process optimization for r -pac production

27
Process Optimization for Process Optimization for R R -PAC Production -PAC Production N. Leksawasdi N. Leksawasdi 1 , , M. Breuer M. Breuer 2 , B. Hauer , B. Hauer 2 , , P.L. Rogers P.L. Rogers 1 1 , , B. Rosche B. Rosche 1 1 BABS, UNSW, Sydney, NSW, 2052, Australia BABS, UNSW, Sydney, NSW, 2052, Australia 2 BASF-AG, 67056 Ludwigshafen, Germany BASF-AG, 67056 Ludwigshafen, Germany

Upload: ariane

Post on 23-Jan-2016

29 views

Category:

Documents


0 download

DESCRIPTION

Process Optimization for R -PAC Production. N. Leksawasdi 1 , M. Breuer 2 , B. Hauer 2 , P.L. Rogers 1 , B. Rosche 1. 1 BABS, UNSW, Sydney, NSW, 2052, Australia. 2 BASF-AG, 67056 Ludwigshafen, Germany. What is R-PAC. R-PAC is for R - P henyl- A cetyl- C arbinol. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Process Optimization for  R -PAC Production

Process Optimization for Process Optimization for RR-PAC -PAC ProductionProduction

N. LeksawasdiN. Leksawasdi11, ,

M. BreuerM. Breuer22, B. Hauer, B. Hauer22, , P.L. RogersP.L. Rogers11, B. Rosche, B. Rosche11

11BABS, UNSW, Sydney, NSW, 2052, AustraliaBABS, UNSW, Sydney, NSW, 2052, Australia

22BASF-AG, 67056 Ludwigshafen, GermanyBASF-AG, 67056 Ludwigshafen, Germany

Page 2: Process Optimization for  R -PAC Production

What is R-PACWhat is R-PAC

R-PAC is for R-Phenyl-Acetyl-Carbinol

Precursor for production of ephedrine & pseudoephedrine; used to treat asthma and flu symptoms

O

O

CH3

H

Page 3: Process Optimization for  R -PAC Production

PDC catalysed reactionsPDC catalysed reactions

PDC

Page 4: Process Optimization for  R -PAC Production

Process of Process of modelmodel development developmentTheoretical for general model structure

Experimental for model structure modification & evaluation of constants

Combined theoretical & experimental

Confirmation of model by independent batch biotranformation profile

Optimization by designing feeding profile for fed batch system

Page 5: Process Optimization for  R -PAC Production

Theoretical model developmentTheoretical model development

Full form

According to King and Altman (1956)

Simplified form

Page 6: Process Optimization for  R -PAC Production

Theoretical modelTheoretical model

ii

iii

i Bkk

Akkkk

k

EBAkkkk

dt

Pd

5

4

32

32

1

32

32

1

ii dt

Pd

dt

Bd

iiii dt

Rd

dt

Qd

dt

Pd

dt

Ad2

iiiri

EAQVdt

Rd iiiriiq

i

EAQVEAVdt

Qd

Product

Reactants

By-products

Page 7: Process Optimization for  R -PAC Production

Experimental model developmentExperimental model development

Enzyme activity

Substrate concentrations

Enzyme deactivation effect

Batch biotransformations for Overall rate of R-PAC formation

Rate constants of by-products formation

Quantification of kinetics

Page 8: Process Optimization for  R -PAC Production

Enzyme activity effectEnzyme activity effect

y = 0.5508x

R2 = 0.9976

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 1 2 3 4 5 6 7 8 9 10

Enzyme activity (U/ml)

Init

ial r

ate

(mM

per

min

)

0

30

60

90

120

150

180

210

240

Init

ial r

ate

(mM

per

hr)

ii

Edt

Pd

Page 9: Process Optimization for  R -PAC Production

[Benzaldehyde] effect[Benzaldehyde] effect

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140 160

[Benzaldehyde] (mM)

Init

ial r

ate

(mM

per

min

)

0

12

24

36

48

60

72

84

96

108

Init

ial r

ate

(mM

per

hr)

R2 = 0.9963

hib

hib

i BK

BK

dt

Pd

1

Monod-Wyman-Changeux (MWC) Model

Kb = 1 x 10-4 mM-1.34 h = 2.34

Page 10: Process Optimization for  R -PAC Production

[Pyruvate] effect[Pyruvate] effect

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 30 60 90 120 150 180 210 240 270

[Pyruvate] (mM)

Init

ial

rate

(m

M p

er m

in)

0

12

24

36

48

60

72

84

96

108

Init

ial

rate

(m

M p

er h

r)

Michaelis – Menten kinetics Model

R2 = 0.9973

im

i

i AK

A

dt

Pd

Km = 10.6 mM

Page 11: Process Optimization for  R -PAC Production

Enzyme deactivation effectEnzyme deactivation effect

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Time (hr)

Rel

ativ

e en

zym

e ac

tivi

ty (%

)

0 mM

60 mM Bz

Page 12: Process Optimization for  R -PAC Production

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Time (h)

Rel

ativ

e en

zym

e ac

tivi

ty (

%)

Enzyme deactivation by benzaldehydeEnzyme deactivation by benzaldehyde

R2 = 0.9827

0 mM

200 mM

Page 13: Process Optimization for  R -PAC Production

Enzyme deactivation effectEnzyme deactivation effect

mMBttEBkK

mMBttEK

tt

dt

Ed

ilagiidd

ilagid

lag

i 20010,;.

100,;

;0

21

1

Kd1 = 2.64 x 10-3 h-1

kd2 = 1.98 x 10-4 mM -1 h-1

tlag = 5.23 h

Page 14: Process Optimization for  R -PAC Production

Overall rate constant & Overall rate constant & by-product rate constants determinationby-product rate constants determination

150 mM Bz150 mM Bz50 mM Bz50 mM Bz

Independent

prediction and

confirmation

k2, Vq, Vr

100 mM Bz100 mM Bz

Page 15: Process Optimization for  R -PAC Production

Batch biotransformationBatch biotransformation

R2 = 0.9857

50 mM Bz ; 60 mM Pyr

0

16

32

48

64

80

0 1 2 3 4 5 6 7 8 9 10Time (h)

Co

nce

ntr

atio

n (

mM

)

0.0

0.8

1.6

2.4

3.2

4.0

En

zym

e ac

tivi

ty (

U/m

l)

[Pyruvate] [Benzaldehyde][Acetaldehyde] [Acetoin][R-PAC] Enzyme Activity

Page 16: Process Optimization for  R -PAC Production

Batch biotransformationBatch biotransformation

R2 = 0.9981

150 mM Bz ; 180 mM Pyr

0

40

80

120

160

200

0 1 2 3 4 5 6 7 8 9Time (h)

Co

nc

en

tra

tio

n

(mM

)

0.0

0.8

1.6

2.4

3.2

4.0

En

zym

e

ac

tiv

ity

(U

/ml)

[Pyruvate] [Benzaldehyde]

[Acetaldehyde] [Acetoin][R-PAC] Enzyme Activity

Page 17: Process Optimization for  R -PAC Production

Overall & by-products rate constantsOverall & by-products rate constants

Overall rate constant (k2 ) = 24.8 mol h-1 U-1

Acetaldehyde rate constant (Vq ) = 0.0156 h-1 (U/ml) -1

Acetoin rate constant (Vr ) = 0.00251 h-1 (U/ml) -1 mM-1

Page 18: Process Optimization for  R -PAC Production

Theoretical & experimental modelTheoretical & experimental model

iim

ih

ib

hib

i

EAK

A

BK

BKk

dt

Pd

1

2

mMBttEBkK

mMBttEK

tt

dt

Ed

ilagiidd

ilagid

lag

i 20010,;.

100,;

;0

21

1

ii dt

Pd

dt

Bd

iiii dt

Rd

dt

Qd

dt

Pd

dt

Ad2

iiiriiqi

EAQVEAVdt

Qd

iiiri

EAQVdt

Rd

Page 19: Process Optimization for  R -PAC Production

Simulation of biotransformationSimulation of biotransformation 100 mM Bz ; 120 mM Pyr

0

24

48

72

96

120

0 1 2 3 4 5 6 7 8 9Time (hr)

Co

nce

ntr

atio

n (

mM

)

0.0

0.7

1.4

2.1

2.8

3.5

En

zym

e ac

tivi

ty (

U/m

l)

.

[Pyruvate] [Benzaldehyde][Acetaldehyde] [Acetoin][R-PAC] Enzyme Activity

Page 20: Process Optimization for  R -PAC Production

Confirmation of simulationConfirmation of simulation

R2 = 0.9953

100 mM Bz ; 120 mM Pyr

0

24

48

72

96

120

0 1 2 3 4 5 6 7 8 9Time (hr)

Co

nc

en

tra

tio

n (

mM

)

0.0

0.7

1.4

2.1

2.8

3.5

En

zym

e a

cti

vity

(U

/ml)

.

[Pyruvate] [Benzaldehyde][Acetaldehyde] [Acetoin][R-PAC] Enzyme Activity

Page 21: Process Optimization for  R -PAC Production

Suggestion of substrates level to be maintained for optimum R-PAC production

Pulse feeding can be designed to achieve optimum R-PAC production

Prediction of fed-batch biotransformation profile

Model application in fed-batch systemModel application in fed-batch system

Page 22: Process Optimization for  R -PAC Production

Simulation for prediction of optimum Simulation for prediction of optimum substrate levelsubstrate level

Hourly feed

1.2 Pyr/Bz

4.0 U/ml PDC

Initial Volume 1.00 L

0

50

100

150

200

250

300

350

0 15 30 45 60 75 90 105 120 135 150

Maintained Bz (mM)

R-P

AC

fo

rme

d, g

;

R-P

AC

pro

du

cti

vit

y, g

/da

y

.

0

20

40

60

80

100

120

140

Tim

e w

he

n r

em

na

nt

PD

C

.

is a

t 0

.5 U

/ml,

hr

.

R-PAC formed, gR-PAC productivity, g / dayTime when remnant PDC is at 0.5 U/ml, hr

Page 23: Process Optimization for  R -PAC Production

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Time (hr)

Vo

lum

e P

yr a

dd

ed (

ml)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Vo

lum

e B

Z a

dd

ed

(m

l)Feeding profile for 90 mM Bz, 108 mM PyrFeeding profile for 90 mM Bz, 108 mM Pyr

Hourly feed

10.3 M Bz

Hourly feed

1.4 M Pyr

Initial Volume 1.00 L

Page 24: Process Optimization for  R -PAC Production

0

100

200

300

400

500

600

700

0 6 12 18 24 30 36 42 48 54

Time (hr)

Co

nc

en

tra

tio

n (

mM

)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

En

zym

e a

cti

vit

y (

U/m

l)

R-PAC PyruvateAcetaldehyde AcetoinBenzaldehyde Enzyme activity

Predictive fed-batch profilePredictive fed-batch profile

Initial Volume 1.00 L

Final Volume 3.39 L

89 mg/U

Page 25: Process Optimization for  R -PAC Production

ConclusionsConclusions Model provides good prediction for batch

biotransformation system

Model suggests substrate levels in the range of 90 mM Bz & 108 mM Pyr to be maintained in fed-batch system

Potential for 8-fold higher R-PAC per U than in batch system but verification by experiment is necessary

Note : Possible additional effects of inhibition (high R-PAC, acetaldehyde conc.) and inactivation (benzaldehyde droplets) may need to be considered

Page 26: Process Optimization for  R -PAC Production

Professor Peter L. Rogers, Dr. Bettina Rosche

Dr. Russell Cail & Malcolm Noble

Wolfgang Nittel, Sue Jackson

Dr. Vanessa Sandford

Martin Zarka & Tony Gellert

Dr. Christopher Marquis

Mallika Boonmee, Alan Rushby

Royal Thai Government, BASF-AG

Lia, Allen, Cindy, Onn, Ronachai, Apple

AcknowledgementsAcknowledgements

Page 27: Process Optimization for  R -PAC Production

QuestionsQuestions