progress towards calcula/ng higher order delbrücksca7ering ... j. koga.pdfprogress towards...

18
Progress towards calcula/ng higher order Delbrück sca7ering and prospects for measurements J. K. Koga 1 and T. Hayakawa 2 1 Na/onal Ins/tutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215, JAPAN 2 Na/onal Ins/tutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki 319-1195, JAPAN Nuclear Photonics 2018, June 24-29, 2018, Brasov, Romania

Upload: others

Post on 15-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Progress towards calcula/ng higher

    order Delbrück sca7ering and

    prospects for measurements

    J. K. Koga1 and T. Hayakawa2

    1Na/onal Ins/tutes for Quantum and Radiological Science and Technology, Kizugawa,

    Kyoto 619-0215, JAPAN2Na/onal Ins/tutes for Quantum and Radiological Science and Technology, Tokai,

    Ibaraki 319-1195, JAPAN

    Nuclear Photonics 2018, June 24-29, 2018, Brasov, Romania

  • Measuring Vacuum for new physicse+

    e-

    Low Energy Precision measurements →devia;ons from the Standard Model1. Muon anomalous magne;c moment G. W. BenneC et al., PRD, 73, 072003 (2006)Precise theore;cal calcula;onsT. Aoyama et al., PRL 109, 111808 (2012)2. 8Be AnomalyKrasznahorkay, et al., PRL 116, 042501 (2016)J. L. Feng et al., PRL 117, 071803 (2016)

    ΔEΔt ~ !

    High Energy

    ATLAS detector (LHC) heavy-ion collisions photon-photon scattering so far agrees with Theory 5.02 TeV: 13 candidate events, Nat. Physics 2017

    Studied Delbrück scattering

    J. K. Koga and T. Hayakawa, PRL 118 (2017) 204801

  • Delbrück Sca+ering

    • Sca+ering of a photon by Coulomb field of nucleus– L. Meitner, H. Kösters (and M.

    Delbrück),Z.Phys. 84 (1933) 137

    • Virtual electron-positron pairs• Lowest order theorePcally

    calculated

    • Experimentally measured• Most research stopped 1990’s

  • Advantages

    • Cross section scales as (Za)4• Previous sources unpolarized• New Polarized Laser Compton scattering sources (LCS)• ELI–NP Gamma Beam System (GBS)1

    – g energy 0.2-20 MeV– Bandwidth (rms) < 0.5%– Linear polarization >99%– 8.3 x 108 photons/s

    • Energy Recovery Linac (ERL) LCS2– g energy 1-2 MeV– Total flux photons/s ~1013

    • NESTOR3– g energy 6-900 keV– photons/s ~1013

    • UVSOR-III (See Poster by Hayakawa et al. P.25)– g energy Less than 1.022 MeV

    • Precision measurements possible

    1D. Filipescu et al., Eur. Phys. J. A (2015) 51: 1852R. Hajima, et al., NIMA 608, S57 (2009)3V. Androsov, et al., NIMA 543, 58 (2005)

  • • 4 COHERENT CONTRIBUTIONS TO THE ELASTIC SCATTERING– atomic Rayleigh (R)– nuclear Thomson (T)– Giant Dipole Resonance (GDR)– Delbrück (D)

    Disadvantage

    A||⊥

    = A||⊥

    R + A||⊥

    T + A||⊥

    D + A||⊥

    GDR

    Total coherent elastic scattering amplitude

    dσdΩ

    =12A⊥

    2+ A||

    2( )

    Differential cross section(unpolarized photons)

    COHERENT SUM

  • How to Isolate Delbrück?

    • Look where other components small• nuclear Thomson (T)

    • Giant Dipole Resonance (GDR)B. Kasten et al., Phys. Rev. C 33, 1606 (1986)

    A⊥T = −

    Z 2e2

    Mc2(1− 1

    3k2 r2 )

    rigid spin-zero nucleus, charge radius r, photon wave number k

    Eν ,σν ,ΓνGiant Dipole Resonance Lorentz parameters

    At 90o GDR,T → 0 for polarizaEons parallel to scaFering plane

    De Tollis et al., Il Nuovo Cim A Series 11 32, 227 (1976)

    P. Rullhusen et al., Phys. Rev. C 23, 1375 (1981)

    AGDR? =E2

    4⇡~c

    2X

    ⌫=1

    �⌫�⌫E2⌫ � E2 + iE�⌫

    (E2⌫ � E2)2 + E2�2⌫

    AT,GDRk = AT,GDR? cos ✓

    q

    A||

    ! k

    A⊥

  • Delbrück (D)

    • Lowest order Feynman diagrams• k, k’ incoming and outgoing g• i, j polariza>on• x’s Coulomb field• D momentum transfer• Complex calcula>on

    • 1980’s took over one solar year to perform for 128 points1

    • early 1990’s 40 minutes per point 2

    1S. Turrini, G. Maino, and A. Ventura: Phys. Rev. C 39 (1989) 824.2S. Kahane: Nucl. Phys. A542 (1992) 341.3Kirilin and Terekhov PRA 77 032118 (2008)

  • We use the formulae obtained by:B. De Tollis, M. Lusignoli, and G. Pistoni, Il Nuovo Cimento A Series 11 32, 227 (1976)B. De Tollis and G. Pistoni, Il Nuovo Cimento A Series 11 42, 499 (1977) B. De Tollis and L. Luminari, Il Nuovo Cimento A Series 11 81, 633 (1984).

    Differential Cross section

    Linear polarization(perpendicular/parallel to scattering plane)

    Circular polarization

  • Real Part

    Formulae in:B. De Tollis, M. Lusignoli, and G. Pistoni, Il Nuovo Cimento A Series 11 32, 227 (1976)B. De Tollis and G. Pistoni, Il Nuovo Cimento A Series 11 42, 499 (1977) B. De Tollis and L. Luminari, Il Nuovo Cimento A Series 11 81, 633 (1984).

    For photon Energy > 1.022 MeV

  • Imaginary Part

    Formulae in:B. De Tollis, M. Lusignoli, and G. Pistoni, Il Nuovo Cimento A Series 11 32, 227 (1976)B. De Tollis and G. Pistoni, Il Nuovo Cimento A Series 11 42, 499 (1977) B. De Tollis and L. Luminari, Il Nuovo Cimento A Series 11 81, 633 (1984).

    Confirmed by De Tollis and C- normal integral De Tollis priv. comm.

    D± ! =(a+++�

    (d, p))

    For less than 1.022 MeV found that Imaginary part can be used

  • Calcula&on

    • For large Z Higher order (Coulomb) correc&ons become large– Z=40

  • Differen'al cross sec'on for Tin

    from J. K. Koga and T. Hayakawa, PRL 118 (2017) 204801

    R+T+GDR Minimum near ~70o

    Eg=1.1 MeV

    q

    A||

    ! k

    A⊥

  • Next-to-Leading-order• Higher order (Coulomb) correc9ons• lowest order (Za)2

    • Higher order (Za)2n n=2,3,4 not done• Even though Experimental Data

    shows it [1]• Only Empirical Formulae [1]• All orders done for E

  • Automa'c Calcula'on

    • Particle Physics high precision experiments– Next-to-Leading-Order (NLO), Next-to-next-to-

    Leading-Order (NNLO) calculations needed• Integrals have divergences• Various techniques to handle them:– Dimensional regularization, Sector Decomposition,

    …• Automatic calculation packages created

  • Sector Decomposi-on1-4

    I =

    Z 1

    0dx x�1�(a+b)✏

    Z 1

    0dt t�b✏(1 + (1� x)t)�1

    +

    Z 1

    0dy y�1�(a+b)✏

    Z 1

    0dt t1�a✏(1 + (1� y)t)�1

    I =

    Z 1

    0dx

    Z 1

    0dy x�1�a✏y�b✏(x+ (1� x)y)�1[⇥(x� y) +⇥(y � x)]

    I =

    Z 1

    0dx

    Z 1

    0dy x�1�a✏y�b✏(x+ (1� x)y)�1

    1.K.Hepp,Comm.Math.Phys.2(1966)301–326.2.M. Roth, A. Denner, Nuclear Phys. B 479 (1996) 495–5143.T. Binoth, G. Heinrich, Nuclear Phys. B 585 (2000) 741–759. 4.G.Heinrich,Internat.J.ModernPhys.A23(2008)1457–1486.

    x

    y

    x

    t

    t

    y

    +

  • pySecDec 1

    • Automa.c calcula.on• Python modules and FORM2 for Algebraic

    manipula.on• C++ code generated for numerical calcula.on• CUBA library of Integral Evalua.on rou.nes3

    1. S. Borowka et al., Computer Physics Communications 222 (2018) 3132. J.A.M.Vermaseren, arXiv:math-ph/0010025. J.Kuipers,et

    al. ,Comput.Phys.Comm.189(2015)13. T.Hahn,Comput.Phys.Comm.168(2005)78.

    T.Hahn,J.Phys.Conf.Ser.608(1)(2015)012066

  • Progress so far • Program is running• Can run examples• Next step: Reproduce previous Delbrück

    calcula=onsp1

    p2

    p3

    p4

    m

    0

    0

    0

    p1

    p2

    p3

    p4

    0

    0

    0

    0

    p1

    p2

    0 0

  • Conclusions

    • Measuring the vacuum precisely: possible new physics• Photons useful• Delbrück scattering: large cross section• Nearly Isolated: linear polarization in scattering plane,

    specific angles

    • Larger Z need higher order calculations• Next-to-leading-order using Particle Physics package:

    PySecDec

    • Next Step: lowest order Delbrück then next order

    For details see :

    J. K. Koga and T. Hayakawa, PRL 118 (2017) 204801