuseD .E .5!A It! umoqs su aloo agb wolgnonn pawq!ns113 Aprau!! A.IaA0001 ortg uo pasnq ateos r uo panold atu nirp asap uaqm sn Ham sn (u6i) plotuy pun ApaaN jo sapHonu paonpold oiwsoo loj auno uononpoid inonaloaqi atp ig lou op gm) asaqi 170009 Pun 50009 uaampq Hos ti!ss!itu _to.; sairsuadwoo pun ataq pasodold auo an 01 selltws AJOA s! qo!qm (am) ssnli Aq °mos tudap u uo mup panold (i7L60 • iv to -amos aaglouu uo bold Ewp apHonuo!pal awns molt aou o1 2unsataw! s! 'arm 91 ollody aqf tp!m swap:Load atp jo uonmosai Jouoq o1 p.tunuoj 2uplool uI

'L0009-50009 .to.j uan!2 stndap tp!m panauuoo stuallold aqf jo OJUMU aq molls assn alp pun ‘AN°P4:1 Pun P0009 Joj stpdap pool ani5 pinotis s!tu, .170009 pun 0009 uaamiaq .toj pawsuadwoo Aldw!s srm 1g5!am 2u!ss!tu aqj -panionu! s! vomssan5 sows padwann lou sum suonoas E dol alp 2uoin 1112!am „2u!ss!w„ aq1 uonlodde o1 awaqos xaidwoo v

2110A1 • 21 • S Pun 1101111( • H • f ZLI71

Page 14: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

Depth scales 1473

Lunar surface I I 1

-.1 •

,o 96 % recovery, if no migration

2cm void 0

9 cm void

— s .,

Ideal 100% recovery

% s

OOH

occurred

. % •,

s. ss .

lurfft•

Luna •

• .

.;

.:7000.5

:. 70003

...

„ . a

Void

• .., , —

t

..:

.. • • • b

0 ..,

, oo .,

_

1 I 1 0

100 200 300

Depth in drill stem (cm)

E

E 100 0

La 200 to 0 to to

c

.c

a O

300

Fig. 4. Apollo 17 drill core depth relationship. Data points determined at top of each core tube section (e.g., 70009, 70008). Dotted line near top of core indicates the expected soil relationship for 96% recovery if no migration had occurred. Offset curve near top of core depicts voids left by migration of soil toward top of core during transport to laboratory. Dashed line represents ideal 100% recovery. Insert shows position of drill stem with respect to lunar surface as observed on moon. Insert (a) shows deduced in situ soil position in tube, and (b) shows position of soil as viewed in the laboratory.

penetrated to within an inch of the white stripes painted on the 70009 core tube and based on measurement of flight hardware. A soil column length of 292 ± 2 cm wadetermined mom bow far the plug was pushed into the top of the drill core (Mitchell et al., 1973b). The rammer-jammer pushing the plug was inserted two-thirds of its length before the surface of the soil was encountered (Bailey and Ulrich, 1975). The apparent recovery (96%) does not include uncertainties about where the actual surface was during drilling or to the effects of drilling on the compaction or expansion of soil in the tube. The crew noted that about 3-5 mm had fallen out of the bottom of the core (Bailey and Ulrich, 1975).

In the laboratory, measurement of the soil column length was not a straight-forward procedure because of soil movement during transfer from the moon. The astronaut measured a 30 cm void space in the top of the drill stem after drilling was completed and pushed a teflon plug in the tube to hold the soil in place. The drill stem was broken down into 3 pieces on the moon for transport to earth, and tubes 70007, 70008, and 70009 were returned as one unit. The position of the soil

Page 15: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

'6Z-8 01 1-8 'd `SIE-ds VSVN -ddg 7.3s • Uplaid 91 ollodv •so!uutpaw Hos (qzL61) •3 saisoD puu "ci •G liamprau, "f •H purl/wt.' "1 'H Vouoitincl "0 *1 Hannwaig '1 1103S "N uoisu0H 'III 'CI 'MJapaeD •f 11011013A1

'16-9 01 1-9 'd `0££-dS VSVN 'dad • !ds •w!/add Ll opodv 'S3p1B1100W HOS (9EL6I) •f 'H PuEIA0H PuE 11005 "N uoisnoll "3 •N salsoD `111 *c1 1ap1t3 "N !PPM •St717Z--L£17Z 'd •fiiO3 •Ps 10007 'aps 91 0110A, 041 le Agdw2quils put Ai!llqupun ips anj.Ins (E£L61) '11 11005 PuE "N •AA uolsnoH 'N sals0D Ak lal.1.m3 "N 'f

'8Z-L 01 I-L `68Z-dS VSVN 'dad • !..-)s •tuyddd Sl o//odd -sp!treqoatu 110S (RZL61) 'A '11 1103S Pug "N M uoisnoH 'N salso3 111 'M 13!-I1t3 "0 IPmw01£1 "N II0110111AI

•9t-L 07 I-L 'd 'Off -dS VSVN 'da2/ 'w!/add Ll ollody •saidwus nun! jo uo!wwwuxa A.mww!Iald (£L61) 13dS1

•85--L 01 I-L 'd 'Of -dS VSVN 'day 'PS .tulladd 91 ollody •saidures luuni JO UORMIILUVX0 (qzL6!) l8ds1

•SZ-9 01 1-9 'd `68Z-dS VSVN 'day •!ds •tulladd ollody •saidwts num jo uotiltu!wtxa Axeultu1131d (EZL6I) 011ual uopuwwgxg A.wwwllaid aldluts I3dS1

• £01 Z- £60Z 'd .filo3735 Joutri .dodd •silos puu slow mum u! uyil jo salgold tpdau (17L61) .d '3 Hum put •N piotuv -3 --11 1a3w!,4 "IN upuoii -}1 ltunz!!4s!!.4 wnwutui

•uoisnoH `1011w3 aavds uosuyof VSVN `ZSZ60 3Sf •swatuaiddns pup 2ojele3 310D Jtuni (9L6 'S 'f 312EN puu •Ei alna

•LZZ-581 'CI uoon ayJ '111!ioSal smut alp u! 5u!x!w puu uopywaw!pas-AydgAtimns uo.unau LI 0110dV (SL61) 'f •0 5incpasstm put •0 s!tin3

'13AUOG `1.10REJ0CIJO3 "822PIJEW up1E1/11 '8I£-IL-NOW '0N watunDoci loaculd crisv -sasAluuu ItAillsod put 0311UUllopad uo!ss!w1111p aauj.ms aeunl ci ()HWY (1L61) 'S tpno.13

'IZZ£-£1ZE 'd 'pJE •ps d0un7 •cold •s! Puu ti ollodv :sdwsuog elan wdap aidwus a.wo (ZL61) 1111111110S Pug "H '1 o3suire3 -Ak 'S uostn40f 'III 'm latust3

' I II7Z- £0.17Z `gib 'P03 •.)S 10007 • dodd 'Hos leuni JO AIISUOp 3AITEPI atli (ELM) 'y P00unIBIA1 PuE •f 11a1131M '111 •ci 1ap.w3

•b61-£81 `01 uoon arl.l •sdpisuoguial todap alo3 1IPP 0110dV (PLO III 'CI 139.1ED •A.tas •ojul .113a1

•I‘lum •tuozpv `jjelsSulA `ASoloa5ollsv jo youwg `Aanins 'pap .5.n .8E-9E .d `al!s 2u!puui alp jo aoloaS ato of 5wwwJad 1dposuan colon LI o110dV (SL61) '3 '0 11311111 Put •0 •N A011E3

•uolsnoH ‘awlpsui Altiauuld Pug muni .N-81 -d 'ix a.maps runiduoid pun iDult7 UI •(loansqu) 0100 !111P LI 0110dV .10j altos !oda!) plupuEls V (0861) 'S zIluM PuE 'H u011IV

•Idposnuew sw2 pama!nai Aiinjamo oym apum uumNs •f put III `Japau3 jo couched pug suopsa22ns ayl loj injalui8 oiu saoylne ati1—Splalil2p1A1011113V

•suo►puoo mum ups u! swasaidal Apsop aloo alp Ioj amos alp pui `aqm mil uopu.!!u! aidures Aq patquidx0 0112 spton atp `snqi •pataidwoo sum 2ull►ip atp uaqm aaujins ay; anoqu 5u!prutold aqui a.too atp jo tpuoi aqt sr1nb0 ums alp uiquM sp!on zip jo stpuai aqi •a.too IlluP LI ollody aqi jo uud laddn aqi ut sp!on 0.13M ataqi *£

•suop►puo0 Juuni rips u! stuasaidaa Aiquqoid 0100 oqi jo Rug tuottoq aqi Kt; arum alp `alojanta •paqintsm uaaq gut' am° atp jo Rug laddn atp Apo imp satuo!pu! aouap!na inq `2tuss!ul Si 0100 alp jo lsed

zilum •H .5 pill) UOMV '1

9L II

Page 16: Proceedings of the Eleventh Lunar and Planetary Science ...€¦ · ferences which ranged from 1-8% in sample depths calculated by two different investigators for the same Apollo

Depth scales 1477

Pepin R. 0., Dragon J. C., Johnson N. L., Bates A., Coscio M. R. Jr., and Murthy V. R. (1975) Rare gases and Ca, Sr, and Ba in Apollo 17 drill-core fines. Proc. Lunar Sci. Conf. 6th, p. 2027-2055.

Reedy R. C. and Arnold J. R. (1972) Interaction of solar and galactic cosmic ray particles with the moon. J. Geophys. Res. 77, 535-555.

Russ G. P. III (1973) Apollo 16 neutron stratigraphy. Earth Planet. Sci. Lett. 17, 275-289. Stoenner R. W., Davis R. Jr., Norton E., and Bauer M. (1974) Radioactive rare gases, tritium,

hydrogen, and helium in the sample return container, and in Apollo 16 and 17 drill stems. Proc. Lunar Sci. Conf. 5th, p. 2211-2229.