prof.igarashi july27 apss2010

Upload: stefan-stanca

Post on 07-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Prof.igarashi July27 APSS2010

    1/11

    2010/8

    Structural Control

     for

     Seismic

     

    Protection of  Structures

    2010.7.27

    APSS, Tokyo

     Akira Igarashi Associate Prof., Graduate School of  Engineering

    Kyoto University

    1. Earthquake

     ground

     motion

     

    and seismic loads

    Particular Feature of  Seismic Loads

    •   Level of  force can be greatly high

    •   Highly nonstationary

    Seismic Load

    Representation

    •   “Response Spectrum” Response of  SDOF systems to seismic ground motion

    Diagram representing

    “Natural period of

    ” “

    (a) Seismic Ground Motion

    Time

    (b) SDOF systemsSeismic Ground MotionMaximum acceleration

    (absolute value)

    s rucure vs. maxmum

    response”

    S T a ( )

    where T =natural period 

     Acceleration Response

    Spectrum (max.

    absolute acc. is used)

    S T v ( )Velocity Response

    Spectrum (max.

    relative velocity)

    S T d 

    ( ) DisplacementResponse Spectrum(max. relative displ.)

    (c) Response of each SDOF system

    Time

    (d) Response Spectrum

    Natural Period

    Response Spectra & Seismic Action

    •   From seismic design perspective…

    a = x + z

       : :

    Maximum load acting on

    the structure=

    mass×maximum response

    accelerationM

     z

    F = M aa soute acc.

    F = M a

    (force acting on the structure)

     x (deformation)

    F M S T  

     x S T 

    a

    max

    max

    ( )

    ( )

    = ⋅

    =where

    T = natural period of thestructure

     

    deformation=maximumresponse displacement

    Natural period

    =T 

    Demonstration of  Seismic Action

    •   Numerical Simulation

  • 8/20/2019 Prof.igarashi July27 APSS2010

    2/11

    2010/8

    Property of  Seismic Loads

    (Relationship with Natural Period)•   Amplitude of  seismic load acting on the structure changes depending on 

    the natural period of  the structure, even under the identical ground motion

    •   (Overall tendency)

     Seismic

     load decreases as

     the

     natural

     period

     increases

    than a certain value, even though the load increases in a short natural period range

    S a(T ) h=5%

    Natural

    Period

    Seismic

    Load

    Property of  Seismic Loads 

    (Relationship with Damping)

    •   Amplitude of  seismic load acting on the structure changes depending on the damping of  the structure, 

    even under

     the

     identical

     ground

     motion

    •   Seismic load decreases as the damping increases

    S a(T ) h=5%=

    Greaterseismic

    load

    Low

    damping

    Smallerseismic

    load

    High

    damping

    Natural

    period

    Seismic

    load

    Demonstration of  the Effect of  

    Damping on the Seismic Action

    •   Numerical Simulation

    2. Protective systems against 

    seismic loads

    Earthquake Protective Systems   Seismic Isolation System

    Structure

     Also called as

    “Base Isolation”

    for the typical

    Isolator 

    Energy

    Dissipation

    Device

    layout of

    isolators shown

  • 8/20/2019 Prof.igarashi July27 APSS2010

    3/11

    2010/8

    Seismic Isolation for Bridges (Example)

    Isolator 

    Girder 

    SteelPlates

    Rubber

    •   Isolator:Laminated Rubber (elastomeric) bearing, friction bearing

     

    substructure

    High Damping Rubber Bearing

    Rubber Bearing with Lead plugs (LRB)

    Lead Plug

    Laminated Layers

    Steel Plate

    Rubber 

    Steel Plate

    Laminated Rubber Bearing

    Seismic Isolation Principle (1)

    ForceSeismic force decreases

    Natural Period

    Short period

    = Stiff 

    Long period

    = Soft

    Seismic Isolation Principle (2)

    Large

    DeformationDeformation

    Damping

    Natural Period

    Short period

    = Stiff 

    Long period

    = Soft

    Load‐Displacement Performance of  

    Isolators

  • 8/20/2019 Prof.igarashi July27 APSS2010

    4/11

    2010/8

    Demonstration of  Seismic Isolation 

    Effect

    •   Numerical Simulation

    Isolated

    bridge

    Conventional

    Energy Dissipation Devices

    •   A type of  passive structural control

    •   Used combined

     /w

     isolators

     for

     seismic

     

    isolation

    •   A ng  amp ng capa ty o  structures

    Oil Damper   Passive Control for Bridges (example)

    Bearing

    Girder 

    Seismic

    damper 

    Pier/abutment

    substructure

    Laminated Rubber Dampers & 

    Implementation for a Cable Stayed Bridge

    Laminated

    RubberAssembly

    Damper cable

    Girder

    Main

    Tower

  • 8/20/2019 Prof.igarashi July27 APSS2010

    5/11

    2010/8

    Effect of  Seismic Damper

    Seismic

    Load Seismic load decreases

    Natural Period

    Short period

    = Stiff 

    Long period

    = Soft

    ・ Also: effect of distributed lateral loads on plural piers for

    bridges

    Summary for Seismic Load Protection

    •   Seismic load decreases for

     – Longer natural periods

     – Higher damping

     (energy

     dissipation)

     capability

    •   Structural control technologies used in practice 

    S a(T ) h=5%

    Seismic

    Load

    3. Active & semi‐active 

    earth uake  rotection ideas

    Active & Semi‐active controls

    •   Have been developed based on system control theory

    •   Use of  sensors, actuators and controllers

    •  

     – Closed‐Loop Feedback Control

     – LQR, LQG, optimal control

     – H‐infinity control

     – Fuzzy control

     – …and more

    Closed‐Loop Control

    ( ) ( ) ( ) X H F ω ω ω =

     X  H 

     H GF ( )

    ( )

    ( ) ( )( )ω 

      ω 

    ω ω ω =

    +1

    LQG Control

    1

    1

    ( )

    ( )( )

    ( )

    n

     x t 

     x t t 

    v t 

    ⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪

    = ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪

    x

    M

    M1 1− −

    ⎡ ⎤= ⎢ ⎥− −

    ⎣ ⎦

    0 IA

    M K M C

    ( ) ( ) ( ) ( )d t t dt t dt c dW t  = + +x Ax Bu G

    •   State‐feedback control

    nv t ⎩ ⎭

    ( ) ( )t t =u Fx

    1 2( ) ( ) ( ) ( ) minT T  J E t t t t ⎡ ⎤= + →⎣ ⎦x R x u R u

    1

    2 10T T −+ − + =PA A P PBR B P R

    1

    2

    T −= −F R B P

  • 8/20/2019 Prof.igarashi July27 APSS2010

    6/11

    2010/8

    Application to Earthquake Protection

    •   Relationship between the “seismic load” 

    principle &

     control

     concepts?

    Hysteretic‐response‐based active & 

    semi‐active control 

    •   Use of  the seismic loading principle

    •   Taking advantage

     of 

     active

     and

     semi

    ‐active

     

    control technologies

    •   Contro  s  es gne   ase   on t e  ysteret c 

    response of  the active/semi‐active devices

    •   Avoiding complication of  the control system

    Motivation

    •   What are the actual merits of  introducing active/semi‐active systems over existing 

    systems?

     – –  

    properties (natural periods etc.) of  the structure 

    to be controlled

     – Enhance control performance for limited control 

    device loads

    Motivations:

     Act ive/Semi-act ive

    device

     Act ive/Semi-act ive

    device

    Control…

    maximum acceleration (=load)of the structure

    maximum acceleration (=load)of the structure

    maximum displ. response ofthe structure

    maximum displ. response ofthe structure

    - Effective for a wide range of excitation amplitude levels

    - Higher frequency components in damper loads

    Limit the maximum damperforces

    Limit the maximum damperforces

    Base Isolation / Smart Base Isolation 

    System

    •   Control Device

    ‐ Passive

    (ex. Viscous damper, Structure r ct on  amper

    ‐ Active

    ‐ Semi‐Active

    (ex. Variable Oil damper, 

    MR damper)

    Isolator 

    Control Device

    •   ‐ Greece

    Capacity: 65000m3

    Diameter: 65.7m, Height: 22.5m.

    Each tank on 212 isolators 

    Friction pendulum system (FPS)

    •   ‐ Greece

    Capacity: 65000m3

    Diameter: 65.7m, Height: 22.5m.

    Each tank on 212 isolators 

    Friction pendulum system (FPS)

    Background: Base isolation of liquid storage tanks

    •   ‐ Korea

    •   Three LNG storage tanks 

    •   Capacity of  100000 m3

    •   Diameter 68 m, Height 30 

    •   steel laminated rubber bearings 

    •   The design isolation period ~ 3 Sec.

    •   ‐ Korea

    •   Three LNG storage tanks 

    •   Capacity of  100000 m3

    •   Diameter 68 m, Height 30 

    •   steel laminated rubber bearings 

    •   The design isolation period ~ 3 Sec.

    (Tajirian, 1998 )

  • 8/20/2019 Prof.igarashi July27 APSS2010

    7/11

    2010/8

    4. 

    Negative‐

    stiffness‐

    type 

    Active 

    semi‐active control for earthquake 

    pro ec on

    Pseudo Negative Stiffness Control for Semi‐

    Active devices

    k nscns

    PNS ControlDispl.Displ.

    LoadLoad

     xc xk F  nsns   &+−≡

    ⎩⎨⎧

    =0

    F F d 

    ( )( )0

    0

    ≤⋅

    >⋅

     xF 

     xF 

    &

    &

    Effect of  Negative Stiffness Damper

    Seismic

    Load Shift of natural periods

    →seismic load decreases

    more efficiently

    Natural Period

    Short period

    = Stiff 

    Long period

    = Soft

    Idea of  optimization

    •   Pseudo Negative Stiffness (PNS) Control

    •   The value of  the negative stiffness k ns is recommended to be identical to the structural stiffness

     xc xk F nsnsd 

      &+−=

    40

    Relationship between the required damper load and the negative stiffness value

     –  Principle to determine the damping parameter for compromised values of  negative stiffness

    •   Parameter determination procedure considering the balance between the limited damper load and the structural displacement reduction should be established

    Optimal PNS Control Concept

    Base shear vs. Displacement Hysteretic 

    response

    +

    m

    k 0

     x(t)

    k ns , c ns 

    4141

    =

    Possible Maximum Base Shear 

     Affecting the parameter determination

    Base Shear 

    ruc ura res or ng orce amper oa

    Effects of  parameter values on PNS control 

    Hysteretic ResponseStr. Stiffness

    + Structural stiffness

    42

    Str. Stiffness

    Increased damping

    + Structural stiffness

      .

  • 8/20/2019 Prof.igarashi July27 APSS2010

    8/11

    2010/8

    Optimality criterion for PNS control

    Base shear 

    DIspl

    Str. stiffness

    Increase of damping

    4343

    Maximum energy dissipation

    w/o increasing base shear 

    Optimality condition

    ba B B   =

    Base Shear Indicator

    max0  xk  Ba   ×= max0max  xm B   &&×−=

    ( )ba

     B B B ,maxmax =

    −≡Δ a B B B max

    Base shear at Point a Maximum base shear

    Base shear at Point b

    4444

    ( )

    ( )⎩⎨⎧

  • 8/20/2019 Prof.igarashi July27 APSS2010

    9/11

    2010/8

    Comparison between numerical and 

    theoretical solutions

    2

    0 22   ⎟

    ⎟ ⎞

    ⎜⎜⎛ 

    −⋅=k 

    k h nsnsns

    ω 

    ω 

    4949

     f = 0.125[Hz] ( f / f 0 = 0.25)

     f = 0.5[Hz] ( f / f 0 = 1)

     f = 0.25[Hz] ( f / f 0 = 0.5)

     f = 1.0[Hz] ( f / f 0 = 2)

    Good agreement

    Optimal PNS control formula

    Application to seismic ground motion

    •   Optimal PNS for sinusoidal input2

    00

    0 22   ⎟

    ⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ −⋅=k 

    k h nsnsns

    ω 

    ω ba  B B   =

    50

     – Frequency dependency

    •   Optimal PNS for earthquake input?

    Optimality condition ba  B B   =

    Earthquake ground motion for input

     Name Descriptioin Peak Acc.

    KobeHyogoken Nanbu Eq. Kobe JMA

    (NS)817.8gal

    ElCentro El Centro (NS) 341.7gal

    Kawaguchi Niigataken Chuetu EQ. Kawaguchi

    (NS)972.8gal

    Ja anese Desi n S ecification for 

    51

    T221 

    Highway Bridge Type2-II-1686.8ga

    51 Acc. Response spectra

    Direct numerical computation for 

    optimal PNS (base shear indicator)

    Boundary lines for 

     Ba = Bb

    5252

    Kobe

    Kawaguchi

    El Centro

    T221

    Theoretical

    solution?

    Idea for theoretical solution of  optimal PNS 

    control for seismic input

    10

    =k 

    k ns

     DaS k  B

    0=

    V nsb

    S C  B   =

    For the extreme case

    5353

    V ns D S cS k    =0

    ⎪⎩

    ⎪⎨

    =

    =

     Dns

    ns

    S k c

    k k 

    0

    0

    S  D:Max. displacement

    response to EQ input

    S V :Max. velocity response

    to EQ input

    Fundamental solution

    Idea for theoretical solution of  optimal PNS 

    control for seismic input (2)

    •   The fundamental solution in terms of  damping 

    ratio parameter is0

    0 02 2

    ns Dns

    c S h

    m S 

    ω 

    ω 

    = =

    •   Su st tut on  nto t e opt ma  PNS so ut on  or sinusoidal input yields

    •   Proposed approximate solution:

    20 0 02 1 12 2 2

     D

    ω ω ω 

    ω ω = ⋅ − =

     D

    S =ω 

    2

    00

    0 22   ⎟

    ⎟ ⎠

     ⎞⎜⎜⎝ 

    ⎛ −⋅=

    k h nsnsns

    ω 

    ω 

     D

    S =ω 

  • 8/20/2019 Prof.igarashi July27 APSS2010

    10/11

    2010/8

    Estimation of  SD and SV for a given 

    earthquake ground motion

    •   Assumption of  k ns=k 0 implies that the system 

    is 

    responding 

    with 

    ideal 

    PNS 

    control•   The SDOF system to be considered in 

    calculatin   the maximum res onse SD and SV is such that

     – stiffness k = 0

     – damping ratio h = 0.534.

    Numerical Example

    •   Original structural system model 

    with a semi

    ‐active

     damper

     x(t)

    •   SDOF system to calculate SD and 

    SV

     x(t)c=2013 kN/m s

    m=600 t

    k 0=6100kN/mk ns , c ns 

    inputground motion( ) z t &&

    k 0=0 kN/m

    m=600 t

    inputground motion( ) z t &&

    Result

    -Good agreement

    between the

    approximate

    solution for the

    optimal control

    parameters and

    hose determined

    5757

    Kobe

    Kawaguchi

    ElCentro

    T221

     

    by direct numerical

    computation

    Implication in the advantage in terms 

    of  control device loads

    Optimal PNS control

    58

    •   Achieves mimimum acceleration

    •   Suggests the highest performance under damper 

    load constraint

     

    Damper load

    Fb

    =Fs+F

    d

    u

    Other ideas for Semi-Active Negative-

    stiffness-type Control Algorithm

    Fy

    Fs

    u

    Fd

    u

    +Semi-Active

    Damper ForceIsolator 

    - Proper energy dissipation for various amplitudes

    - Limit the Absolute Base Acceleration

    - Limited hysteretic l oop shape for large amplitude response

    - Proper energy dissipation for various amplitudes

    - Limit the Absolute Base Acceleration

    - Limited hysteretic l oop shape for large amplitude response

    =Base Shear

    Hysteretic Loop

    Schematic of  the damping load components

    uu

    F3

    u

    F2F1

    Fy

    u

    Fd =F1+F2+F3F b

    u

    Semi-Active

    Damper ForceBase shear 

     

  • 8/20/2019 Prof.igarashi July27 APSS2010

    11/11

    2010/8

    ⎩⎨⎧

    ×++=

    00

    0321

    uF if 

    uF if F F F F 

    d d 

    &

    &

     Z F F   y=1 u A Z u Z  Z u Z nn

    &&&& +−−=   −  β γ 1

    Key Expressions for the Control Algorithm

    ⎪⎪

    ⎪⎪

    >++−

    =