project “ redeye ”

54
Project “RedEye” University of Central Florida College of Electrical Engineering and Computer Science Senior Design Fall 2011 Group 8 David Morrow Ricardo Rodriguez Shane Theobald Nick Bauer

Upload: chakra

Post on 10-Feb-2016

45 views

Category:

Documents


2 download

DESCRIPTION

Project “ RedEye ”. University of Central Florida College of Electrical Engineering and Computer Science Senior Design Fall 2011. Group 8 David Morrow Ricardo Rodriguez Shane Theobald Nick Bauer. Motivation. Wanted to gain experience in many different engineering disciplines C# - GUI - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Project “ RedEye ”

Project “RedEye”

University of Central FloridaCollege of Electrical Engineering and Computer Science

Senior Design Fall 2011

Group 8David Morrow

Ricardo RodriguezShane Theobald

Nick Bauer

Page 2: Project “ RedEye ”

Wanted to gain experience in many different engineering disciplines◦ C# - GUI◦ Optics – Laser Range Finder◦ Wireless Communication◦ Controlling Peripheral Devices via Microcontroller

Motivation

Page 3: Project “ RedEye ”

Goals Calculate the GPS coordinates of a user

specified target using the following components.◦ Wireless Camera◦ Laser Rangefinder◦ Digital Compass◦ GPS Module

Minimize◦ Cost◦ Weight◦ Power Consumption

Page 4: Project “ RedEye ”

Target Specs◦ 50m minimum distance◦ 1000m maximum distance◦ 10m x 10m minimum target size

Accuracy◦ Rangefinder distance within ±10m◦ Self GPS coordinates within 5m radius of true

location◦ Compass heading within ±1° of true heading◦ Final target GPS coordinates within 50m radius of

true location

Project Specifications

Page 5: Project “ RedEye ”

Block Diagram

Page 6: Project “ RedEye ”

Operational Flow Chart

Page 7: Project “ RedEye ”

Methods of Laser Rangefinding◦ Triangulation

Easiest method both conceptually and design Based on geometry Increasingly less accurate as range increases

◦ Interferometry Most accurate method of laser rangefinding Can measure small distances on order of

wavelengths◦ Time-of-flight

Can measure very large distances with great accuracy

This is the approach that we will implement

Rangefinder Subsystem

Page 8: Project “ RedEye ”

Time-of-Flight Rangefinder

Page 9: Project “ RedEye ”

Photodetector HV Power Supply Front End Amplifier (Transimpedance Amp) NIR optical filter Receiver Lens

Receiver Module Components

Page 10: Project “ RedEye ”

Pros◦ Highly Sensitive Photodetectors◦ Make use of avalanche multiplication for

increased gain◦ High Speed◦ Designed for rangefinder applications◦ Allows for larger maximum range detection

Cons◦ Require HV reverse bias to get maximum gain◦ Exhibit higher dark current than alternatives◦ Small active area makes alignment difficult

Avalanche Photodiode (Detector)

Page 11: Project “ RedEye ”

APD Design Characteristics

Peak Spectral Response Cost and Availability Minimum Dark Current Required Bias Voltage

Page 12: Project “ RedEye ”

Pacific Silicon AD230-9 Enhanced for NIR detection at 900nm

Low noise equivalent power = 10fW/√Hz TO-52 Package allows for easy mounting

Spectral Response at M = 100

Page 13: Project “ RedEye ”

HV Power Supply—EMCO A025P Proportional Input/Output Voltage 250VDC when full 5V input applied Low peak-to-peak ripple (<1%) Maximum Output Current 4mA Low turn on voltage of 0.7V

Page 14: Project “ RedEye ”

Converts photocurrent into voltage High Slew Rate at 290V/µs Low Input Noise Voltage 7nV/√HZ FREE—Sampled

Transimpedance AmplifierTI OPA656

Page 15: Project “ RedEye ”

Receiver System Schematic

Page 16: Project “ RedEye ”

Optical Bandpass Filter

860 870 880 890 900 910 920 930 940 9500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wavelenth in nm

Tran

smis

sion

Filter Specs◦ 2 in X 2in X .1in◦ CWL 905.9nm◦ BBW 54.0nm◦ Peak transmission

79%

Page 17: Project “ RedEye ”

Receiver Prototype Overview

Receiver Electronics

Lens Tube Assembly

Page 18: Project “ RedEye ”

Power Received

Prec =Ptx e(-αRtx) ρ e(- αRrx) Arx Topt

πRrx2

Page 19: Project “ RedEye ”

Threshold Detection

Prevent False Alarms◦ Capture as much energy as possible◦ Keep noise floor low◦ Set threshold

Page 20: Project “ RedEye ”

Output Power—Need high power laser diode to meet maximum range criterion

Pulsewidth—Must have short pulsewidth to have high axial (range) resolution (V x τp)

Wavelength—Transmitter near peak responsivity of photodetector.

Beam Divergence—low divergence angle to ensure maximum energy on target

Laser Transmitter Design Parameters

Page 21: Project “ RedEye ”

Laser Diode Options

HA!

Page 22: Project “ RedEye ”

Laser Diode SPL-PL-90_3

◦ TO-18 Package◦ Divergence 9 x 25 gradient degrees◦ Minimum Rise/Fall time 1ns◦ Threshold Current 0.75A◦ Peak wavelength 905nm◦ Power output 75W◦ Peak Current 40A◦ Typical Voltage 9V◦ Pulsewidth 5-100ns

5.9mm

5mm

Page 23: Project “ RedEye ”

Pros◦ Very small in size at 1”x2.5”◦ Produces fixed pulsewidth at 15ns◦ Can produce up to 50A diode drive current◦ Diode mounts easily to CCA. (Radial or Axial

options) Cons

◦ Also requires high voltage source◦ 33ns propagation delay◦ Difficult T-zero capture

Diode Driver CCAIXYS PCO 7110-50-15

Page 24: Project “ RedEye ”

Supply Current◦ Ips = (Cpfn + Cfet + Cstray) * Vin * f◦ Ips = (4000pF + 120pF + 430pF) *195V *1Hz

=0.9µA Output Current

◦ Directly dependent on HV supply (195V is max)

Diode Driver continued

Page 25: Project “ RedEye ”

JP1 Connection

Diode Driver Continued

Pin 1 GroundPin 2 15V @ 1mA (support power)Pin 3 GroundPin 4 Gate (Trigger) 5VPin 5 Ground

Pin 10 HV in (0 - 195V @ Ips)

Page 26: Project “ RedEye ”

Laser Transmitter Diagram

Page 27: Project “ RedEye ”

Transmitter Prototype Overview

Transmitter Electronics

Page 28: Project “ RedEye ”

High Voltage◦ Diode Driver Board – 195Vmax◦ Avalanche Photodiode – 240V

15V◦ Diode Driver Board

10-13V◦ Camera System

±5V◦ Comparator◦ Op Amps

5V◦ High Voltage Power Supply

3.3V◦ Microprocessor◦ TDC

Voltage Requirements

Page 29: Project “ RedEye ”

Power Supply Overview

Page 30: Project “ RedEye ”

TDC: ACAM GP2-G590 Creates a digital value for the laser pulses

time of flight from the transmitter to the receiver.◦ 2 channels with 50 ps rms resolution◦ Measurement from 3.5ns to 1.8ms◦ Fire pulse generator◦ I/O voltage 1.8v – 5.5v◦ Core voltage 1.8 – 3.6v◦ 4 wire SPI interface◦ QFN 32 Package 5mm

5mm

Page 31: Project “ RedEye ”

Microcontroller◦ Programming Language: C◦ Development Environment: Arduino Uno IDE◦ Handles data collection and peripheral control

GUI◦ Programming Language: C#◦ Development Environment: MS Visual Studio◦ Receives user input and displays relevant

information

Software Design

Page 32: Project “ RedEye ”

Embedded Overview

MCUXBee TDC

Pan & Tilt

GPS Compass

Page 33: Project “ RedEye ”

MCU: ATmega328Clock Speed

Core SizeI/O Pins

Package SizeMemory

UART/I2C/SPI/PMWOperating Voltage

Price

16 MHz8 bit14DIP 2832 kB2 / 1 / 2 / 61.8 – 5.5V$6.27

• Mounted on Arduino development board• Arduino Uno development environment compatibility

Page 34: Project “ RedEye ”

• C Programming language• Allows for flexible troubleshooting • Large support community• SPI, I2C, & Serial libraries

IDE: Arduino Uno

Page 35: Project “ RedEye ”

GPS: EM-406A SiRF III 

Input VoltageInput Current

Baud RateC/A code

Comm. ProtocolAccuracy

Price

4.5 – 6.5V 44 mA48001.023 MHzUART; RS-2325m WAAS$59.95

5cm

5cm

Page 36: Project “ RedEye ”

Compass: HMC6352

Input VoltageInput Current

Field RangeResolution

Comm. ProtocolWeight

Price

2.7 – 3V2 – 10mA0.1 gauss0.5 degreesI2C0.14 grams$34.95

• Two axis digital compass• Provides heading in degrees

from magnetic north

Page 37: Project “ RedEye ”

100ft radial distance Omni-directional link Low Power Consumption

Wireless Comm: Overview

Page 38: Project “ RedEye ”

Wireless Comm: XBee Series 2

Input VoltageRX/TX Current

Transmit PowerTX SensitivityRF Data Rate

Baud RateFrequency Band

Indoor RangeOutdoor Range

ProtocolAntenna

Price

2.8 – 3.6V40 mA2 mW (+3 dBm)-98 dBm250 Kbps1200 – 1 Mbps2.4 GHz133ft400ftZigbee (802.15.4)Whip (dipole)$25.95 (X2)

3cm

3cm

Page 39: Project “ RedEye ”

Servos: Hitec HS-485HBOperating Voltage

Operating Speed (6V)Stall Torque

Operating AngleCurrent Drain (6V)

Motor TypeWeight

Price

4.8 – 6V.18 sec/600

83.3 oz/in450

8.8 mA / 180 mA3 Pole Ferrite1.59 oz$16.99

Page 40: Project “ RedEye ”

Pan & Tilt: Hitec SPT200Weight (w/o servos)

Tilt SwingMax. Payload

Price

5.5 oz135o

2 lbs$45.99

Page 41: Project “ RedEye ”

Schematic Overview

Page 42: Project “ RedEye ”

1/3” Sony CCD microboard camera◦ NTSC format◦ 510x492 pixels

900MHz Tx/Rx combo

Camera and Tx/Rx

Page 43: Project “ RedEye ”

GUI Functional Flow Diagram

Open GUI

Connect to XBee

and Video

Poll GPS

Poll Compass

Display Info

User Input

Move Camera

Fire Laser

no yes

Page 44: Project “ RedEye ”

GUI - UML Diagram

PositionalData

- double CompassHeading

- double latitude

- string LatitudeHeading

- double longitude

- string LongitudeHeading

RangeFinder

+ PositionalData Info

+ int distance

- PollGPS()- PollCompass()

- PollLaser()

- DisplayData()

Target

+ PositionalData targetData

+ RangeFinder rangefinderData

- CalculateGPS()- DisplayData()

Page 45: Project “ RedEye ”

GUI – Prototype Layout

Page 46: Project “ RedEye ”

Given:◦ Self GPS Coordinates

Latitude (N/S ddmm.mmmm) Longitude (E/W ddmm.mmmm)

◦ Distance to target (m)◦ Heading clockwise from magnetic north (deg)

Calculate:◦ Target GPS Coordinates

Latitude (N/S ddmm.mmmm) Longitude (E/W ddmm.mmmm)

Target GPS Algorithm

Page 47: Project “ RedEye ”

Spherical Law of Cosines

◦ Self GPS coordinates (lat1, lon1)◦ Distance to target (d)◦ Heading (Θ)◦ Radius of the earth (R)◦ Target GPS coordinates (lat2, lon2)

[ ]lat2 = sin-1[ sin(lat1)*cos(d/R) + cos(lat1)*sin(d/R)*cos(Θ) ]

lon2 = lon1 + tan-12 cos(lat1)*sin(d/R)*sin(Θ) cos(d/R) - sin(lat1)*sin(lat2)

Target GPS Algorithm – cont.

Page 48: Project “ RedEye ”

Budget

Quantity Part Name Cost Total2 Laser Diode OSRAM SPL PL 90_3 $55.00 $110.001 Diode Driver IXYS PCO 7110-50-15 $207.20 $207.201 APD Pacific Silicon AD230-9 TO52-S1 $92.53 $92.531 Optical Band Pass Filter $30.00 $30.001 Laser Diode Collimation Tube $15.00 $15.001 Receiver Extension Tube $140.00 $140.001 Receiver Lens $34.00 $34.002 HV Power Supply EMCO A025 $65.78 $131.561 Op-Amp TI OPA656 $0.00 $0.001 Assorted Resistors/Capacitors $10.00 $10.00

Rangefinder Components

Subsystem Cost Analysis BudgetLaser System $770.29 $850.00Time to Digital Conversion $35.00 $50.00Camera System $0.00 $100.00Compass Module $35.00 $50.00GPS Module $79.99 $100.00Wireless System $50.00 $100.00Microcontroller $31.27 $50.00Power System $0.00 $25.00Mounting Fixture and Servo Motors $0.00 $100.00PCB Construction $0.00 $75.00

TOTALS: $1,001.55 $1,500.00

Page 49: Project “ RedEye ”

Responsibility Matrix – Phase 1PHASE 1 - Components 21%GPS 38%

Microcontroller Communication 4-Sep X 25%Data Manipulation in GUI 4-Sep X 50%

Compass 38%Microcontroller Communication 11-Sep X 25%Data Manipulation in GUI 11-Sep X 50%

Camera 17%Wireless Communication 18-Sep X 0%Video in GUI 18-Sep X 50%Optics 18-Sep X 0%

Servos 5%Microcontroller Communication 25-Sep X 10%Hardware Setup 25-Sep X 0%

Wireless System 25%Microcontroller Interface 30-Sep X 50%GUI Interface 30-Sep X 0%

Power System 0%Hardware Setup 30-Sep X X X X 0%

Laser Tx 28%Hardware Setup 11-Sep X X 25%Optics 11-Sep X X 60%Calibration 11-Sep X X 0%

Laser Rx 42%Hardware Setup 25-Sep X X 25%Optics 25-Sep X X 100%Calibration 25-Sep X X 0%

Time to Digital 0%Microcontroller Communication 2-Oct X 0%Calibration 2-Oct X X 0%

David NickRicardo Shane

Page 50: Project “ RedEye ”

Responsibility Matrix – Phase 2 & 3PHASE 2 - System Integration 4%GUI 13%

Target GPS Algorithm 9-Oct X 50%Live Video 16-Oct X X 0%Servo Control 23-Oct X X 0%Laser Control 30-Oct X X X 0%

Housing 0%Camera, Laser Tx/Rx Alignment 16-Oct X X X 0%Properly mounted components 23-Oct X X X X 0%Compact Design 30-Oct X X X X 0%

PCB 0%Designed 16-Oct X X X X 0%Manufactured 30-Oct X X X X 0%

PHASE 3 - Testing 0%Testing 0%

Rangefinder 13-Nov X X 0%GPS 6-Nov X X 0%Compass 6-Nov X X 0%Servo Control 6-Nov X X 0%Algorithm 6-Nov X 0%GUI 13-Nov X 0%

David NickRicardo Shane

Page 51: Project “ RedEye ”

Progress - PrototypingDate Phase 1 Phase 2 Phase 3

29-Aug 5% 0% 0%5-Sep 10% 0% 0%

12-Sep 16% 0% 0%19-Sep 21% 4% 0%26-Sep 0% 0% 0%3-Oct 100% 0% 0%10-Oct 100% 0% 0%17-Oct 100% 0% 0%24-Oct 100% 0% 0%31-Oct 100% 0% 0%7-Nov 100% 100% 0%14-Nov 100% 100% 0%21-Nov 100% 100% 0%28-Nov 100% 100% 0%5-Dec 100% 100% 100%

Page 52: Project “ RedEye ”

Progress – Overall

Page 53: Project “ RedEye ”

Environmental conditions Laser transmitter and receiver alignment Divergence t0 Timing Cost

◦ Replacing broken parts

Potential Problems

Page 54: Project “ RedEye ”

QUESTIONS?