prof. d. wilton ece dept. notes 13 ece 2317 applied electricity and magnetism notes prepared by the...

29
Prof. D. Wilton ECE Dept. Notes 13 ECE 2317 ECE 2317 Applied Electricity and Applied Electricity and Magnetism Magnetism Notes prepared by the EM group, University of Houston.

Upload: gervais-elliott

Post on 03-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Prof. D. WiltonECE Dept.

Notes 13

ECE 2317 ECE 2317 Applied Electricity and MagnetismApplied Electricity and Magnetism

Notes prepared by the EM group,

University of Houston.

Divergence -- Physical ConceptDivergence -- Physical Concept

r < a:

2 30

20

44

3

C/m3

encl

S

r v

vr

D n dS Q

r D r

rD

x

y

z

v = v0

a

r

Start by considering a sphere of uniform volume charge density

The electric field is calculated using Gauss's law:

r > a: 2 30

320

2

44

3

C/m3

r v

vr

r D a

aD

r

Divergence -- Physical Concept (cont.)Divergence -- Physical Concept (cont.)

x

y

z

v = v0

ar

2ˆ 4 r

S

D n dS r D

30

4

3 va (r > a)

(r < a)

Flux through a spherical surface:

30

4

3 vr

20 C/m3v

r

rD

320

2C/m

3v

r

aD

r

Divergence -- Physical Concept (cont.)Divergence -- Physical Concept (cont.)

(r < a)

(r > a)

More flux lines are added as the radius increases (as long as we stay inside the charge region).

0S

D n dS

Observation:

V

S

Divergence -- Physical Concept (cont.)Divergence -- Physical Concept (cont.)

0S

D n dS

The net flux out of a small volume V inside the charge region is not zero.

Divergence is a mathematical way of describing this.

0 0

1ˆdiv lim lim

V VS

D D n dSV V

V

Definition of divergence:

Gauss’s Law -- Differential FormGauss’s Law -- Differential Form

Note: the limit exists independent of the shape of the volume (proven later).

0

1div lim

VS

D D n dSV

V

v (r)

encl v

S

D n dS Q r V

0

div lim encl

V

v

QD r

Vr

Apply divergence definition to small volume inside a region of charge

Gauss’s Law -- Differential FormGauss’s Law -- Differential Form

Gauss’s Law -- Differential Form (cont.)Gauss’s Law -- Differential Form (cont.)

div vD r r

The electric Gauss law: This is one of Maxwell’s equations.

0 0

0

avg

0

div lim lim

1lim

lim

encl

V V

vVV

vV

v

QD r

V V

dVV

r

Alternatively,

ExampleExample

Choose V to be small sphere of radius r:

x

y

z

v = v0

a

r

0

1div lim

VS

D D n dSV

34

3V r

3

2 200

44 4

3 3v

r v

S

r rD n dS D r r

30

0 00 03

41div lim lim4 3

3

vv v

V V

rD

r

Verify that the differential form of Gauss’s law gives the correct result at the origin for the example of a sphere of uniform volume charge density.V

Calculation of DivergenceCalculation of Divergence

,0,02

,0,02

0, ,02

0, ,02

0,0,2

0,0,2

x

S

x

y

y

z

z

xD n dS D y z

xD y z

yD x z

yD x z

zD x y

zD x y

Assume point of interest is at the origin for simplicity.

The integrals over the 6 faces are approximated by “sampling” the integrand at the centers of the faces.

0

1div lim

VS

D D n dSx y z

x

y

z

(0,0,0)

x

y

z

Calculation of Divergence (cont.)Calculation of Divergence (cont.)

1

,0,0 ,0,02 2

0, ,0 0, ,02 2

0,0, 0,0,2 2

S

x x

y y

z z

D n dSx y z

x xD D

xy y

D D

y

z zD D

z

,0,02

,0,02

0, ,02

0, ,02

0,0,2

0,0,2

x

S

x

y

y

z

z

xD n dS D y z

xD y z

yD x z

yD x z

zD x y

zD x y

0

1div lim

VS

D D n dSx y z

Calculation of Divergence (cont.)Calculation of Divergence (cont.)

0

,0,0 ,0,02 2

div lim

0, ,0 0, ,02 2

0,0, 0,0,2 2

x x

V

y y

z z

x xD D

Dx

y yD D

y

z zD D

z

Hence div yx zDD D

Dx y z

For arbitrary origin, just add x,y,z to coordinate quantities in parentheses!

Calculation of Divergence (cont.)Calculation of Divergence (cont.)

div yx zDD D

Dx y z

0

1div lim

VS

D D n dSV

The divergence of a vector is its “flux per unit volume”

““del operator”del operator”

x y zx y z

: sin cos

: sin cos

sin sin cos

ˆ ˆsin sin cos

d dx x

dx dxd d

x x x x xdx dx

d dx x x x x x x

dx dx

d dx y x z x z x

dx dx

(1)

(2)

(3)

Examples of derivative operators:

scalar

vector

The “del” operator is a vector differential operator

scalar -> vector

vector->scalar

vector->vector

scalar -> scalar

ExampleExample

, , sin 3V x y z x x y y z xy

Find V

, , sin 3V x y z x y z x x y y z xyx y z

, , sin 3V x y z x y xyx y z

, , cos 3 0 3 cosV x y z x x

““del operator” (cont.)del operator” (cont.)Now consider:

x y z

yx z

D x y z xD yD zDx y z

DD Dx x y y z z

x y z

yx zDD D

Dx y z

divD D

Hence

sovD

Gauss's law :

Note: No unit vectors appear!

Summary of Divergence FormulasSummary of Divergence FormulasRectangular:

Cylindrical:

Spherical:

yx zDD D

Dx y z

1 1 zD D

D Dz

22

1 1 1sin

sin sinr

DD r D D

r r r r

Note the dot the del

operator is important; any

symbol following it tells

us how to use and read it:

"gradient"

"divergence"

"curl"

after

The divergence of a vector is its “flux per unit volume”

ExampleExample

x

y

z

v = v0

a

r < a :

0vD Note: This agrees with the electric Gauss law.

22

2 02

202

1

1

3

1

r

v

v

D r Dr r

rr

r r

rr

r

Evaluate the divergence of the electric flux vector inside and outside a sphere of uniform volume charge density, and verify that the answer is what is expected from the electric Gauss law.

0

3v r

D r

Example (cont.)Example (cont.)

x

y

z

v = v0

a

r > a :3

023

v aD r

r

0D

Note: This agrees with the electric Gauss law.

32 0

2 2

30

2

1

3

10

3

v

v

aD r

r r r

a

r r

Maxwell’s EquationsMaxwell’s Equations

0v

BE

tD

H Jt

D

B

Faraday’s law

Ampere’s law

electric Gauss law

magnetic Gauss law

Divergence TheoremDivergence Theorem

V

S

V S

A dV A n dS

The volume integral of “flux per unit volume” equals the total flux!

( , , )A A x y z an arbitrary

vector function of position

In words, for a vector :A

Divergence Theorem (cont.)Divergence Theorem (cont.)

Proof:

V

0

1

limn

N

rVnV

A dV A V

rn is the center of cube n

From the definition of divergence:

0

1lim

1

n

n

n

r VS

S

A A n dSV

A n dSV

Hence:

0 0

1 1

lim limn

n

N N

rV Vn nV S

AdV V A A n dS

Divergence Theorem (cont.)Divergence Theorem (cont.)

Hence: the surface integral cancels on all INTERIOR faces.

0

1

limn

N

VnV S

AdV A n dS

2n

1n

1 2

A n

Consider two adjacent cubes:

is opposite on the two faces

V

Divergence Theorem (cont.)Divergence Theorem (cont.)

01

0outsidefaces

lim

lim

n

n

N

VnV S

VS

A dr A n dS

A n dS

V S

AdV A n dS

Hence: 0

outsidefaces

limn

VV S S

A dV A n dS A n dS

Therefore: (proof complete)

V

Divergence Theorem (cont.)Divergence Theorem (cont.)

n

n

The vol. integral of the “flux per unit volume” is the “flux”

ExampleExample

x

y

z

1 [m]

2 [m]3 [m]

3A x x

Verify the divergence theorem using the box.

3 3 2 3 0 2

18S

A n dS x x x x

3 3

yx zAA A

Ax y z

xx

3 3 3 1 2 3 18V V

A dV dV V

Given:

From the divergence theorem:

Validity of Divergence DefinitionValidity of Divergence Definition

0

1div lim

SV

D D dSV

n

V

S

0

0

1div lim

1lim

r

VV

rV

DV

D

dV

DV

D

V

Is this limit independent of the shape of the volume?

r

Hence, the limit is the same regardless of the shape of the limiting volume.

This is valid for any volume, so let V V (a small volume inside the original volume)

Gauss’s Law Gauss’s Law (Conversion between forms)(Conversion between forms)

V

enclQ

S

encl

S

D n dS Q

V 0

v

v

V V

v

D dV dV

D V V

Divergence theorem:

Hence:

v

V S

encl v

V

D dV D n dS

Q dV

vD

Gauss’s Law Gauss’s Law (Summary of two forms)(Summary of two forms)

encl

S

D n dS Q

vD

Divergence theorem

Integral (volume) form of Gauss’s law

Differential (point) form of Gauss’s law

Divergencedefinition