production of hmf from cellulosic biomass: experimental...

29
5 th International Conference on Sustainable Solid Waste Management Production of HMF from cellulosic biomass: Experimental results and integrated process simulation Athens 2017 Conference 23/6/2017 M.A. Kougioumtzis 1,2 , A. Marianou 1,3 , K. Atsonios 1 , C. Michailof 1 , N. Nikolopoulos 1 , N. Koukouzas 1 , K. Triantafyllidis 3 , A. Lappas 1 , E. Kakaras 1 E‐mail: [email protected] Centre for Research & Technology Hellas (CERTH) 1 1 Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thessaloniki, 6th km. Charilaou – Thermi Road, GR‐570 01 Thermi, Greece 2 Laboratory of Steam Boilers and Thermal Plants, National Technical University of Athens, Athens, Heroon Polytechniou 9, 15780, Greece 3 Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece

Upload: others

Post on 08-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

Production of HMF from cellulosic biomass: Experimental results and integrated process

simulation

Athens2017Conference23/6/2017

M.A.Kougioumtzis1,2,A.Marianou1,3,K.Atsonios1,C.Michailof1,N.Nikolopoulos1,N.Koukouzas1,K.Triantafyllidis3,A.Lappas1,E.Kakaras1

E‐mail:[email protected]

Centre for Research & Technology Hellas (CERTH)

1

1ChemicalProcessandEnergyResourcesInstitute,CentreforResearchandTechnologyHellas,Thessaloniki,6thkm.Charilaou –Thermi Road,GR‐57001Thermi,Greece

2 LaboratoryofSteamBoilersandThermalPlants,NationalTechnicalUniversityofAthens,Athens,Heroon Polytechniou 9,15780,Greece

3 DepartmentofChemistry,AristotleUniversityofThessaloniki,Thessaloniki,54124,Greece

Page 2: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

Contents

• Introduction – Scope

• Experimental Analysis

• Process simulation results ‐mass and energy balance

• Conclusions

• Future Work

2

Page 3: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 3

Idea Lab & Pilot

ProcessModeling

Industry

Introduction

scale

Demo

Environmental assessment

Economic analysis

Scope

Page 4: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 4

Idea Lab & Pilot

ProcessModeling

Industry

Introduction

scale

Demo

Environmental assessment

Economic analysis

Scope

Current Study

Page 5: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 5

Idea

Introduction

Scope

Lab & Pilot

ProcessModeling

Industry

scale

Demo

Environmental assessment

Economic analysis

Current Study

Page 6: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

What is 5‐HMF and Why is it so important?

Introduction

Listed as one of the top 10 value added biobased chemicals by the US Department of Energy

Page 7: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

How do we get 5‐HMF?

Current state‐of‐the‐art

Disadvantages:1. Expensive2. Less abundant than glucose

Advantages:1. More easily converted to 5‐HMF

New feed 

Advantages:1. Abundant2. Cheaper

Disadvantages:1. Lower 5‐HMF yields

Introduction

Page 8: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 8

GrindingHemicellulose‐freeBiomass: 

HMF

Hydrolysis (Hexose 

Extraction)

HMF Synthesis Bio‐Tar

Heat

Lignin

C6 sugars

Introduction – Process Overview

Page 9: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 9

Lab & Pilot

Introduction

Scope scale

Idea

ProcessModeling

IndustryDemo

Environmental assessment

Economic analysis

Current Study

Page 10: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

1st step Cellulose hydrolysis (175oC, 8.2 bar)

Acid hydrolysis

Glucose rich solution43% mass yield, 60.5% selectivity 

(cellulose based)

Lignin

Experimental Analysis Various catalysts and conditions were tested in order to find the optimum conditions 

for the glucose and HMF production (in cellulose sample and glucose rich sample). The optimum conditions were applied into real hemicellulose‐free biomass to obtain 

the yields.

Page 11: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

Glucose rich solution 5‐Hydroxymethyl furfural (5‐HMF)

2nd step Glucose dehydration (150oC, 8.2 bar)

Solid catalyst

Solvent: DMSO+H2O

Synthesis of a heterogeneous γ‐Al2O3 based catalyst

One‐step conversion of glucose to 5‐HMF

Determination of the optimum reaction conditions

Catalyst can be reused 

Experimental Analysis

20.6% mass yield, 25% selectivity (glucose based)

Page 12: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 12

Introduction

Scope

ProcessModeling

Current Study

scale

Lab & Pilot

Idea IndustryDemo

Environmental assessment

Economic analysis

Page 13: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

HMF Production Process

13

Process configuration

Page 14: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

HMF Production Process

14

Process configuration

Page 15: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

HMF Production Process

15

Process configuration

Cellulose HydrolysisTemperature= 175 °CPressure= 8.2 barCatalyst 1= acid catalyst Mass ratio H2O/ biomass= 9

Page 16: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

HMF Production Process

16

Process configuration

Page 17: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

HMF Production Process

17

Process configuration

Evaporation step Increase glucose 

concentration to 7.8 wt% (100.5°C)

HMF SynthesisTemperature= 150 °CPressure= 8.2 barSolid Catalyst ratio/Glucose = 1/1 (wt)Solvent= H2O with DMSO

ASPEN PLUS™

Page 18: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

HMF Production Process

18

Process configuration

Page 19: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

HMF Production Process

19

Process configuration

ASPEN PLUS™

HMF ExtractionVia Liquid Liquid extraction at 1 bar. Input 1/10/1= solution/CH2Cl2/H2O

HMF PurificationThree stage separationTemperature(°C)= 40/45/75Pressure(bar)= 1/0.8/0.1HMF purity= 96.5%HMF recovery= 98%

Page 20: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 20

Mass Balance

Biom

ass

1500

 kg/hr

Hydrolysis

Hydrolysis

byproducts’vapors

49.3 kg/hr

Others: 1.9 %

HMFSynthesis

Combustion

HMFRecovery

Glucose Evaporation

HMF:54.0 kg/hr

Waste Water:149.8 kg/hr

Biotar:1246.9 kg/hr

• 54 kg of HMF (96.5% purity) recovered ~ 3.6% of initial biomass• ~13% of initial biomass converted into byproducts (e.g. levulinic acid, mannitol, leviglucosan, 

mannose, fructose, mannitol, acetic acid, formic acid etc.)• ~83% of initial biomass is used as biotar

Process simulation results

Page 21: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

16034100

7

1732

33417444

166131843

9540

2014

0 5000 10000 15000 2000007

14212835424956637077849198

105112119126133140147154161168175

Heat (kWth)

Temp

eratu

re (o C)

rejected heat

heat demand

cellulose preheating

first step reactor

glucose preheating

evaporator

HMF purification 1

vapors cooling

HMF condensationHMF cooling

HMF purification 2

HMF purification 3

21

• Biotar is burnt in combustor. Steam generationfor heat demands coverage

Section/ component kWe

grinder 4.2

air blowers 32.1

water pumps (heating system) 2.6

cooling water pumps and vapors compressor 137.5

HMF production pumps 333.6

heat pumps 756.2

total consumptions 1266.1

Power Demands (electricity from grid)

Energy System (dual boiler)

Process simulation results

Page 22: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

Process simulation results

22

Energy Balance (Sankey diagram) • External fuel (e.g. natural gas) is necessary for the proper operation of heat demanding process. Most of excess heat cannot be used for coverage of heat demands

• 306 kg/hr of NG is used.• 8.3 MWth from biotar (HHV 24.75 

MJ/kg d.b.)• Total heat demands at 11.8 MWth• Heat pump used to exploit the low 

temperature rejected heat from HMF condensation

Chemical energy (HHV)

Thermal energy

Electricity

Total heat demands

Hydrolysis

bio‐tar 1

feedstock

vapors cooling

heat for hydrolysis

HMF synthesis

HMF condensation

bio‐tar 2

steam boiler

steam

flue gas

natural gas

glucose preheating 

HMF cooling

HMF recovery

rejected heat

heat pump

heat pump consumption

recycling heat

HMF 

pumps consumption

8.1 MWth 10.8 MWth

9.5 MWth7.2 MWth

1.1 MWth

1.7 MWth

0.5 MWth

1.8 MWth

1.5 MWth

11.8 MWth

4.6 MWth

9.5 MWth

vapors cooling

0.8 MWe

0.3 MWe

5.8 MWth

6.6 MWth

10.8 MWth

Page 23: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

Heat Integration of the process and identification of energy demands. External heat(NG) consumptions at 85.2 kWhth/kgHMF and power demands at 22.2 kWhe/kgHMF.

Conclusions

23

Detailed modeling of process for commercial production of HMF in ASPEN Plus™ fromhemicellulose‐free biomass.

Production of 3.6% HMF of the biomass input. Around 13% of the initial biomassconverted into byproducts.

A dual fuel boiler was implemented to cover the energy demands. A heat pump wasimplemented to exploit the low temperature rejected heat of the system.

Higher HMF yields will increase the economic feasibility of the refinery (bettercatalysts/ solvents)

Experiments on cellulose hydrolysis and glucose dehydration into HMF.

Page 24: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

Process modeling of the whole process (conversion of both cellulosic andhemicellulosic part of the biomass into added value biochemicals). Recovery of otherchemicals (acetic acid, formic acid, levulinic acid, etc.) produced in the process will beincluded in the analysis

Techno‐ economic analysis of such biorefinery.

Future Work

24

Examination of converting the hemicellulose part into furfural along with the HMFproduction from the cellulosic part of the biomass.

Improved Heat Integration and optimization of such system.

Environmental Analysis of such biorefinery.

Page 25: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management

Thank you for your attention!

25

E‐mail:[email protected]

Centre for Research & Technology Hellas (CERTH)

Page 26: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 26

Table 1. Biotar specifications

C (% d.b) 63.7 H (% d.b) 5.46 N (% d.b) 0.15 O (% d.b) 30.29 S (% d.b) 0.3 ash (% d.b) 0.1 HHV (% d.b.) 24.75 MJ/kg

Table 1. Feedstock (hemicellulose-free biomass) composition (ash free-dry basis) Cellulose 40.48% Hemicellulose 4.65% Lignin 53.05% Unidentified 1.82% Higher Heating Value (dry basis) 19.88 MJ/kg

Page 27: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 27

stream number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15m (kg/s) 0.42 3.78 4.20 3.90 0.30 2.96 3.73 0.07 4.73 4.73 0.05 50.72 9.65 45.66 0.02T (oC) 25.0 25.0 170.0 175.0 175.0 158.2 25.0 25.0 150.0 150.0 30.0 25.0 25.0 40.0 75.0p (bar) 1.0 1.0 8.2 8.2 8.2 1.6 1.0 15.2 8.2 8.2 8.2 1.0 1.0 0.1 0.1

mass fraction

Acetic acid 1.2E-03 1.3E-03 1.6E-04 2.4E-04 9.1E-05 5.4E-06 7.9E-05

CH2Cl2 9.1E-01 5.3E-02 9.9E-01 2.2E-02

DMSO 1.0 7.9E-01 7.9E-01 3.9E-01 1.9E-07 1.2E-03

Unidentified 1.8E-02 1.8E-03

Formic acid 2.2E-03 2.5E-03 2.5E-04 1.1E-03 5.0E-04 4.9E-06 1.5E-06

Fructose 1.1E-04 1.7E-17 8.8E-05 1.9E-05 9.1E-06 9.5E-24 2.1E-07

Glucose 1.9E-02 5.0E-15 1.5E-02 2.7E-03 1.3E-03 6.0E-21 8.9E-05

Glycolic acid 3.2E-05 1.9E-06 2.5E-05 7.1E-05 3.4E-05 4.4E-08 1.8E-04

H2O9.9E-01 8.9E-01 9.6E-01

1.0E+0

01.7E-01 1.7E-01 9.1E-02 5.5E-01 1.5E-03 5.5E-05

H2SO4 7.4E-03 6.7E-03 7.2E-03 7.1E-06 5.9E-03 5.9E-03 2.9E-03 1.0E-09 3.3E-03

HMF 9.4E-04 1.2E-05 7.7E-04 3.2E-03 2.3E-05 6.6E-06 9.6E-01

Lactic acid 8.6E-05 3.5E-06 6.8E-05 2.2E-03 1.1E-03 2.0E-07 3.7E-03

Levoglucosan 5.8E-04 1.4E-08 4.8E-04 2.4E-05 4.3E-06 1.9E-11 4.8E-03

Levullinic acid 5.2E-03 6.9E-04 3.8E-03 2.5E-03 1.2E-03 1.2E-08 6.2E-04

Mannitol 7.5E-05 1.8E-12 6.2E-05

Mannose 3.5E-04 9.5E-17 2.9E-04 1.7E-05 8.4E-06 3.8E-23 5.7E-07

Propionic acid 8.6E-05 9.2E-05 1.3E-05

SnAl 1.0 1.5E-02 1.5E-02

Xylose 3.3E-04 7.9E-13 2.7E-04

Cellulose 4.0E-01 4.0E-02 1.6E-01

Humins 1.0E-01 9.7E-03 1.0

Lignin 5.3E-01 5.3E-02 7.4E-01

Xylan 4.7E-02 4.6E-03 2.8E-04

Page 28: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 28

Table 1. Cellulose (in hemicellulose free biomass) Hydrolysis Experimental Results

Conversion Cellulose 71.43% Mass Yields (biomass based wt %)

Glucose 17.44% HMF 0.88% Mannitol 0.07% Levoglucosan 0.54% Xylose 0.31% Mannose 0.33% Fructose 0.10% Galactose 0.004% glycolic acid 0.03% Acetic acid 1.11% Lactic acid 0.08% Formic acid 2.07% Propionic acid 0.08% Levulinic acid 4.86% Lignin 53.05% Unreacted hemicellulose 0.02% Humins 7.47%

Table 1. HMF Synthesis Experimental Results (starting from hemicellulose free biomass)Conversion Glucose 82.46%

Mass Yields (glucose-based wt%) HMF 20.64% Levoglucosan 0.11%Mannose 0.11%Fructose 0.12% Glycolic acid 0.46% Acetic acid 1.54%Lactic acid 14.39% Formic acid 6.99% Levulinic acid 15.97% Humins 22.12%

Page 29: Production of HMF from cellulosic biomass: Experimental ...uest.ntua.gr/athens2017/proceedings/presentations/... · 5th International Conference on Sustainable Solid Waste Management

5th International Conference on Sustainable Solid Waste Management 29