project report

160
Design of Elevated Service Reservoir 2011 ABSTRACT Storage reservoirs and overhead tank are used to store water, liquid petroleum, petroleum products and similar liquids. The force analysis of the reservoirs or tanks is about the same irrespective of the chemical nature of the product. All tanks are designed as crack free structures to eliminate any leakage. This project gives in brief, the theory behind the design of liquid retaining structure using working stress method for different capacities. This report also includes design & water tanks using STAAD.pro. At the end, the manual design is also compared with the results & STAAD.pro. [GCEK] Page 1

Upload: abhijit-haval

Post on 07-May-2017

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Project Report

Design of Elevated Service Reservoir 2011

ABSTRACT

Storage reservoirs and overhead tank are used to store water, liquid

petroleum, petroleum products and similar liquids. The force analysis of

the reservoirs or tanks is about the same irrespective of the chemical

nature of the product. All tanks are designed as crack free structures to

eliminate any leakage. This project gives in brief, the theory behind the

design of liquid retaining structure using working stress method for

different capacities. This report also includes design & water tanks using

STAAD.pro. At the end, the manual design is also compared with the

results & STAAD.pro.

[GCEK] Page 1

Page 2: Project Report

Design of Elevated Service Reservoir 2011

CHAPTER 1

1. SCOPE

It is common practice to use reinforced structures for the retention,

exclusion or storage of water & other aqueous liquids. Concrete is

generally the most economical material of construction & when correctly

designed & constructed will provide long life & low maintenance cost.

There are many types of structure covered in this type of reservoirs but

our main focus is the elevated tanks or overhead tanks or elevated

service reservoirs (ESR). The design principles applied to water retaining

structures can be equally applied to all the retention of other aqueous

liquids. Eg:- Sewage tanks. The design of structures to retain oil, petrol,

hot liquids & other penetrating liquids is not included.

[GCEK] Page 2

Page 3: Project Report

Design of Elevated Service Reservoir 2011

CHAPTER 2

2. OBJECTIVES

1. To make a study about the analysis and design of water tanks.

2. A structure that is designed to retain liquids must fulfill the requirements

for normal structures (like buildings) in having adequate strength,

durability & serviceability. In addition to these, it must be ensured that

the liquid is not allowed to leak or penetrate through concrete structures.

3. In the design of normal building structures, the most critical aspect of

the design is stability of structure under imposed loads where as in the

design of liquid retaining structure, the components are designed &

proportioned such that liquid is retained without leakage.

4. The design of any structure is a process by which it is planned that the

structure will achieve its intended function in safety & at least overall

cost. For water retaining structures, the intended function is to support the

various combinations of loading together with the maintenance of an

adequately water – tight condition.

5. As soon as structure is complete, the influence of weather, ageing, use or

misuse another causes of deterioration begin to act. It is, therefore, the

[GCEK] Page 3

Page 4: Project Report

Design of Elevated Service Reservoir 2011

task is to ensure the continuous serviceability of the structure for which

it is intended throughout the life.

6. To make a study about the guidelines for the design of liquid retaining

structure according to IS Code.

7. To know about the design philosophy for the safe and economical

design of water tank.

8. For water retaining structure, there is a complex task of balancing the

initial cost of construction & the maintenance cost, because each may be

reduced at the expense of the other.

[GCEK] Page 4

Page 5: Project Report

Design of Elevated Service Reservoir 2011

CHAPTER 3

INTRODUCTION

3.1 RESERVOIR

Storage reservoirs and overhead tank are used to store water, liquid petroleum,

petroleum products and similar liquids. The force analysis of the reservoirs or

tanks is about the same irrespective of the chemical nature of the product. All

tanks are designed as crack free structures to eliminate any leakage. Water or

raw petroleum retaining slab and walls can be of reinforced concrete with

adequate cover to the reinforcement.

Water and petroleum and react with concrete and, therefore, no special

treatment to the surface is required. Industrial wastes can also be collected and

processed in concrete tanks with few exceptions. The petroleum product such as

petrol, diesel oil, etc. are likely to leak through the concrete walls, therefore

such tanks need special membranes to prevent leakage. Reservoir is a common

term applied to liquid storage structure and it can be below or above the ground

level. Reservoirs below the ground level are normally built to store large

[GCEK] Page 5

Page 6: Project Report

Design of Elevated Service Reservoir 2011

quantities of water whereas those of overhead type are built for direct

distribution by gravity flow and are usually of smaller capacity.

3.2 DISTRIBUTION RESERVOIR

Distribution reservoir are also called service reservoirs i.e also named as storage

reservoir which stores the treated water for supplying water during emergencies

& also to help on absorbing the hourly fluctuations in the normal water demand.

3.3 TYPES OF DISTRIBUTION RESERVOIR

The distribution reservoir may be made of steel, R.C.C or masonry depending

upon their elevation with respect to the ground, they may be classified into the

following types:

Surface reservoirs

Elevated reservoirs

3.3.1 Surface reservoir

Surface reservoirs are circular or rectangular tanks constructed at the

ground level. They are therefore also ground reservoirs.

3.3.2 Elevated reservoir

[GCEK] Page 6

Page 7: Project Report

Design of Elevated Service Reservoir 2011

[Elevated reservoirs are the rectangular , circular or elliptical overhead tanks

erected at a certain suitable elevation above the ground level (G.L.) &

supported on the towers.

These elevated reservoirs are generally provided at rural, town areas to

meet the increasing demand & also a way of storing water from the

times of drought or dry season.

Elevated storage reservoirs are commonly used for storing & supplying

water in public water distribution systems. It has now become very

important to discuss the various stages like designing, construction &

commissioning. This report deals with the design of overhead tanks,

behaviour of different elements of ESR, causes of failures of ESR’s &

precautions to be taken during various stages.

Water tanks are subjected to more unfavourable conditions of exposure than

buildings & bridges. Water tanks are permanently exposed to the

environmental effects i.e. moderate or severe conditions of exposures as

concrete is continuously underwater. (Ref. Table no.3,pg no.18, IS 456:2000).

Important aspects of ESR compared to buildings, bridges are:-

[GCEK] Page 7

Page 8: Project Report

Design of Elevated Service Reservoir 2011

Structure being exposed to rains, suns & winds is subjected to the

atmospheric effects. A part of the tank towards sun will be heated than

the outer part. This differential temperature effect will generate additional

secondary stresses in the supporting structure, in particular, a hollow

R.C.C. Shaft. Under the tank full condition, the temperature effect may be

less, but these will be significant when the tank is empty.

In buildings & bridges, dead load of foundations & columns is about

60% to 80% & live load is about 40% to 20%. In case of tanks, the

water load may be 60% to 80% & other loads 40 % to 20%. The water

load varies everyday causing variations in the stresses in concrete from

say 30% to 90% both the ways.

For disinfection of water, chlorine is added. It is an acidic material. Concrete in

contact with acidic environment becomes brittle & deteriorates faster. Thus,

water tanks are subjected to moderate to severe exposure conditions.

[GCEK] Page 8

Page 9: Project Report

Design of Elevated Service Reservoir 2011

CHAPTER 4

THEORY

4.1 CONCRETE

In water retaining structure a dense impermeable concrete is required therefore,

proportion of fine and course aggregates to cement should be such as to give

high quality concrete.

Concrete mix weaker than M20 is not used. The minimum quantity of cement in

the concrete mix shall be not less than 30 kN/m3.

The design of the concrete mix shall be such that the resultant concrete is

sufficiently impervious. Efficient compaction preferably by vibration is

essential. The permeability of the thoroughly compacted concrete is dependent

on water cement ratio. Increase in water cement ratio increases permeability,

while concrete with low water cement ratio is difficult to compact. Other causes

of leakage in concrete are defects such as segregation and honey combing. All

joints should be made water-tight as these are potential sources of leakage.[GCEK] Page 9

Page 10: Project Report

Design of Elevated Service Reservoir 2011

Design of liquid retaining structure is different from ordinary R.C.C, structures

as it requires that concrete should not crack and hence tensile stresses in

concrete should be within permissible limits.

A reinforced concrete member of liquid retaining structure is designed on the

usual principles ignoring tensile resistance of concrete in bending.

Additionally it should be ensured that tensile stress on the liquid retaining face

of the equivalent concrete section does not exceed the permissible tensile

strength of concrete as given in table 1. For calculation purposes the cover is

also taken into concrete area.

Cracking may be caused due to restraint to shrinkage, expansion and contraction

of concrete due to temperature or shrinkage and swelling due to moisture

effects. Such restraint may be caused by.

(i) The interaction between reinforcement and concrete during shrinkage due to

drying.

(ii) The boundary conditions.

(iii) The differential conditions prevailing through the large thickness of

massive concrete.

Use of small size bars placed properly, leads to closer cracks but of smaller

width. The risk of cracking due to temperature and shrinkage effects may be

minimized by limiting the changes in moisture content and temperature to

[GCEK] Page 10

Page 11: Project Report

Design of Elevated Service Reservoir 2011

which the structure as a whole is subjected. The risk of cracking can also be

minimized by reducing the restraint on the free

expansion of the structure with long walls or slab founded at or below ground

level, restraint can be minimized by the provision of a sliding layer. This can be

provided by founding the structure on a flat layer of concrete with interposition

of some material to break the bond and facilitate movement. In case length of

structure is large it should be subdivided into suitable lengths separated by

movement joints, especially where sections are changed the movement joints

should be provided.

Where structures have to store hot liquids, stresses caused by difference in

temperature between inside and outside of the reservoir should be taken into

account.

The coefficient of expansion due to temperature change is taken as 11 x 10-6 /°

C and coefficient of shrinkage may be taken as 450 x 10-6 for initial shrinkage

and 200 x 10-6 for drying shrinkage.

[GCEK] Page 11

Page 12: Project Report

Design of Elevated Service Reservoir 2011

4.2 JOINTS IN LIQUID RETAINING STRUCTURES

4.2.1 Movement Joints.

There are three types of movement joints.

(i) Contraction Joint :-

It is a movement joint with deliberate discontinuity without initial gap between

the concrete on either side of the joint. The purpose of this joint is to

accommodate contraction of the concrete.

The joint is shown in Fig.2.1 (a).

Figure 2.1(a)

[GCEK] Page 12

Page 13: Project Report

Design of Elevated Service Reservoir 2011

A contraction joint may be either complete contraction joint or partial

contraction joint. A complete contraction joint is one in which both steel and

concrete are interrupted and a partial contraction joint is one in which only the

concrete is interrupted, the reinforcing steel running through as shown in

Fig.2.1(b).

Figure 2.1(b)

(ii)Expansion Joint:-

It is a joint with complete discontinuity in both reinforcing steel and concrete

and it is to accommodate either expansion or contraction of the structure. A

typical expansion joint is shown in

[GCEK] Page 13

Page 14: Project Report

Design of Elevated Service Reservoir 2011

Figure 2.2

This type of joint requires the provision of an initial gap between the adjoining

parts of a structure which by closing or opening accommodates the expansion or

contraction of the structure.

(iii) Sliding Joint:-

It is a joint with complete discontinuity in both reinforcement and concrete and

with special provision to facilitate movement in plane of the joint. A typical

joint is shown in Fig. 2.3

[GCEK] Page 14

Page 15: Project Report

Design of Elevated Service Reservoir 2011

Figure 2.3

This type of joint is provided between wall and floor in some cylindrical tank

designs.

4.2.2. Contraction Joints

This type of joint is provided for convenience in construction. Arrangement is

made to achieve subsequent continuity without relative movement. One

application of these joints is between successive lifts in a reservoir wall. A

typical joint is shown in Fig.2.4.

[GCEK] Page 15

Page 16: Project Report

Design of Elevated Service Reservoir 2011

Figure 2.4

The number of joints should be as small as possible and these joints should be

kept from possibility of percolation of water.

4.2.3 Temporary Joints

A gap is sometimes left temporarily between the concrete of adjoining parts of a

structure which after a suitable interval and before the structure is put to use, is

filled with mortar or concrete completely as in Fig.2.5(a) or as shown in Fig.2.5

(b) and (c) with suitable jointing materials. In the first case width of the gap

should be sufficient to allow the sides to be prepared before filling.

Figure 2.5(a)

[GCEK] Page 16

Page 17: Project Report

Design of Elevated Service Reservoir 2011

Figure 2.5(b)

Figure 2.5(c)

[GCEK] Page 17

Page 18: Project Report

Design of Elevated Service Reservoir 2011

4.2.4 Spacing of Joints:

Unless alternative effective means are taken to avoid cracks by allowing for the

additional stresses that may be induced by temperature or shrinkage changes or

by unequal settlement, movement joints should be provided at the following

spacing:-

(a) In reinforced concrete floors, movement joints should be spaced at not more

than 7.5m apart in two directions at right angles. The wall and floor joints

should be in line except where sliding joints occur at the base of the wall in

which correspondence is not so important.

(b) For floors with only nominal percentage of reinforcement (smaller than the

minimum specified) the concrete floor should be cast in panels with sides not

more than 4.5m.

(c) In concrete walls, the movement joints should normally be placed at a

maximum spacing of 7.5m. in reinforced walls and 6m in unreinforced walls.

The maximum length desirable between vertical movement joints will depend

upon the tensile strength of the walls, and may be increased by suitable

reinforcement. When a sliding layer is placed at the foundation of a wall, the

[GCEK] Page 18

Page 19: Project Report

Design of Elevated Service Reservoir 2011

length of the wall that can be kept free of cracks depends on the capacity of wall

section to resist the friction induced at

the plane of sliding. Approximately the wall has to stand the effect of a force at

the place of sliding equal to weight of half the length of wall multiplied by the

co-efficient of friction.

(d) Amongst the movement joints in floors and walls as mentioned above

Expansion joints should normally be provided at a spacing of not more than

30m between successive expansion joints or between the end of the structure

and the next expansion joint; all other joints being of the construction type.

(e) When, however, the temperature changes to be accommodated are abnormal

or occur more frequently than usual as in the case of storage of warm liquids or

in un-insulated roof slabs, a smaller spacing than 30m should be adopted that is

greater proportion of movement joints should be of the expansion type). When

the range of temperature is small, for example, in certain covered structures, or

where restraint is small, for example, in certain elevated structures none of the

movement joints provided in small structures up to 45mlength need be of the

expansion type. Where sliding joints are provided between the walls and either

the floor or roof, the provision of movement joints in each element can be

considered independently.

[GCEK] Page 19

Page 20: Project Report

Design of Elevated Service Reservoir 2011

4.3 COMPONENT PARTS OF THE TANK:

Overhead tank (circular) consists of structural units such as:

Roof slab

Roof beam

Vertical wall

Bottom slab

Bottom ring beam, Bottom beam

Column

[GCEK] Page 20

Page 21: Project Report

Design of Elevated Service Reservoir 2011

Braces

Individual footing

Fig. 2.6

It mainly consists of two parts:-

Container

Staging (Supporting tower)

[GCEK] Page 21

ROOF SLAB

ROOF BEAM

VERTICAL WALL

OUTLET

BOTTOM BEAM

COLUMN

INLET

BRACES

G L

INDIVIDUAL FOOTING

Page 22: Project Report

Design of Elevated Service Reservoir 2011

1. Container:

Material: RC, Steel, Polymer

Shape: Circular, Rectangular, Intze, Funnel, etc.

2. Staging:

RC or Steel frame

RC shaft

Brick or masonry shafts

The different shapes of the tank are as follows:-

Circular shaped tank (Plan)

Hydrostatic pressure Hydrodynamic pressure

[GCEK] Page 22

Page 23: Project Report

Design of Elevated Service Reservoir 2011

Rectangular tanks (Plan View)

Hydrostatic pressure Hydrodynamic pressure

4.4 GENERAL DESIGN REQUIREMENTS (I.S.I)

4.4.1 Plain Concrete Structures

Plain concrete member of reinforced concrete liquid retaining structure

may be designed against structural failure by allowing tension in plain

concrete as per the permissible limits for tension in bending. This will

[GCEK] Page 23

Page 24: Project Report

Design of Elevated Service Reservoir 2011

automatically take care of failure due to cracking. However, nominal

reinforcement shall be provided, for plain concrete structural members.

4.4.2. Permissible Stresses in Concrete.

(a) For resistance to cracking

For calculations relating to the resistance of members to cracking, the

permissible stresses in tension (direct and due to bending) and shear shall

confirm to the values specified in Table 1.The permissible tensile stresses

due to bending apply to the face of the member in contact with the

liquid. In members less than 225mm thick and in contact with liquid on

one side these permissible stresses in bending apply also to the face

remote from the liquid.

(b) For strength calculations

In strength calculations the permissible concrete stresses shall be in

accordance with Table 1. Where the calculated shear stress in concrete

alone exceeds the permissible value, reinforcement acting in conjunction

with diagonal compression in the concrete shall be provided to take the

whole of the shear.

Table 1.Permissible concrete stresses in calculations relating to

resistance to cracking

[GCEK] Page 24

Page 25: Project Report

Design of Elevated Service Reservoir 2011

Grade of

concrete

Permissible stresses in kN/m²

ShearDirect Bending

M15 1.1 1.5 1.5

M20 1.2 1.7 1.7

M25 1.3 1.8 1.9

M30 1.5 2.0 2.2

M35 1.6 2.2 2.5

M40 1.7 2.4 2.7

4.4.3 Permissible Stresses in Steel(a) For resistance to cracking

When steel and concrete are assumed to act together for checking the tensile

stress in concrete for avoidance of crack, the tensile stress in steel will be

limited by the requirement that the permissible tensile stress in the concrete is

not exceeded so the tensile stress in steel shall be equal to the product of

modular ratio of steel and concrete, and the corresponding allowable tensile

stress in concrete.

(b) For strength calculations.

In strength calculations the permissible stress shall be as follows:

(i) Tensile stress in member in direct tension 1000 kg/cm2

(ii) Tensile stress in member in bending on[GCEK] Page 25

Page 26: Project Report

Design of Elevated Service Reservoir 2011

liquid retaining face of members or face away from

liquid for members less than 225mm thick 1000 kg/cm2

(iii)On face away from liquid for members 225mm or more

in thickness 1250 kg/cm2

(iv )Tensile stress in shear reinforcement,

For members less than 225mm thickness 1000 kg/cm2

For members 225mm or more in thickness 1250 kg/cm2

(v)Compressive stress in columns subjected to direct load 1250 kg/cm2

4.4.4. Stresses due to drying Shrinkage or Temperature Change.

(i) Stresses due to drying shrinkage or temperature change may be ignored

provided that .

(a) The permissible stresses specified above in (ii) and (iii) are not otherwise

exceeded.

(b) Adequate precautions are taken to avoid cracking of concrete during

the construction period and until the reservoir is put into use.

(c) Recommendation regarding joints given previously and for suitable

sliding layer beneath the reservoir are complied with, or the reservoir is to

be used only for the storage of water or aqueous liquids at or near

ambient temperature and the circumstances are such that the concrete will

never dry out.

[GCEK] Page 26

Page 27: Project Report

Design of Elevated Service Reservoir 2011

(ii) Shrinkage stresses may however be required to be calculated in

special cases.

(iii) When the shrinkage stresses are allowed, the permissible stresses,

tensile stresses to concrete (direct and bending) as given in Table 1 may be

increased by 33.33 per cent.

4.4.5. Floors

(i) Provision of movement joints.

Movement joints should be provided as discussed previously.

(ii) Floors of tanks resting on ground.

If the tank is resting directly over ground, floor may be constructed of

concrete with nominal percentage of reinforcement provided that it is

certain that the ground will carry the load without appreciable subsidence

in any part and that the concrete floor is cast in panels with sides not

more than 4.5m with contraction or expansion joints between. In such

cases a screed or concrete layer less than 75mm thick shall first be

placed on the ground and covered with a sliding layer of bitumen paper

or other suitable material to destroy the bond between the screed and floor

[GCEK] Page 27

Page 28: Project Report

Design of Elevated Service Reservoir 2011

concrete. In normal circumstances the screed layer shall be of grade not

weaker than M10, where injurious soils or aggressive water are expected,

the screed layer shall be of grade not weaker than M15 and if necessary

a sulphate resisting or other special cement should be used.

(iii) Floor of tanks resting on supports

(a) If the tank is supported on walls or other similar supports the floor

slab shall be designed as floor in buildings for bending moments due to

water load and self weight.

(b) When the floor is rigidly connected to the walls (as is generally the

case) the bending moments at the junction between the walls and floors

shall be taken into account in the design of floor together with any

direct forces transferred to the floor from the walls or from the floor to

the wall due to suspension of the floor from the wall. If the walls are

non-monolithic with the floor slab, such as in cases, where movement

joints have been provided between the floor slabs and walls, the floor

shall be designed only for the vertical loads on the floor.

(c) In continuous T-beams and L-beams with ribs on the side remote

from the liquid, the tension in concrete on the liquid side at the face of

the supports shall not exceed the permissible stresses for controlling

[GCEK] Page 28

Page 29: Project Report

Design of Elevated Service Reservoir 2011

cracks in concrete. The width of the slab shall be determined in usual

manner for calculation of the resistance to cracking of T-beam, L-beam

sections at supports.

(d)The floor slab may be suitably tied to the walls by rods properly

embedded in both the slab and the walls. In such cases no separate beam

(curved or straight) is necessary under the wall, provided the wall of the

tank itself is designed to act as a beam over the supports under it.

(e) Sometimes it may be economical to provide the floors of circular

tanks, in the shape of dome. In such cases the dome shall be designed

for the vertical loads of the liquid over it and the ratio of its rise to its

diameter shall be so adjusted that the stresses in the dome are, as far as

possible, wholly compressive. The dome shall be supported at its bottom

on the ring beam which shall be designed for resultant circumferential

tension in addition to vertical loads.

4.4.6. Walls

(i) Provision of joints

[GCEK] Page 29

Page 30: Project Report

Design of Elevated Service Reservoir 2011

(a) Where it is desired to allow the walls to expand or contract separately from the floor, or to prevent moments at the base of the wall owing to fixity to the floor, sliding joints may be employed.

(b) The spacing of vertical movement joints should be as discussed in

earlier article while the majority of these joints may be of the partial or

complete contraction type, sufficient joints of the expansion type should

be provided to satisfy the requirements.

(ii) Pressure on Walls.

(a) In liquid retaining structures with fixed or floating covers the gas

pressure developed above liquid surface shall be added to the liquid

pressure.

(b)When the wall of liquid retaining structure is built in ground, or has

earth embanked against it, the effect of earth pressure shall be taken into

account.

(iii) Walls or Tanks Rectangular or Polygonal in Plan.

While designing the walls of rectangular or polygonal concrete tanks, the

following points should be borne in mind.

[GCEK] Page 30

Page 31: Project Report

Design of Elevated Service Reservoir 2011

(a) In plane walls, the liquid pressure is resisted by both vertical and

horizontal bending moments. An estimate should be made of the

proportion of the pressure resisted by bending moments in the

vertical and horizontal planes. The direct horizontal tension caused

by the direct pull due to water pressure on the end walls, should be

added to that resulting from horizontal bending moments. On liquid

retaining faces, the tensile stresses due to the combination of direct

horizontal tension and bending action shall satisfy the following

condition:

(t./t )+ ( óc t . /óc t ) ≤ 1

t. = calculated direct tensile stress in concrete

t = permissible direct tensile stress in concrete (Table 1)

ó′c t = calculated tensile stress due to bending in concrete.

óc t = permissible tensile stress due to bending in concrete.

(b) At the vertical edges where the walls of a reservoir are rigidly joined,

horizontal reinforcement and haunch bars should be provided to resist the

horizontal bending moments even if the walls are designed to withstand

the whole load as vertical beams or cantilever without lateral supports.

[GCEK] Page 31

Page 32: Project Report

Design of Elevated Service Reservoir 2011

(c) In the case of rectangular or polygonal tanks, the side walls act as two

way slabs, whereby the wall is continued or restrained in the horizontal

direction, fixed or hinged at the bottom and hinged or free at the to .

The walls thus act as thin plates subjected triangular loading and with

boundary conditions varying between full restraint and free edge. The

analysis of moment and forces may be made on the basis of any

recognized method.

(iv) Walls of Cylindrical Tanks

While designing walls of cylindrical tanks the following points should be

born in mind:

(a) Walls of cylindrical tanks are either cast monolithically with the base

or are set in grooves and key ways (movement joints). In either case

deformation of wall under influence of liquid pressure is restricted at and

above the base. Consequently, only part of the triangular hydrostatic load

[GCEK] Page 32

Page 33: Project Report

Design of Elevated Service Reservoir 2011

will be carried by ring tension and part of the load at bottom will be

supported by cantilever action.

(b)It is difficult to restrict rotation or settlement of the base slab and it is

advisable to provide vertical reinforcement as if the walls were fully fixed

at the base, in addition to the reinforcement required to resist horizontal

ring tension for hinged at base, conditions of walls, unless the appropriate

amount of fixity at the base is established by analysis with due

consideration to the dimensions of the base slab the type of joint

between the wall and slab, and , where applicable, the type of soil

supporting the base slab.

4.4.7. Roofs

(i) Provision of Movement joints

To avoid the possibility of sympathetic cracking it is important to ensure

that movement joints in the roof correspond with those in the walls, if

roof and walls are monolithic. It, however, provision is made by means

of a sliding joint for movement between the roof and the wall

correspondence of joints is not so important.

[GCEK] Page 33

Page 34: Project Report

Design of Elevated Service Reservoir 2011

(ii) Loading

Field covers of liquid retaining structures should be designed for gravity

loads, such as the weight of roof slab, earth cover if any, live loads and

mechanical equipment. They should also be designed for upward load if

the liquid retaining structure is subjected to internal gas pressure. A

superficial load sufficient to ensure safety with the unequal intensity of

loading which occurs during the placing of the earth cover should be

allowed for in designing roofs. The engineer should specify a loading

under these temporary conditions which should not be exceeded. In

designing the roof, allowance should be made for the temporary

conditionof some spans loaded and other spans unloaded, even though in

the final state the load may be small and evenly distributed.

(iii) Water tightness

In case of tanks intended for the storage of water for domestic purpose,

the roof must be made water-tight. This may be achieved by limiting the

stresses as for the rest of the tank, or by the use of the covering of the

waterproof membrane or by providing slopes to ensure adequate drainage.

(iv) Protection against corrosion

[GCEK] Page 34

Page 35: Project Report

Design of Elevated Service Reservoir 2011

Protection measure shall be provided to the underside of the roof to

prevent it from corrosion due to condensation.

4.4.8. Minimum Reinforcement

(a) The minimum reinforcement in walls, floors and roofs in each of two

directions at right angles shall have an area of 0.3 per cent of the

concrete section in that direction for sections up to 100mm thickness. For

sections of thickness greater than 100mm, and less than 450mm the

minimum reinforcement in each of the two directions shall be linearly

reduced from 0.3 percent for 100mm thick section to 0.2 percent for

450mm thick sections. For sections of thickness greater than 450mm,

minimum reinforcement in each of the two directions shall be kept at 0.2

per cent. In concrete sections of thickness 225mm or greater, two layers

of reinforcement steel shall be placed one near each face of the section

to make up the minimum reinforcement.

(b) In special circumstances floor slabs may be constructed with

percentage of reinforcement less than specified above. In no case the

percentage of reinforcement in any member be less than 0°15% of gross

sectional area of the member.

[GCEK] Page 35

Page 36: Project Report

Design of Elevated Service Reservoir 2011

4.4.9. Minimum Cover to Reinforcement

(a) For liquid faces of parts of members either in contact with the liquid

(such as inner faces or roof slab) the minimum cover to all

reinforcement should be 25mm or the diameter of the main bar

whichever is greater. In the presence of the sea water and soils and water

of corrosive characters the cover should be increased by 12mm but this

additional cover shall not be taken into account for design calculations.

(b) For faces away from liquid and for parts of the structure neither in

contact with the liquid on any face, nor enclosing the space above the

liquid, the cover shall be as for ordinary concrete member.

CHAPTER 5

IS CODES

5.1 IS 3370:1965/1967 (Parts I to IV)

For concrete (reinforced and prestressed) tanks

Gives design forces for container due to hydrostatic loads

Based on working stress design

[GCEK] Page 36

Page 37: Project Report

Design of Elevated Service Reservoir 2011

BIS is considering its revision

5.2 IS 11682:1985

For RC staging of overhead tanks

Gives guidelines for layout & analysis of staging

5.3 IS 803:1976

For circular steel oil storage tanks

5.4 IS 1893:1984

Gives seismic design provisions

Covers elevated tanks only

Is under revision

More about other limitations, later

5.4 IS 1893 (Part 1):2002 is for buildings only

Cannot be used for tanks

5.5 IS 456 : 2000

Concrete design of all components by LSM except water tank

5.6 IS 875 : 1987 PART I to IV

Different types of loading

5.7 IS 13920 : 1993

[GCEK] Page 37

Page 38: Project Report

Design of Elevated Service Reservoir 2011

For Ductile Detailing of components

5.8 IS 1786 : 1979

For cold-twisted bars

CHAPTER 6

DESIGN CONSIDERATIONS:

6.1 METHOD OF DESIGN

The design of structural concrete has been based on elastic theory with

specified maximum designed stresses in the material at working loads. At

[GCEK] Page 38

Page 39: Project Report

Design of Elevated Service Reservoir 2011

present, limit state philosophy is widely used for most of the reinforced

concrete structures because it gives a thinner section & uses a less

reinforcement.

In India, the design of liquid retaining structures is based on the use of

elastic design .

Sr.no Consideration IS 3370

1 Strength Strength of cracking section by

limiting the stresses in bending,

shear & tension.

2 Cracking By limiting tensile stress in

concrete of uncracked section i.e.

bending & tension

3 Deflection Deemed to satisfy l/d ratio

6.2 CRITERIA FOR DESIGN

6.2.1 General

Capacity of the container of the tank shall be the volume of the water it

can store between the designed full supply level & the lowest supply

level.

Free board is the indication of the space provided above the full supply

level & shall be measured at a vertical distance above board FSL up to [GCEK] Page 39

Page 40: Project Report

Design of Elevated Service Reservoir 2011

the soffit of beam supporting the roofs slab. Free shall be minimum

30cm below the soffit of beam or slab.

The walls of the container shall be designed including free – board full

condition.

The tank foundation & other members of the structures shall be designed

for free-board full condition.

Part of the tank in contact with stored water & enclosing water vapour

above F.S.L shall be in concrete M25 or even in reached grade.

The allowable bearing pressure & safe bearing capacities are to be

verified/ confirmed prior to construction.

The factor of safety shall be adopted as per clause 6.1(a) IS 6403 : 971.

If the foundation consists of individual footing minimum clear distance

between centres of column shall be equal to twice the width of footing

& clear distance between edges of footing shall not be less than the

width of footing.

The foundation should be checked for negative pressure on soil due to

combined direct & bending stresses. Negative pressure shall not be allowed

on the foundation soil.

[GCEK] Page 40

Page 41: Project Report

Design of Elevated Service Reservoir 2011

Classification of soil & characteristics of soil relevant to safe bearing

capacity of soil shall be as per the soil investigation reports.

For the design of foundations of the solid raft type, the plate theory is

recommended.

In normal circumstances, minimum 100mm thick plain cement concrete

with 100mm projection all around M-100 with coarse aggregates, as

metal shall be provided as levelling course. Where injurious soils or

aggressive water are anticipated the levelling course shall be of the grade

not weaker than M-150 & if necessary sulphate resisting or any other

special type cement should be used whose projection should not be kept

less than 150mm. The ground level within the foundation area of the

structure shall be consolidated properly with suitable slope to drain out

rainwater outside the foundation zone.

In the vicinity of mines, blasting sites or areas which may be subjected

to blast or shock, the tank shall be designed for dynamic forces adapted

to shock.

Column may be assumed as fixed at the top of the footing.

Following shall be the minimum thickness of various members of the

tank container

Roof slab 120mm

[GCEK] Page 41

Page 42: Project Report

Design of Elevated Service Reservoir 2011

Bottom slab 200mm

Vertical wall of the container 200mm

6.2.2 Loads:

6.2.3 For all RCC & PCC components unit weights of concrete shall be

taken as 25000 Nm^3 & 24000Nm^3 respectively.

6.2.4 Water loads & snow loads shall be taken as per IS 875:1987 or its

latest revision.

6.2.5 Seismic forces shall be as per IS 1893:2002 (I).

6.2.3 Design Considerations

Shape of structure shall be the most economical & shall be designed

upon site conditions.

Design shall be based on the worst combination of various loads,

moments, shear, resultant stresses in the tank following cases :

Tank full

[GCEK] Page 42

Page 43: Project Report

Design of Elevated Service Reservoir 2011

Tank empty

Uplift pressure if any

Tank full means depth of water inside the container is up to full height

of the container including the free board.

The modular ratio ‘m’ for different concrete mixes shall be as under

Grade of concrete Modular ratio (m)

M15 19

M20 13

M25 11

Age factor for increasing strength shall not be considered for the design.

6.2.4 Permissible stress in concrete & steel:

The permissible stress in concrete as per IS 3370 / IS 456: 2000

Grade of

Concrete

Permissible stress in concrete (N/mm^2)

Tension Compression Shear

Axial Bendin

g

Axial Bending

[GCEK] Page 43

Page 44: Project Report

Design of Elevated Service Reservoir 2011

M20 1.2 1.7 5.0 7.0 1.2

M25 1.3 1.8 6.0 8.5 1.3

M30 1.5 2.0 7.5 10.0 1.4

The permissible stress in steel [Fe 415] as per IS :3370

Direct Tension 150 N/mm^2 For all cases

Bending

&

Tension

150 N/mm^2 Water face & outer face

when t<225mm

190N/mm^2 Outer face when

t>225mm

Shear stress 175N/mm^2 -

Steel grade higher than Fe 415 is not been recommended.

6.2.5 Minimum reinforcement for water retaining structure

The minimum reinforcement in walls, floors, roofs in each of the two

directions at the right angle shall have an area of 0.3% of the concrete

sections up to 100mm thick. For sections of thickness greater than

100mm & less than 450mm the minimum reinforcement in each of the

[GCEK] Page 44

Page 45: Project Report

Design of Elevated Service Reservoir 2011

two directions shall be linearly reduced from 0.3% for 100mm thick

section to 0.2% for 450mm thick section. For section of thickness greater

than 450mm minimum reinforcement in each direction shall be kept

0.2%. In the concrete sections of thickness 225mm or more, two layers

of reinforcing steel shall be placed one over each face of the section to

make up to the minimum reinforcement specified in this clause.

The minimum reinforcement specified in 7.2.5[1] above may be decreased

by 20% in case of high yield strength deformed bars confirming to

IS :1786 or IS :1139.

6.2.6 Cover to reinforcement[

Minimum clear cover to reinforcement shall be as per IS 456 : 2000 & IS

3370.

[GCEK] Page 45

Page 46: Project Report

Design of Elevated Service Reservoir 2011

For members of structure in contact with water effective cover shall be

not more than 60mm. For bars subjected to bending ; stresses, pure

tension the effective cover shall not be more than 75mm.

6.2.7 Spacing of reinforcement

Spacing of reinforcement shall be as per IS 456 : 2000.

Reinforcing steel which accounts for resisting moments, tension etc i.e.

other than temperature & shrinkage steel shall comprise of minimum

8mm diameter for ribbed bars & 10mm diameter for mild steel bars. For

compressive members, the minimum diameter of main reinforcement shall

not be less than 12mm di

6.3 FLEXIBLE BASE CIRCULAR WATER TANK

[GCEK] Page 46

Page 47: Project Report

Design of Elevated Service Reservoir 2011

For smaller capacities rectangular tanks are used and for bigger

capacitiescircular tanks are used .In circular tanks with flexible joint at

the base

tanks walls are subjected to hydrostatic pressure so the tank walls are

designed as thin cylinder. As the hoop tension gradually reduces to zero

at top, the reinforcement is gradually reduced to minimum reinforcement

at top. The main reinforcement consists of circular hoops. Vertical

reinforcement equal to 0.3% of concrete are is provided and hoop

reinforcement is tied to this reinforcement.

STEP 1

DETERMINATION OF DIAMETER OF THE WATER TANK

Diameter=D=√ (Q * 0.004) / ((H - Fb) * 3.14)

Where

Q=capacity of the water tank

H=height of the water tank

Fb=free board of the water tank

STEP 2

DESIGN OF DOME SHAPED ROOF

[GCEK] Page 47

Page 48: Project Report

Design of Elevated Service Reservoir 2011

Thickness of dome = t=100mm

Live load = 1.5KN/m2

Self weight of dome = (t / 1000) * unit weight of concrete

Finishes load = 0.1KN/m2

Total load = live load + self weight + finishes load

Central rise = r =1m

Radius of dome = R= ((0.5 * D) ^ 2 + r ^ 2) / (2 * r)

cosA = ((R - r) /R)

Meridional thrust = (total load * R) / (1 + cosA)

Circumferential thrust = total load * R * (cosA - 1 / (1 + cosA))

Meridional stress = meridional thrust / t

Hoop stress = circumferential thrust / t

Reinforcement in both direction = 0.3 * t* 10

Hoop tension = meridional thrust * cosA * D * 0.5

Reinforcement in top ring beam = As_topringbeam hoop tension / Ts

Cross section area of top ring beam

= (hoop tension / PST direct) - (m - 1) * As_top ringbeam

STEP 3

DETERMINATION OF HOOP REINFORCEMENT[GCEK] Page 48

Page 49: Project Report

Design of Elevated Service Reservoir 2011

HTi = 0.5 * (w * (H - i) * D)

Asi = HTi / Ts

Where

HTi=hoop tension at a depth of i from the top

Asi=hoop reinforcement at a depth of i from the top

STEP 4

DETERMINATION OF THICKNESS OF CYLINDRICAL WALL

HT = 0.5 * (w * H * D)

t = 0.001 * (HT1 / PSTdirect - (m - 1) * As)

Where

t=thickness of the wall

HT=hoop tension at the base of tank

PSTdirect=permissible stress due to direct tension

As=hoop reinforcement at base

STEP 5

DETERMINATION OF VERTICAL REINFORCEMENT[GCEK] Page 49

Page 50: Project Report

Design of Elevated Service Reservoir 2011

Asv = (0.3 - 0.1 * (t - 100) / 350) * t * 10

Where,

Asv= vertical reinforcement of the wall

t=thickness of the wall

STEP 6

DESIGN OF BASE

Thickness of base =150mm

Minimum reinforcement required=(0.3/100)*150*1000mm2

6.4 RIGID BASE CIRCULAR TANK

[GCEK] Page 50

Page 51: Project Report

Design of Elevated Service Reservoir 2011

The design of rigid base circular tank can be done by the approximate

method. In this method it is assumed that some portion of the tank at

base acts as cantilever and thus some load at bottom are taken by the

cantilever effect. Load in the top portion is taken by the hoop tension. The

cantilever effect will depend on the dimension of the tank and the

thickness of the wall. For H2 /Dt between 6 to 12, the cantilever portion

may be assumed at H/3 or 1m from base whichever is more. For H2 /Dt

between 6 to 12, the cantilever portion may be assumed at H/4 or 1m

from base whichever is more.

STEP 1

DETERMINATION OF DIAMETER OF THE WATER TANK

Diameter=D=√(Q * 0.004) / ((H - Fb) * 3.14)

Where

Q=capacity of the water tank

H=height of the water tank

Fb=free board of the water tank

STEP 2

DESIGN OF DOME SHAPED ROOF

[GCEK] Page 51

Page 52: Project Report

Design of Elevated Service Reservoir 2011

Thickness of dome = t=100mm

Live load = 1.5KN/m2

Self weight of dome = (t / 1000) * unit weight of concrete

Finishes load= 0.1KN/m2

Total load = live load + self weight + finishes load

Central rise= r =1m

Radius of dome = R= ((0.5 * D) ^ 2 + r ^ 2) / (2 * r)

cosA = ((R - r) /R)

Meridional thrust = (total load * R) / (1 + cosA)

Circumferential thrust = total load * R * (cosA - 1 / (1 + cosA))

Meridional stress = meridional thrust / t

Hoop stress = circumferential thrust / t

Reinforcement in both direction = 0.3 * t* 10

Hoop tension = meridional thrust * cosA * D * 0.5

Reinforcement in top ring beam =As_topringbeam hoop tension / Ts

Cross section area of top ring beam

= (hoop tension / PST direct) - (m - 1) * As_topringbeam

STEP 3

Assume the thickness of the wall=t = 0.15m[GCEK] Page 52

Page 53: Project Report

Design of Elevated Service Reservoir 2011

Find the value of H ^ 2 / (D * t)

(i) 6 < H ^ 2 / (D * t) < 12

Cantilever height=H/3 or 1m (which ever is more)

(ii) 12 < H ^ 2 / (D * t) < 30

Cantilever height=H/4 or 1m (which ever is more)

STEP 4

DETERMINATION OF REINFORCEMENT IN WALL

Maximum hoop tension=pD/2

Where,

p=w*(H-cantilever height)

w=unit weight of water

Area of steel required=maximum hoop tension/ós t

STEP 5

DETERMINATION OF REINFORCEMENT IN CANTILEVER HEIGHT[GCEK] Page 53

Page 54: Project Report

Design of Elevated Service Reservoir 2011

Maximum bending moment = 0.5 * (w * H) * (cantileverht ^ 2) / 3

Effective depth=t-40mm

Area of steel required=maximum bending moment/(j*effective depth* ós t )

STEP 6

DETERMINATION OF DISTRIBUTION STEEL IN WALL

Distribution steel provided = (0.3 - 0.1 * (t - 100) / 350) * t * 10

STEP 7

DESIGN OF BASE

Thickness of base =150mm

Minimum reinforcement required=(0.3/100)*150*1000mm2

Reinforcement in top ring beam =As_topringbeam hoop tension / Ts

CHAPTER 7

[GCEK] Page 54

Page 55: Project Report

Design of Elevated Service Reservoir 2011

MANUAL DESIGN CALCULATIONS

Problem Statement:

A circular shape water container of 72mᵌ capacity is supported on RC staging

of 5 columns with horizontal bracings of 250 x 400 mm at three levels. Staging

confirms to ductile detailing as per IS 13920. Grade of concrete & steel are

M20 & Fe415 respectively. Tank is located on hard soil in seismic zone IV.

Density of concrete of 25kN/mᵌ.

Solution:

Tank will be analysed for tank full and empty conditions.

CHAPTER 8[GCEK] Page 55

Page 56: Project Report

Design of Elevated Service Reservoir 2011

STAAD.pro DESIGN

[GCEK] Page 56

Page 57: Project Report

Design of Elevated Service Reservoir 2011

INPUT FILE: 110K_Model2_FinalEQ_050511.STD

1. STAAD SPACE

2. START JOB INFORMATION

3. JOB NAME ESR 110000 LIT

4. JOB CLIENT CHAREGAON

5. ENGINEER NAME PKD

6. CHECKER NAME PBM

7. APPROVED NAME ASP

8. ENGINEER DATE 21-APR-11

9. END JOB INFORMATION

10. INPUT WIDTH 79

11. UNIT METER KN

12. JOINT COORDINATES

13. 1 2 0 5; 2 9 0 5; 3 5.5 0 5; 4 5.5 0 8.5; 5 5.5 0 1.5; 6 2 2 5; 7 9 2 5

14. 8 5.5 2 5; 9 5.5 2 8.5; 10 5.5 2 1.5; 11 2 5 5; 12 9 5 5; 13 5.5 5 5

15. 14 5.5 5 8.5; 15 5.5 5 1.5; 16 2 8 5; 17 9 8 5; 18 5.5 8 5; 19 5.5 8 8.5

16. 20 5.5 8 1.5; 21 2 11 5; 22 9 11 5; 23 5.5 11 5; 24 5.5 11 8.5; 25 5.5 11 1.5

17. 26 2.05317 11 5.60777; 27 2.21108 11 6.19707; 28 2.46891 11 6.75

18. 29 2.81884 11 7.24976; 30 3.25024 11 7.68116; 31 3.75 11 8.03109

19. 32 4.30293 11 8.28892; 33 4.89223 11 8.44683; 34 2.05317 11 4.39223

20. 35 2.21108 11 3.80293; 36 2.46891 11 3.25; 37 2.81884 11 2.75024

[GCEK] Page 57

Page 58: Project Report

Design of Elevated Service Reservoir 2011

21. 38 3.25024 11 2.31884; 39 3.75 11 1.96891; 40 4.30293 11 1.71108

22. 41 4.89223 11 1.55317; 42 8.94683 11 4.39223; 43 8.78892 11 3.80293

23. 44 8.53109 11 3.25; 45 8.18116 11 2.75024; 46 7.74976 11 2.31884

24. 47 7.25 11 1.96891; 48 6.69707 11 1.71108; 49 6.10777 11 1.55317

25. 50 8.94683 11 5.60777; 51 8.78892 11 6.19707; 52 8.53109 11 6.75

26. 53 8.18116 11 7.24976; 54 7.74976 11 7.68116; 55 7.25 11 8.03109

27. 56 6.69707 11 8.28892; 57 6.10777 11 8.44683; 58 2 11.5 5; 59 9 11.5 5

28. 60 5.5 11.5 8.5; 61 5.5 11.5 1.5; 62 2.05317 11.5 5.60777

29. 63 2.21108 11.5 6.19707; 64 2.46891 11.5 6.75; 65 2.81884 11.5 7.24976

30. 66 3.25024 11.5 7.68116; 67 3.75 11.5 8.03109; 68 4.30293 11.5 8.28892

31. 69 4.89223 11.5 8.44683; 70 2.05317 11.5 4.39223; 71 2.21108 11.5 3.80293

32. 72 2.46891 11.5 3.25; 73 2.81884 11.5 2.75024; 74 3.25024 11.5 2.31884

33. 75 3.75 11.5 1.96891; 76 4.30293 11.5 1.71108; 77 4.89223 11.5 1.55317

34. 78 8.94683 11.5 4.39223; 79 8.78892 11.5 3.80293; 80 8.53109 11.5 3.25

35. 81 8.18116 11.5 2.75024; 82 7.74976 11.5 2.31884; 83 7.25 11.5 1.96891

36. 84 6.69707 11.5 1.71108; 85 6.10777 11.5 1.55317; 86 8.94683 11.5 5.60777

37. 87 8.78892 11.5 6.19707; 88 8.53109 11.5 6.75; 89 8.18116 11.5 7.24976

38. 90 7.74976 11.5 7.68116; 91 7.25 11.5 8.03109; 92 6.69707 11.5 8.28892

39. 93 6.10777 11.5 8.44683; 94 2 12 5; 95 9 12 5; 96 5.5 12 8.5; 97 5.5 12 1.5

[GCEK] Page 58

Page 59: Project Report

Design of Elevated Service Reservoir 2011

40. 98 2.05317 12 5.60777; 99 2.21108 12 6.19707; 100 2.46891 12 6.75

[GCEK] Page 59

Page 60: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 2

41. 101 2.81884 12 7.24976; 102 3.25024 12 7.68116; 103 3.75 12 8.03109

42. 104 4.30293 12 8.28892; 105 4.89223 12 8.44683; 106 2.05317 12 4.39223

43. 107 2.21108 12 3.80293; 108 2.46891 12 3.25; 109 2.81884 12 2.75024

44. 110 3.25024 12 2.31884; 111 3.75 12 1.96891; 112 4.30293 12 1.71108

45. 113 4.89223 12 1.55317; 114 8.94683 12 4.39223; 115 8.78892 12 3.80293

46. 116 8.53109 12 3.25; 117 8.18116 12 2.75024; 118 7.74976 12 2.31884

47. 119 7.25 12 1.96891; 120 6.69707 12 1.71108; 121 6.10777 12 1.55317

48. 122 8.94683 12 5.60777; 123 8.78892 12 6.19707; 124 8.53109 12 6.75

49. 125 8.18116 12 7.24976; 126 7.74976 12 7.68116; 127 7.25 12 8.03109

50. 128 6.69707 12 8.28892; 129 6.10777 12 8.44683; 130 2 12.5 5; 131 9 12.5 5

51. 132 5.5 12.5 8.5; 133 5.5 12.5 1.5; 134 2.05317 12.5 5.60777

52. 135 2.21108 12.5 6.19707; 136 2.46891 12.5 6.75; 137 2.81884 12.5 7.24976

53. 138 3.25024 12.5 7.68116; 139 3.75 12.5 8.03109; 140 4.30293 12.5 8.28892

54. 141 4.89223 12.5 8.44683; 142 2.05317 12.5 4.39223; 143 2.21108 12.5 3.80293

55. 144 2.46891 12.5 3.25; 145 2.81884 12.5 2.75024; 146 3.25024 12.5 2.31884

[GCEK] Page 60

Page 61: Project Report

Design of Elevated Service Reservoir 2011

56. 147 3.75 12.5 1.96891; 148 4.30293 12.5 1.71108; 149 4.89223 12.5 1.55317

57. 150 8.94683 12.5 4.39223; 151 8.78892 12.5 3.80293; 152 8.53109 12.5 3.25

58. 153 8.18116 12.5 2.75024; 154 7.74976 12.5 2.31884; 155 7.25 12.5 1.96891

59. 156 6.69707 12.5 1.71108; 157 6.10777 12.5 1.55317; 158 8.94683 12.5 5.60777

60. 159 8.78892 12.5 6.19707; 160 8.53109 12.5 6.75; 161 8.18116 12.5 7.24976

61. 162 7.74976 12.5 7.68116; 163 7.25 12.5 8.03109; 164 6.69707 12.5 8.28892

62. 165 6.10777 12.5 8.44683; 166 2 13 5; 167 9 13 5; 168 5.5 13 8.5

63. 169 5.5 13 1.5; 170 2.05317 13 5.60777; 171 2.21108 13 6.19707

64. 172 2.46891 13 6.75; 173 2.81884 13 7.24976; 174 3.25024 13 7.68116

65. 175 3.75 13 8.03109; 176 4.30293 13 8.28892; 177 4.89223 13 8.44683

66. 178 2.05317 13 4.39223; 179 2.21108 13 3.80293; 180 2.46891 13 3.25

67. 181 2.81884 13 2.75024; 182 3.25024 13 2.31884; 183 3.75 13 1.96891

68. 184 4.30293 13 1.71108; 185 4.89223 13 1.55317; 186 8.94683 13 4.39223

69. 187 8.78892 13 3.80293; 188 8.53109 13 3.25; 189 8.18116 13 2.75024

70. 190 7.74976 13 2.31884; 191 7.25 13 1.96891; 192 6.69707 13 1.71108

71. 193 6.10777 13 1.55317; 194 8.94683 13 5.60777; 195 8.78892 13 6.19707

[GCEK] Page 61

Page 62: Project Report

Design of Elevated Service Reservoir 2011

72. 196 8.53109 13 6.75; 197 8.18116 13 7.24976; 198 7.74976 13 7.68116

73. 199 7.25 13 8.03109; 200 6.69707 13 8.28892; 201 6.10777 13 8.44683

74. 202 2 13.5 5; 203 9 13.5 5; 204 5.5 13.5 8.5; 205 5.5 13.5 1.5

75. 206 2.05317 13.5 5.60777; 207 2.21108 13.5 6.19707; 208 2.46891 13.5 6.75

76. 209 2.81884 13.5 7.24976; 210 3.25024 13.5 7.68116; 211 3.75 13.5 8.03109

77. 212 4.30293 13.5 8.28892; 213 4.89223 13.5 8.44683; 214 2.05317 13.5 4.39223

78. 215 2.21108 13.5 3.80293; 216 2.46891 13.5 3.25; 217 2.81884 13.5 2.75024

79. 218 3.25024 13.5 2.31884; 219 3.75 13.5 1.96891; 220 4.30293 13.5 1.71108

80. 221 4.89223 13.5 1.55317; 222 8.94683 13.5 4.39223; 223 8.78892 13.5 3.80293

81. 224 8.53109 13.5 3.25; 225 8.18116 13.5 2.75024; 226 7.74976 13.5 2.31884

82. 227 7.25 13.5 1.96891; 228 6.69707 13.5 1.71108; 229 6.10777 13.5 1.55317

83. 230 8.94683 13.5 5.60777; 231 8.78892 13.5 6.19707; 232 8.53109 13.5 6.75

84. 233 8.18116 13.5 7.24976; 234 7.74976 13.5 7.68116; 235 7.25 13.5 8.03109

85. 236 6.69707 13.5 8.28892; 237 6.10777 13.5 8.44683; 238 2 14 5; 239 9 14 5

[GCEK] Page 62

Page 63: Project Report

Design of Elevated Service Reservoir 2011

86. 240 5.5 14 8.5; 241 5.5 14 1.5; 242 2.05317 14 5.60777; 243 2.21108 14 6.19707

87. 244 2.46891 14 6.75; 245 2.81884 14 7.24976; 246 3.25024 14 7.68116

88. 247 3.75 14 8.03109; 248 4.30293 14 8.28892; 249 4.89223 14 8.44683

89. 250 2.05317 14 4.39223; 251 2.21108 14 3.80293; 252 2.46891 14 3.25

90. 253 2.81884 14 2.75024; 254 3.25024 14 2.31884; 255 3.75 14 1.96891

91. 256 4.30293 14 1.71108; 257 4.89223 14 1.55317; 258 8.94683 14 4.39223

92. 259 8.78892 14 3.80293; 260 8.53109 14 3.25; 261 8.18116 14 2.75024

93. 262 7.74976 14 2.31884; 263 7.25 14 1.96891; 264 6.69707 14 1.71108

94. 265 6.10777 14 1.55317; 266 8.94683 14 5.60777; 267 8.78892 14 6.19707

95. 268 8.53109 14 6.75; 269 8.18116 14 7.24976; 270 7.74976 14 7.68116

96. 271 7.25 14 8.03109; 272 6.69707 14 8.28892; 273 6.10777 14 8.44683

[GCEK] Page 63

Page 64: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 3

97. 274 2 14.5 5; 275 9 14.5 5; 276 5.5 14.5 8.5; 277 5.5 14.5 1.5

98. 278 2.05317 14.5 5.60777; 279 2.21108 14.5 6.19707; 280 2.46891 14.5 6.75

99. 281 2.81884 14.5 7.24976; 282 3.25024 14.5 7.68116; 283 3.75 14.5 8.03109

100. 284 4.30293 14.5 8.28892; 285 4.89223 14.5 8.44683; 286 2.05317 14.5 4.39223

101. 287 2.21108 14.5 3.80293; 288 2.46891 14.5 3.25; 289 2.81884 14.5 2.75024

102. 290 3.25024 14.5 2.31884; 291 3.75 14.5 1.96891; 292 4.30293 14.5 1.71108

103. 293 4.89223 14.5 1.55317; 294 8.94683 14.5 4.39223; 295 8.78892 14.5 3.80293

104. 296 8.53109 14.5 3.25; 297 8.18116 14.5 2.75024; 298 7.74976 14.5 2.31884

105. 299 7.25 14.5 1.96891; 300 6.69707 14.5 1.71108; 301 6.10777 14.5 1.55317

106. 302 8.94683 14.5 5.60777; 303 8.78892 14.5 6.19707; 304 8.53109 14.5 6.75

107. 305 8.18116 14.5 7.24976; 306 7.74976 14.5 7.68116; 307 7.25 14.5 8.03109

108. 308 6.69707 14.5 8.28892; 309 6.10777 14.5 8.44683; 310 5.5 14.5 5

[GCEK] Page 64

Page 65: Project Report

Design of Elevated Service Reservoir 2011

109. 311 5.13857 14.5 1.86802; 312 5.02347 14.5 2.16202; 313 4.6682 14.5 2.17607

110. 314 4.45477 14.5 4.12021; 315 4.34986 14.5 4.58197; 316 3.79306 14.5 4.23928

111. 317 5.11455 14.5 3.48363; 318 5.5 14.5 3.83333; 319 5.10992 14.5 3.93756

112. 320 5.27264 14.5 4.36773; 321 4.88376 14.5 4.75661; 322 4.81794 14.5 4.26995

113. 323 4.72222 14.5 5; 324 4.69175 14.5 3.53139; 325 3.82091 14.5 3.42757

114. 326 4.23157 14.5 3.58774; 327 3.81418 14.5 3.7721; 328 2.3734 14.5 4.63319

115. 329 2.38889 14.5 5; 330 5.5 14.5 4.61111; 331 5.11111 14.5 5

116. 332 4.23063 14.5 3.02131; 333 4.67817 14.5 2.65514; 334 4.79627 14.5 3.06389

117. 335 3.75916 14.5 2.3902; 336 3.78211 14.5 2.8211; 337 3.45734 14.5 2.72004

118. 338 5.13289 14.5 2.73733; 339 5.5 14.5 2.27778; 340 3.34804 14.5 3.02369

119. 341 3.06284 14.5 3.13119; 342 3.41787 14.5 3.48937; 343 3.4349 14.5 4.3598

120. 344 3.76437 14.5 4.74639; 345 3.30847 14.5 4.71003; 346 2.7129 14.5 3.61697

121. 347 3.02999 14.5 3.62316; 348 2.63973 14.5 3.97781; 349 3.32067 14.5 4.00748

[GCEK] Page 65

Page 66: Project Report

Design of Elevated Service Reservoir 2011

122. 350 3.06324 14.5 4.44919; 351 3.16667 14.5 5; 352 2.77778 14.5 5

123. 353 2.67805 14.5 4.50744; 354 2.45701 14.5 4.29246; 355 4.34709 14.5 2.12294

124. 356 4.07011 14.5 2.4817; 357 5.5 14.5 4.22222; 358 4.33333 14.5 5

125. 359 3.94444 14.5 5; 360 5.5 14.5 3.05556; 361 3.55556 14.5 5

126. 362 5.5 14.5 1.88889; 363 5.5 14.5 2.66667; 364 5.5 14.5 3.44444

127. 365 6.13219 14.5 4.77263; 366 5.88889 14.5 5; 367 5.74331 14.5 4.38375

128. 368 6.14006 14.5 2.93489; 369 5.75352 14.5 3.26436; 370 5.78989 14.5 2.80846

129. 371 6.52207 14.5 2.13972; 372 6.87673 14.5 2.52998; 373 6.48974 14.5 2.83022

130. 374 5.86067 14.5 3.84615; 375 7.01624 14.5 4.61454; 376 6.66667 14.5 5

131. 377 6.51428 14.5 4.58849; 378 6.8829 14.5 2.21289; 379 6.72776 14.5 3.31416

132. 380 6.26062 14.5 3.29305; 381 6.05068 14.5 2.56322; 382 5.86673 14.5 1.87339

133. 383 5.99248 14.5 2.17804; 384 7.07225 14.5 3.32088; 385 6.91221 14.5 3.73157

134. 386 8.6319 14.5 4.63856; 387 8.22222 14.5 5; 388 8.3379 14.5 4.52346

135. 389 8.32382 14.5 4.16818; 390 6.22997 14.5 4.31793; 391 7.36868 14.5 2.56282

136. 392 7.4856 14.5 2.82984; 393 7.01054 14.5 2.91785; 394 6.96846 14.5 4.19173

[GCEK] Page 66

Page 67: Project Report

Design of Elevated Service Reservoir 2011

137. 395 8.10966 14.5 3.25915; 396 7.67879 14.5 3.28209; 397 7.77983 14.5 2.95733

138. 398 7.81346 14.5 4.66344; 399 7.84478 14.5 4.17816; 400 7.47856 14.5 3.73061

139. 401 7.43418 14.5 4.32208; 402 6.37965 14.5 3.95476; 403 6.20742 14.5 1.957

140. 404 8.37693 14.5 3.84707; 405 8.01818 14.5 3.57009; 406 6.27778 14.5 5

141. 407 7.44444 14.5 5; 408 8.61111 14.5 5; 409 7.83333 14.5 5; 410 7.05555 14.5 5

142. 411 5.75356 14.5 6.7356; 412 5.5 14.5 6.55556; 413 5.89708 14.5 6.15151

143. 414 6.13223 14.5 5.22733; 415 6.56238 14.5 5.39004; 416 8.32387 14.5 5.83177

144. 417 7.84482 14.5 5.8218; 418 8.33794 14.5 5.4765; 419 6.37971 14.5 6.04518

145. 420 6.72782 14.5 6.68577; 421 6.26067 14.5 6.70691; 422 6.96853 14.5 5.80821

146. 423 5.5 14.5 5.38889; 424 8.37699 14.5 6.15287; 425 7.07233 14.5 6.67904

147. 426 7.47862 14.5 6.26933; 427 7.67884 14.5 6.71785; 428 7.77518 14.5 5.36379

148. 429 7.0163 14.5 5.38541; 430 8.63194 14.5 5.3614; 431 6.23001 14.5 5.68204

149. 432 5.74334 14.5 5.61621; 433 6.87678 14.5 7.46997; 434 6.49033 14.5 7.17184

[GCEK] Page 67

Page 68: Project Report

Design of Elevated Service Reservoir 2011

150. 435 7.01058 14.5 7.0821; 436 6.88296 14.5 7.78705; 437 7.36874 14.5 7.43711

151. 438 5.86677 14.5 8.12657; 439 5.5 14.5 7.72222; 440 5.99252 14.5 7.82192

152. 441 6.52212 14.5 7.86023; 442 6.14013 14.5 7.06505; 443 5.78993 14.5 7.1915

[GCEK] Page 68

Page 69: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 4

153. 444 7.43649 14.5 5.70741; 445 6.05074 14.5 7.43672; 446 5.5 14.5 7.33333

154. 447 7.48092 14.5 7.16107; 448 8.10972 14.5 6.74079; 449 7.77989 14.5 7.04261

155. 450 8.01823 14.5 6.42986; 451 5.5 14.5 6.16667; 452 5.5 14.5 5.77778

156. 453 5.5 14.5 8.11111; 454 6.20747 14.5 8.04295; 455 5.5 14.5 6.94444

157. 456 6.91223 14.5 6.26841; 457 3.7644 14.5 5.25356; 458 4.34849 14.5 5.39708

158. 459 5.27267 14.5 5.63223; 460 5.10996 14.5 6.06238; 461 4.66823 14.5 7.82387

159. 462 4.6782 14.5 7.34482; 463 5.0235 14.5 7.83794; 464 4.45482 14.5 5.87971

160. 465 3.81423 14.5 6.22782; 466 3.79309 14.5 5.76067; 467 3.06328 14.5 5.55074

161. 468 3.30849 14.5 5.28993; 469 4.34713 14.5 7.87699; 470 3.82096 14.5 6.57233

162. 471 4.23067 14.5 6.97862; 472 3.78215 14.5 7.17884; 473 5.13621 14.5 7.27518

163. 474 5.11459 14.5 6.5163; 475 5.1386 14.5 8.13194; 476 4.88379 14.5 5.24334

164. 477 3.03003 14.5 6.37678; 478 3.32816 14.5 5.99033; 479 3.4179 14.5 6.51058

[GCEK] Page 69

Page 70: Project Report

Design of Elevated Service Reservoir 2011

165. 480 2.37343 14.5 5.36677; 481 2.67808 14.5 5.49252; 482 3.43495 14.5 5.64013

166. 483 4.79259 14.5 6.93649; 484 2.63977 14.5 6.02212; 485 2.71295 14.5 6.38296

167. 486 3.06289 14.5 6.86874; 487 4.69179 14.5 6.46853; 488 4.81796 14.5 5.73001

168. 489 3.33893 14.5 6.98092; 490 3.75921 14.5 7.60972; 491 3.45739 14.5 7.27989

169. 492 4.07014 14.5 7.51823; 493 2.45705 14.5 5.70747; 494 4.23159 14.5 6.41223

170. 495 5.13857 11 1.86802; 496 5.02347 11 2.16202; 497 4.6682 11 2.17607

171. 498 4.45477 11 4.12021; 499 4.34986 11 4.58197; 500 3.79306 11 4.23928

172. 501 5.11455 11 3.48363; 502 5.5 11 3.83333; 503 5.10992 11 3.93756

173. 504 5.27264 11 4.36773; 505 4.88376 11 4.75661; 506 4.81794 11 4.26995

174. 507 4.72222 11 5; 508 4.69175 11 3.53139; 509 3.82091 11 3.42757

175. 510 4.23157 11 3.58774; 511 3.81418 11 3.7721; 512 2.3734 11 4.63319

176. 513 2.38889 11 5; 514 5.5 11 4.61111; 515 5.11111 11 5; 516 4.23063 11 3.02131

177. 517 4.67817 11 2.65514; 518 4.79627 11 3.06389; 519 3.75916 11 2.3902

178. 520 3.78211 11 2.8211; 521 3.45734 11 2.72004; 522 5.13289 11 2.73733

[GCEK] Page 70

Page 71: Project Report

Design of Elevated Service Reservoir 2011

179. 523 5.5 11 2.27778; 524 3.34804 11 3.02369; 525 3.06284 11 3.13119

180. 526 3.41787 11 3.48937; 527 3.4349 11 4.3598; 528 3.76437 11 4.74639

181. 529 3.30847 11 4.71003; 530 2.7129 11 3.61697; 531 3.02999 11 3.62316

182. 532 2.63973 11 3.97781; 533 3.32067 11 4.00748; 534 3.06324 11 4.44919

183. 535 3.16667 11 5; 536 2.77778 11 5; 537 2.67805 11 4.50744

184. 538 2.45701 11 4.29246; 539 4.34709 11 2.12294; 540 4.07011 11 2.4817

185. 541 5.5 11 4.22222; 542 4.33333 11 5; 543 3.94444 11 5; 544 5.5 11 3.05556

186. 545 3.55556 11 5; 546 5.5 11 1.88889; 547 5.5 11 2.66667; 548 5.5 11 3.44444

187. 549 6.13219 11 4.77263; 550 5.88889 11 5; 551 5.74331 11 4.38375

188. 552 6.14006 11 2.93489; 553 5.75352 11 3.26436; 554 5.78989 11 2.80846

189. 555 6.52207 11 2.13972; 556 6.87673 11 2.52998; 557 6.48974 11 2.83022

190. 558 5.86067 11 3.84615; 559 7.01624 11 4.61454; 560 6.66667 11 5

191. 561 6.51428 11 4.58849; 562 6.8829 11 2.21289; 563 6.72776 11 3.31416

192. 564 6.26062 11 3.29305; 565 6.05068 11 2.56322; 566 5.86673 11 1.87339

193. 567 5.99248 11 2.17804; 568 7.07225 11 3.32088; 569 6.91221 11 3.73157

[GCEK] Page 71

Page 72: Project Report

Design of Elevated Service Reservoir 2011

194. 570 8.6319 11 4.63856; 571 8.22222 11 5; 572 8.3379 11 4.52346

195. 573 8.32382 11 4.16818; 574 6.22997 11 4.31793; 575 7.36868 11 2.56282

196. 576 7.4856 11 2.82984; 577 7.01054 11 2.91785; 578 6.96846 11 4.19173

197. 579 8.10966 11 3.25915; 580 7.67879 11 3.28209; 581 7.77983 11 2.95733

198. 582 7.81346 11 4.66344; 583 7.84478 11 4.17816; 584 7.47856 11 3.73061

199. 585 7.43418 11 4.32208; 586 6.37965 11 3.95476; 587 6.20742 11 1.957

200. 588 8.37693 11 3.84707; 589 8.01818 11 3.57009; 590 6.27778 11 5

201. 591 7.44444 11 5; 592 8.61111 11 5; 593 7.83333 11 5; 594 7.05555 11 5

202. 595 5.75356 11 6.7356; 596 5.5 11 6.55556; 597 5.89708 11 6.15151

203. 598 6.13223 11 5.22733; 599 6.56238 11 5.39004; 600 8.32387 11 5.83177

204. 601 7.84482 11 5.8218; 602 8.33794 11 5.4765; 603 6.37971 11 6.04518

205. 604 6.72782 11 6.68577; 605 6.26067 11 6.70691; 606 6.96853 11 5.80821

206. 607 5.5 11 5.38889; 608 8.37699 11 6.15287; 609 7.07233 11 6.67904

207. 610 7.47862 11 6.26933; 611 7.67884 11 6.71785; 612 7.77518 11 5.36379

208. 613 7.0163 11 5.38541; 614 8.63194 11 5.3614; 615 6.23001 11 5.68204

[GCEK] Page 72

Page 73: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 5

209. 616 5.74334 11 5.61621; 617 6.87678 11 7.46997; 618 6.49033 11 7.17184

210. 619 7.01058 11 7.0821; 620 6.88296 11 7.78705; 621 7.36874 11 7.43711

211. 622 5.86677 11 8.12657; 623 5.5 11 7.72222; 624 5.99252 11 7.82192

212. 625 6.52212 11 7.86023; 626 6.14013 11 7.06505; 627 5.78993 11 7.1915

213. 628 7.43649 11 5.70741; 629 6.05074 11 7.43672; 630 5.5 11 7.33333

214. 631 7.48092 11 7.16107; 632 8.10972 11 6.74079; 633 7.77989 11 7.04261

215. 634 8.01823 11 6.42986; 635 5.5 11 6.16667; 636 5.5 11 5.77778

216. 637 5.5 11 8.11111; 638 6.20747 11 8.04295; 639 5.5 11 6.94444

217. 640 6.91223 11 6.26841; 641 3.7644 11 5.25356; 642 4.34849 11 5.39708

218. 643 5.27267 11 5.63223; 644 5.10996 11 6.06238; 645 4.66823 11 7.82387

219. 646 4.6782 11 7.34482; 647 5.0235 11 7.83794; 648 4.45482 11 5.87971

220. 649 3.81423 11 6.22782; 650 3.79309 11 5.76067; 651 3.06328 11 5.55074

221. 652 3.30849 11 5.28993; 653 4.34713 11 7.87699; 654 3.82096 11 6.57233

222. 655 4.23067 11 6.97862; 656 3.78215 11 7.17884; 657 5.13621 11 7.27518[GCEK] Page 73

Page 74: Project Report

Design of Elevated Service Reservoir 2011

223. 658 5.11459 11 6.5163; 659 5.1386 11 8.13194; 660 4.88379 11 5.24334

224. 661 3.03003 11 6.37678; 662 3.32816 11 5.99033; 663 3.4179 11 6.51058

225. 664 2.37343 11 5.36677; 665 2.67808 11 5.49252; 666 3.43495 11 5.64013

226. 667 4.79259 11 6.93649; 668 2.63977 11 6.02212; 669 2.71295 11 6.38296

227. 670 3.06289 11 6.86874; 671 4.69179 11 6.46853; 672 4.81796 11 5.73001

228. 673 3.33893 11 6.98092; 674 3.75921 11 7.60972; 675 3.45739 11 7.27989

229. 676 4.07014 11 7.51823; 677 2.45705 11 5.70747; 678 4.23159 11 6.41223

230. MEMBER INCIDENCES

231. 1 1 6; 2 2 7; 3 3 8; 4 4 9; 5 5 10; 6 6 8; 7 8 7; 8 9 8; 9 10 8; 10 6 10

232. 11 10 7; 12 7 9; 13 9 6; 14 6 11; 15 7 12; 16 8 13; 17 9 14; 18 10 15

233. 19 11 13; 20 13 12; 21 14 13; 22 15 13; 23 11 15; 24 15 12; 25 12 14; 26 14 11

234. 27 11 16; 28 12 17; 29 13 18; 30 14 19; 31 15 20; 32 16 18; 33 18 17; 34 19 18

235. 35 20 18; 36 16 20; 37 20 17; 38 17 19; 39 19 16; 40 16 21; 41 17 22; 42 18 23

236. 43 19 24; 44 20 25; 45 21 513; 46 23 550; 47 24 637; 48 25 546; 49 21 26

237. 50 26 27; 51 27 28; 52 28 29; 53 29 30; 54 30 31; 55 31 32; 56 32 33; 57 33 24

[GCEK] Page 74

Page 75: Project Report

Design of Elevated Service Reservoir 2011

238. 58 21 34; 59 34 35; 60 35 36; 61 36 37; 62 37 38; 63 38 39; 64 39 40; 65 40 41

239. 66 41 25; 67 22 42; 68 42 43; 69 43 44; 70 44 45; 71 45 46; 72 46 47; 73 47 48

240. 74 48 49; 75 49 25; 76 22 50; 77 50 51; 78 51 52; 79 52 53; 80 53 54; 81 54 55

241. 82 55 56; 83 56 57; 84 57 24; 85 274 329; 86 310 366; 87 276 453; 88 277 362

242. 89 310 23; 90 318 357; 91 323 331; 92 329 352; 93 330 310; 94 331 310

243. 95 339 363; 96 351 361; 97 352 351; 98 357 330; 99 358 323; 100 359 358

244. 101 360 364; 102 361 359; 103 362 339; 104 363 360; 105 364 318; 106 366 406

245. 107 376 410; 108 387 408; 109 406 376; 110 407 409; 111 408 275; 112 409 387

246. 113 410 407; 114 412 451; 115 423 310; 116 439 446; 117 446 455; 118 451 452

247. 119 452 423; 120 453 439; 121 455 412; 122 502 541; 123 507 515; 124 513 536

248. 125 514 23; 126 515 23; 127 523 547; 128 535 545; 129 536 535; 130 541 514

249. 131 542 507; 132 543 542; 133 544 548; 134 545 543; 135 546 523; 136 547 544

250. 137 548 502; 138 550 590; 139 560 594; 140 571 592; 141 590 560; 142 591 593

[GCEK] Page 75

Page 76: Project Report

Design of Elevated Service Reservoir 2011

251. 143 592 22; 144 593 571; 145 594 591; 146 596 635; 147 607 23; 148 623 630

252. 149 630 639; 150 635 636; 151 636 607; 152 637 623; 153 639 596

253. ELEMENT INCIDENCES SHELL

254. 154 66 67 31 30; 155 67 68 32 31; 156 68 69 33 32; 157 69 60 24 33

255. 158 60 93 57 24; 159 93 92 56 57; 160 92 91 55 56; 161 91 90 54 55

256. 162 90 89 53 54; 163 89 88 52 53; 164 88 87 51 52; 165 87 86 50 51

257. 166 86 59 22 50; 167 59 78 42 22; 168 78 79 43 42; 169 79 80 44 43

258. 170 80 81 45 44; 171 81 82 46 45; 172 82 83 47 46; 173 83 84 48 47

259. 174 84 85 49 48; 175 85 61 25 49; 176 61 77 41 25; 177 77 76 40 41

260. 178 76 75 39 40; 179 75 74 38 39; 180 74 73 37 38; 181 73 72 36 37

261. 182 72 71 35 36; 183 71 70 34 35; 184 70 58 21 34; 185 58 62 26 21

262. 186 62 63 27 26; 187 63 64 28 27; 188 64 65 29 28; 189 65 66 30 29

263. 190 102 103 67 66; 191 103 104 68 67; 192 104 105 69 68; 193 105 96 60 69

264. 194 96 129 93 60; 195 129 128 92 93; 196 128 127 91 92; 197 127 126 90 91

[GCEK] Page 76

Page 77: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 6

265. 198 126 125 89 90; 199 125 124 88 89; 200 124 123 87 88; 201 123 122 86 87

266. 202 122 95 59 86; 203 95 114 78 59; 204 114 115 79 78; 205 115 116 80 79

267. 206 116 117 81 80; 207 117 118 82 81; 208 118 119 83 82; 209 119 120 84 83

268. 210 120 121 85 84; 211 121 97 61 85; 212 97 113 77 61; 213 113 112 76 77

269. 214 112 111 75 76; 215 111 110 74 75; 216 110 109 73 74; 217 109 108 72 73

270. 218 108 107 71 72; 219 107 106 70 71; 220 106 94 58 70; 221 94 98 62 58

271. 222 98 99 63 62; 223 99 100 64 63; 224 100 101 65 64; 225 101 102 66 65

272. 226 138 139 103 102; 227 139 140 104 103; 228 140 141 105 104

273. 229 141 132 96 105; 230 132 165 129 96; 231 165 164 128 129

274. 232 164 163 127 128; 233 163 162 126 127; 234 162 161 125 126

275. 235 161 160 124 125; 236 160 159 123 124; 237 159 158 122 123

276. 238 158 131 95 122; 239 131 150 114 95; 240 150 151 115 114

277. 241 151 152 116 115; 242 152 153 117 116; 243 153 154 118 117

278. 244 154 155 119 118; 245 155 156 120 119; 246 156 157 121 120

279. 247 157 133 97 121; 248 133 149 113 97; 249 149 148 112 113

[GCEK] Page 77

Page 78: Project Report

Design of Elevated Service Reservoir 2011

280. 250 148 147 111 112; 251 147 146 110 111; 252 146 145 109 110

281. 253 145 144 108 109; 254 144 143 107 108; 255 143 142 106 107

282. 256 142 130 94 106; 257 130 134 98 94; 258 134 135 99 98; 259 135 136 100 99

283. 260 136 137 101 100; 261 137 138 102 101; 262 174 175 139 138

284. 263 175 176 140 139; 264 176 177 141 140; 265 177 168 132 141

285. 266 168 201 165 132; 267 201 200 164 165; 268 200 199 163 164

286. 269 199 198 162 163; 270 198 197 161 162; 271 197 196 160 161

287. 272 196 195 159 160; 273 195 194 158 159; 274 194 167 131 158

288. 275 167 186 150 131; 276 186 187 151 150; 277 187 188 152 151

289. 278 188 189 153 152; 279 189 190 154 153; 280 190 191 155 154

290. 281 191 192 156 155; 282 192 193 157 156; 283 193 169 133 157

291. 284 169 185 149 133; 285 185 184 148 149; 286 184 183 147 148

292. 287 183 182 146 147; 288 182 181 145 146; 289 181 180 144 145

293. 290 180 179 143 144; 291 179 178 142 143; 292 178 166 130 142

294. 293 166 170 134 130; 294 170 171 135 134; 295 171 172 136 135

295. 296 172 173 137 136; 297 173 174 138 137; 298 210 211 175 174

296. 299 211 212 176 175; 300 212 213 177 176; 301 213 204 168 177

297. 302 204 237 201 168; 303 237 236 200 201; 304 236 235 199 200

298. 305 235 234 198 199; 306 234 233 197 198; 307 233 232 196 197

299. 308 232 231 195 196; 309 231 230 194 195; 310 230 203 167 194

300. 311 203 222 186 167; 312 222 223 187 186; 313 223 224 188 187

[GCEK] Page 78

Page 79: Project Report

Design of Elevated Service Reservoir 2011

301. 314 224 225 189 188; 315 225 226 190 189; 316 226 227 191 190

302. 317 227 228 192 191; 318 228 229 193 192; 319 229 205 169 193

303. 320 205 221 185 169; 321 221 220 184 185; 322 220 219 183 184

304. 323 219 218 182 183; 324 218 217 181 182; 325 217 216 180 181

305. 326 216 215 179 180; 327 215 214 178 179; 328 214 202 166 178

306. 329 202 206 170 166; 330 206 207 171 170; 331 207 208 172 171

307. 332 208 209 173 172; 333 209 210 174 173; 334 246 247 211 210

308. 335 247 248 212 211; 336 248 249 213 212; 337 249 240 204 213

309. 338 240 273 237 204; 339 273 272 236 237; 340 272 271 235 236

310. 341 271 270 234 235; 342 270 269 233 234; 343 269 268 232 233

311. 344 268 267 231 232; 345 267 266 230 231; 346 266 239 203 230

312. 347 239 258 222 203; 348 258 259 223 222; 349 259 260 224 223

313. 350 260 261 225 224; 351 261 262 226 225; 352 262 263 227 226

314. 353 263 264 228 227; 354 264 265 229 228; 355 265 241 205 229

315. 356 241 257 221 205; 357 257 256 220 221; 358 256 255 219 220

316. 359 255 254 218 219; 360 254 253 217 218; 361 253 252 216 217

317. 362 252 251 215 216; 363 251 250 214 215; 364 250 238 202 214

318. 365 238 242 206 202; 366 242 243 207 206; 367 243 244 208 207

319. 368 244 245 209 208; 369 245 246 210 209; 370 282 283 247 246

320. 371 283 284 248 247; 372 284 285 249 248; 373 285 276 240 249

[GCEK] Page 79

Page 80: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 7

321. 374 276 309 273 240; 375 309 308 272 273; 376 308 307 271 272

322. 377 307 306 270 271; 378 306 305 269 270; 379 305 304 268 269

323. 380 304 303 267 268; 381 303 302 266 267; 382 302 275 239 266

324. 383 275 294 258 239; 384 294 295 259 258; 385 295 296 260 259

325. 386 296 297 261 260; 387 297 298 262 261; 388 298 299 263 262

326. 389 299 300 264 263; 390 300 301 265 264; 391 301 277 241 265

327. 392 277 293 257 241; 393 293 292 256 257; 394 292 291 255 256

328. 395 291 290 254 255; 396 290 289 253 254; 397 289 288 252 253

329. 398 288 287 251 252; 399 287 286 250 251; 400 286 274 238 250

330. 401 274 278 242 238; 402 278 279 243 242; 403 279 280 244 243

331. 404 280 281 245 244; 405 281 282 246 245; 406 311 312 313; 407 314 315 316

332. 408 317 318 319; 409 320 321 322; 410 321 323 315; 411 317 319 324

333. 412 325 326 327; 413 328 329 274; 414 320 330 321; 415 330 310 331

334. 416 332 333 334; 417 335 336 337; 418 338 333 312; 419 338 334 333

335. 420 311 339 312; 421 337 336 340; 422 311 293 277; 423 341 340 342

336. 424 343 344 345; 425 346 347 348; 426 343 316 344; 427 327 316 349

337. 428 350 351 352; 429 348 347 349; 430 328 353 352; 431 344 316 315

338. 432 317 334 338; 433 354 287 348; 434 343 345 350; 435 338 312 339

339. 436 355 356 291; 437 325 340 336; 438 341 342 347; 439 332 336 356

[GCEK] Page 80

Page 81: Project Report

Design of Elevated Service Reservoir 2011

340. 440 337 340 289; 441 321 315 322; 442 319 318 357; 443 315 358 359

341. 444 314 316 327; 445 324 319 314; 446 317 338 360; 447 354 353 328

342. 448 350 345 351; 449 345 361 351; 450 344 361 345; 451 311 362 339

343. 452 313 292 293; 453 338 363 360; 454 338 339 363; 455 355 313 333

344. 456 335 337 290; 457 315 323 358; 458 314 322 315; 459 324 326 332

345. 460 332 356 333; 461 344 359 361; 462 344 315 359; 463 320 322 319

346. 464 317 364 318; 465 321 331 323; 466 321 330 331; 467 346 288 341

347. 468 325 342 340; 469 346 348 287; 470 347 342 349; 471 354 286 287

348. 472 350 353 348; 473 320 357 330; 474 320 319 357; 475 325 332 326

349. 476 327 349 342; 477 355 292 313; 478 313 312 333; 479 314 319 322

350. 480 314 327 326; 481 325 336 332; 482 325 327 342; 483 324 332 334

351. 484 324 314 326; 485 341 289 340; 486 341 288 289; 487 355 291 292

352. 488 355 333 356; 489 346 341 347; 490 346 287 288; 491 350 348 349

353. 492 350 352 353; 493 328 274 286; 494 328 352 329; 495 317 360 364

354. 496 317 324 334; 497 343 349 316; 498 343 350 349; 499 335 356 336

355. 500 337 289 290; 501 335 291 356; 502 335 290 291; 503 354 328 286

356. 504 354 348 353; 505 311 277 362; 506 311 313 293; 507 365 366 367

357. 508 368 369 370; 509 371 372 373; 510 367 357 374; 511 375 376 377

358. 512 366 310 330; 513 378 372 371; 514 379 380 373; 515 381 363 339

359. 516 368 380 369; 517 382 383 339; 518 382 362 277; 519 384 385 379

360. 520 386 387 388; 521 386 388 389; 522 365 367 390; 523 391 392 393

[GCEK] Page 81

Page 82: Project Report

Design of Elevated Service Reservoir 2011

361. 524 375 377 394; 525 386 294 275; 526 395 396 397; 527 398 399 388

362. 528 400 399 401; 529 402 374 380; 530 375 401 398; 531 398 401 399

363. 532 397 396 392; 533 369 380 374; 534 403 300 371; 535 368 370 381

364. 536 398 388 387; 537 404 405 296; 538 384 392 396; 539 391 393 372

365. 540 400 396 405; 541 397 392 298; 542 367 374 390; 543 377 376 406

366. 544 374 318 364; 545 402 380 379; 546 394 377 402; 547 375 398 407

367. 548 403 383 382; 549 381 370 363; 550 370 360 363; 551 369 360 370

368. 552 386 408 387; 553 389 295 294; 554 398 409 407; 555 398 387 409

369. 556 404 389 399; 557 395 397 297; 558 374 357 318; 559 402 390 374

370. 560 394 385 400; 561 400 405 399; 562 369 364 360; 563 369 374 364

371. 564 365 390 377; 565 375 410 376; 566 367 330 357; 567 367 366 330

372. 568 378 299 391; 569 384 393 392; 570 378 371 300; 571 372 393 373

373. 572 403 301 300; 573 381 383 371; 574 365 406 366; 575 365 377 406

374. 576 384 400 385; 577 379 373 393; 578 404 295 389; 579 389 388 399

375. 580 402 377 390; 581 402 379 385; 582 384 396 400; 583 384 379 393

376. 584 394 400 401; 585 394 402 385; 586 391 298 392; 587 391 299 298

[GCEK] Page 82

Page 83: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 8

377. 588 404 296 295; 589 404 399 405; 590 378 391 372; 591 378 300 299

378. 592 381 371 373; 593 381 339 383; 594 382 277 301; 595 382 339 362

379. 596 375 407 410; 597 375 394 401; 598 368 373 380; 599 368 381 373

380. 600 395 405 396; 601 397 298 297; 602 395 296 405; 603 395 297 296

381. 604 403 382 301; 605 403 371 383; 606 386 275 408; 607 386 389 294

382. 608 411 412 413; 609 414 406 415; 610 416 417 418; 611 419 420 421

383. 612 422 419 415; 613 423 310 366; 614 424 417 416; 615 425 426 427

384. 616 428 387 418; 617 429 410 407; 618 430 418 387; 619 430 408 275

385. 620 414 431 432; 621 433 434 435; 622 436 433 437; 623 438 439 440

386. 624 441 434 433; 625 442 443 411; 626 428 417 444; 627 438 309 276

387. 628 445 446 443; 629 420 435 434; 630 432 423 366; 631 442 445 443

388. 632 425 427 447; 633 448 449 427; 634 429 422 415; 635 445 440 439

389. 636 436 308 441; 637 430 302 416; 638 428 418 417; 639 449 306 447

390. 640 420 434 421; 641 448 305 449; 642 426 450 427; 643 414 415 431

391. 644 413 451 452; 645 419 421 413; 646 411 413 421; 647 429 415 376

392. 648 422 444 426; 649 438 453 439; 650 454 441 308; 651 443 446 455

393. 652 445 439 446; 653 430 416 418; 654 428 409 387; 655 428 407 409

394. 656 429 407 428; 657 424 303 304; 658 426 417 450; 659 432 431 413

395. 660 413 412 451; 661 426 444 417; 662 425 420 456; 663 411 455 412

396. 664 411 443 455; 665 415 406 376; 666 419 431 415; 667 432 452 423[GCEK] Page 83

Page 84: Project Report

Design of Elevated Service Reservoir 2011

397. 668 432 413 452; 669 437 433 435; 670 449 305 306; 671 445 434 441

398. 672 437 306 307; 673 454 440 441; 674 436 307 308; 675 414 366 406

399. 676 414 432 366; 677 425 435 420; 678 419 456 420; 679 424 450 417

400. 680 416 302 303; 681 422 456 419; 682 419 413 431; 683 425 447 435

401. 684 425 456 426; 685 422 426 456; 686 429 444 422; 687 437 447 306

402. 688 437 435 447; 689 424 304 450; 690 424 416 303; 691 436 437 307

403. 692 436 441 433; 693 445 441 440; 694 442 434 445; 695 438 276 453

404. 696 454 309 438; 697 429 428 444; 698 429 376 410; 699 442 421 434

405. 700 442 411 421; 701 448 304 305; 702 449 447 427; 703 448 450 304

406. 704 448 427 450; 705 454 438 440; 706 454 308 309; 707 430 275 302

407. 708 430 387 408; 709 457 359 458; 710 459 452 460; 711 461 462 463

408. 712 464 465 466; 713 467 351 468; 714 331 310 423; 715 469 462 461

409. 716 470 471 472; 717 473 439 463; 718 474 412 455; 719 475 463 439

410. 720 475 453 276; 721 476 331 423; 722 477 478 479; 723 480 352 481

411. 724 482 468 457; 725 473 462 483; 726 480 278 274; 727 484 478 477

412. 728 485 477 486; 729 465 479 478; 730 487 464 460; 731 459 488 476

413. 732 482 467 468; 733 470 472 489; 734 490 491 472; 735 474 487 460

414. 736 467 481 352; 737 485 279 484; 738 475 285 461; 739 473 463 462

415. 740 491 281 489; 741 465 478 466; 742 490 282 491; 743 471 492 472

416. 744 459 460 488; 745 458 358 323; 746 464 466 458; 747 457 458 466

417. 748 474 460 451; 749 487 483 471; 750 480 329 352; 751 493 484 279

[GCEK] Page 84

Page 85: Project Report

Design of Elevated Service Reservoir 2011

418. 752 468 351 361; 753 467 352 351; 754 475 461 463; 755 473 446 439

419. 756 473 455 446; 757 474 455 473; 758 469 284 283; 759 471 462 492

420. 760 476 488 458; 761 458 359 358; 762 471 483 462; 763 470 465 494

421. 764 457 361 359; 765 457 468 361; 766 460 452 451; 767 464 488 460

422. 768 476 323 331; 769 476 458 323; 770 486 477 479; 771 491 282 281

423. 772 467 478 484; 773 486 281 280; 774 493 481 484; 775 485 280 279

424. 776 459 423 452; 777 459 476 423; 778 470 479 465; 779 464 494 465

425. 780 469 492 462; 781 461 285 284; 782 487 494 464; 783 464 458 488

426. 784 470 489 479; 785 470 494 471; 786 487 471 494; 787 474 483 487

427. 788 486 489 281; 789 486 479 489; 790 469 283 492; 791 469 461 284

428. 792 485 486 280; 793 485 484 477; 794 467 484 481; 795 482 478 467

429. 796 480 274 329; 797 493 278 480; 798 474 473 483; 799 474 451 412

430. 800 482 466 478; 801 482 457 466; 802 490 283 282; 803 491 489 472

431. 804 490 492 283; 805 490 472 492; 806 493 480 481; 807 493 279 278

432. 808 475 276 285; 809 475 439 453; 810 495 496 497; 811 498 499 500

[GCEK] Page 85

Page 86: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 9

433. 812 501 502 503; 813 504 505 506; 814 505 507 499; 815 501 503 508

434. 816 509 510 511; 817 512 513 21; 818 504 514 505; 819 514 23 515

435. 820 516 517 518; 821 519 520 521; 822 522 517 496; 823 522 518 517

436. 824 495 523 496; 825 521 520 524; 826 495 41 25; 827 525 524 526

437. 828 527 528 529; 829 530 531 532; 830 527 500 528; 831 511 500 533

438. 832 534 535 536; 833 532 531 533; 834 512 537 536; 835 528 500 499

439. 836 501 518 522; 837 538 35 532; 838 527 529 534; 839 522 496 523

440. 840 539 540 39; 841 509 524 520; 842 525 526 531; 843 516 520 540

441. 844 521 524 37; 845 505 499 506; 846 503 502 541; 847 499 542 543

442. 848 498 500 511; 849 508 503 498; 850 501 522 544; 851 538 537 512

443. 852 534 529 535; 853 529 545 535; 854 528 545 529; 855 495 546 523

444. 856 497 40 41; 857 522 547 544; 858 522 523 547; 859 539 497 517

445. 860 519 521 38; 861 499 507 542; 862 498 506 499; 863 508 510 516

446. 864 516 540 517; 865 528 543 545; 866 528 499 543; 867 504 506 503

447. 868 501 548 502; 869 505 515 507; 870 505 514 515; 871 530 36 525

448. 872 509 526 524; 873 530 532 35; 874 531 526 533; 875 538 34 35

449. 876 534 537 532; 877 504 541 514; 878 504 503 541; 879 509 516 510

450. 880 511 533 526; 881 539 40 497; 882 497 496 517; 883 498 503 506

451. 884 498 511 510; 885 509 520 516; 886 509 511 526; 887 508 516 518

[GCEK] Page 86

Page 87: Project Report

Design of Elevated Service Reservoir 2011

452. 888 508 498 510; 889 525 37 524; 890 525 36 37; 891 539 39 40; 892 539 517 540

453. 893 530 525 531; 894 530 35 36; 895 534 532 533; 896 534 536 537

454. 897 512 21 34; 898 512 536 513; 899 501 544 548; 900 501 508 518

455. 901 527 533 500; 902 527 534 533; 903 519 540 520; 904 521 37 38

456. 905 519 39 540; 906 519 38 39; 907 538 512 34; 908 538 532 537; 909 495 25 546

457. 910 495 497 41; 911 549 550 551; 912 552 553 554; 913 555 556 557

458. 914 551 541 558; 915 559 560 561; 916 550 23 514; 917 562 556 555

459. 918 563 564 557; 919 565 547 523; 920 552 564 553; 921 566 567 523

460. 922 566 546 25; 923 568 569 563; 924 570 571 572; 925 570 572 573

461. 926 549 551 574; 927 575 576 577; 928 559 561 578; 929 570 42 22

462. 930 579 580 581; 931 582 583 572; 932 584 583 585; 933 586 558 564

463. 934 559 585 582; 935 582 585 583; 936 581 580 576; 937 553 564 558

464. 938 587 48 555; 939 552 554 565; 940 582 572 571; 941 588 589 44

465. 942 568 576 580; 943 575 577 556; 944 584 580 589; 945 581 576 46

466. 946 551 558 574; 947 561 560 590; 948 558 502 548; 949 586 564 563

467. 950 578 561 586; 951 559 582 591; 952 587 567 566; 953 565 554 547

468. 954 554 544 547; 955 553 544 554; 956 570 592 571; 957 573 43 42

469. 958 582 593 591; 959 582 571 593; 960 588 573 583; 961 579 581 45

470. 962 558 541 502; 963 586 574 558; 964 578 569 584; 965 584 589 583

471. 966 553 548 544; 967 553 558 548; 968 549 574 561; 969 559 594 560

[GCEK] Page 87

Page 88: Project Report

Design of Elevated Service Reservoir 2011

472. 970 551 514 541; 971 551 550 514; 972 562 47 575; 973 568 577 576

473. 974 562 555 48; 975 556 577 557; 976 587 49 48; 977 565 567 555

474. 978 549 590 550; 979 549 561 590; 980 568 584 569; 981 563 557 577

475. 982 588 43 573; 983 573 572 583; 984 586 561 574; 985 586 563 569

476. 986 568 580 584; 987 568 563 577; 988 578 584 585; 989 578 586 569

477. 990 575 46 576; 991 575 47 46; 992 588 44 43; 993 588 583 589; 994 562 575 556

478. 995 562 48 47; 996 565 555 557; 997 565 523 567; 998 566 25 49

479. 999 566 523 546; 1000 559 591 594; 1001 559 578 585; 1002 552 557 564

480. 1003 552 565 557; 1004 579 589 580; 1005 581 46 45; 1006 579 44 589

481. 1007 579 45 44; 1008 587 566 49; 1009 587 555 567; 1010 570 22 592

482. 1011 570 573 42; 1012 595 596 597; 1013 598 590 599; 1014 600 601 602

483. 1015 603 604 605; 1016 606 603 599; 1017 607 23 550; 1018 608 601 600

484. 1019 609 610 611; 1020 612 571 602; 1021 613 594 591; 1022 614 602 571

485. 1023 614 592 22; 1024 598 615 616; 1025 617 618 619; 1026 620 617 621

486. 1027 622 623 624; 1028 625 618 617; 1029 626 627 595; 1030 612 601 628

487. 1031 622 57 24; 1032 629 630 627; 1033 604 619 618; 1034 616 607 550

[GCEK] Page 88

Page 89: Project Report

Design of Elevated Service Reservoir 2011

488. 1035 626 629 627; 1036 609 611 631; 1037 632 633 611; 1038 613 606 599

[GCEK] Page 89

Page 90: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 10

489. 1039 629 624 623; 1040 620 56 625; 1041 614 50 600; 1042 612 602 601

490. 1043 633 54 631; 1044 604 618 605; 1045 632 53 633; 1046 610 634 611

491. 1047 598 599 615; 1048 597 635 636; 1049 603 605 597; 1050 595 597 605

492. 1051 613 599 560; 1052 606 628 610; 1053 622 637 623; 1054 638 625 56

493. 1055 627 630 639; 1056 629 623 630; 1057 614 600 602; 1058 612 593 571

494. 1059 612 591 593; 1060 613 591 612; 1061 608 51 52; 1062 610 601 634

495. 1063 616 615 597; 1064 597 596 635; 1065 610 628 601; 1066 609 604 640

496. 1067 595 639 596; 1068 595 627 639; 1069 599 590 560; 1070 603 615 599

497. 1071 616 636 607; 1072 616 597 636; 1073 621 617 619; 1074 633 53 54

498. 1075 629 618 625; 1076 621 54 55; 1077 638 624 625; 1078 620 55 56

499. 1079 598 550 590; 1080 598 616 550; 1081 609 619 604; 1082 603 640 604

500. 1083 608 634 601; 1084 600 50 51; 1085 606 640 603; 1086 603 597 615

501. 1087 609 631 619; 1088 609 640 610; 1089 606 610 640; 1090 613 628 606

502. 1091 621 631 54; 1092 621 619 631; 1093 608 52 634; 1094 608 600 51

[GCEK] Page 90

Page 91: Project Report

Design of Elevated Service Reservoir 2011

503. 1095 620 621 55; 1096 620 625 617; 1097 629 625 624; 1098 626 618 629

504. 1099 622 24 637; 1100 638 57 622; 1101 613 612 628; 1102 613 560 594

505. 1103 626 605 618; 1104 626 595 605; 1105 632 52 53; 1106 633 631 611

506. 1107 632 634 52; 1108 632 611 634; 1109 638 622 624; 1110 638 56 57

507. 1111 614 22 50; 1112 614 571 592; 1113 641 543 642; 1114 643 636 644

508. 1115 645 646 647; 1116 648 649 650; 1117 651 535 652; 1118 515 23 607

509. 1119 653 646 645; 1120 654 655 656; 1121 657 623 647; 1122 658 596 639

510. 1123 659 647 623; 1124 659 637 24; 1125 660 515 607; 1126 661 662 663

511. 1127 664 536 665; 1128 666 652 641; 1129 657 646 667; 1130 664 26 21

512. 1131 668 662 661; 1132 669 661 670; 1133 649 663 662; 1134 671 648 644

513. 1135 643 672 660; 1136 666 651 652; 1137 654 656 673; 1138 674 675 656

514. 1139 658 671 644; 1140 651 665 536; 1141 669 27 668; 1142 659 33 645

515. 1143 657 647 646; 1144 675 29 673; 1145 649 662 650; 1146 674 30 675

516. 1147 655 676 656; 1148 643 644 672; 1149 642 542 507; 1150 648 650 642

517. 1151 641 642 650; 1152 658 644 635; 1153 671 667 655; 1154 664 513 536

[GCEK] Page 91

Page 92: Project Report

Design of Elevated Service Reservoir 2011

518. 1155 677 668 27; 1156 652 535 545; 1157 651 536 535; 1158 659 645 647

519. 1159 657 630 623; 1160 657 639 630; 1161 658 639 657; 1162 653 32 31

520. 1163 655 646 676; 1164 660 672 642; 1165 642 543 542; 1166 655 667 646

521. 1167 654 649 678; 1168 641 545 543; 1169 641 652 545; 1170 644 636 635

522. 1171 648 672 644; 1172 660 507 515; 1173 660 642 507; 1174 670 661 663

523. 1175 675 30 29; 1176 651 662 668; 1177 670 29 28; 1178 677 665 668

524. 1179 669 28 27; 1180 643 607 636; 1181 643 660 607; 1182 654 663 649

525. 1183 648 678 649; 1184 653 676 646; 1185 645 33 32; 1186 671 678 648

526. 1187 648 642 672; 1188 654 673 663; 1189 654 678 655; 1190 671 655 678

527. 1191 658 667 671; 1192 670 673 29; 1193 670 663 673; 1194 653 31 676

528. 1195 653 645 32; 1196 669 670 28; 1197 669 668 661; 1198 651 668 665

529. 1199 666 662 651; 1200 664 21 513; 1201 677 26 664; 1202 658 657 667

530. 1203 658 635 596; 1204 666 650 662; 1205 666 641 650; 1206 674 31 30

531. 1207 675 673 656; 1208 674 676 31; 1209 674 656 676; 1210 677 664 665

532. 1211 677 27 26; 1212 659 24 33; 1213 659 623 637

533. ELEMENT PROPERTY

534. 406 TO 809 THICKNESS 0.15

[GCEK] Page 92

Page 93: Project Report

Design of Elevated Service Reservoir 2011

535. 810 TO 1213 THICKNESS 0.225

536. 154 TO 405 THICKNESS 0.2

537. DEFINE MATERIAL START

538. ISOTROPIC CONCRETE

539. E 2.17185E+007

540. POISSON 0.17

541. DENSITY 23.5616

542. ALPHA 1E-005

543. DAMP 0.05

544. END DEFINE MATERIAL

[GCEK] Page 93

Page 94: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 11

545. CONSTANTS

546. MATERIAL CONCRETE MEMB 1 TO 1213

547. MEMBER PROPERTY INDIAN

548. 1 TO 5 14 TO 18 27 TO 31 40 TO 44 PRIS YD 0.45

549. 89 PRIS YD 0.23 ZD 0.23

550. 6 TO 13 19 TO 26 32 TO 39 PRIS YD 0.35 ZD 0.23

551. 85 TO 88 90 TO 121 PRIS YD 0.375 ZD 0.23

552. 45 TO 84 122 TO 153 PRIS YD 0.45 ZD 0.3

553. SUPPORTS

554. *6 TO 25 310 PINNED

555. 1 TO 5 FIXED

556. DEFINE 1893 LOAD

557. ZONE 0.24 RF 5 I 1 SS 1 ST 1 DM 0.05

558. JOINT WEIGHT

559. 1 WEIGHT 3.747

560. 2 WEIGHT 3.747

561. 3 WEIGHT 3.747

562. 4 WEIGHT 3.747

563. 5 WEIGHT 3.747

564. 6 WEIGHT 21.723[GCEK] Page 94

Page 95: Project Report

Design of Elevated Service Reservoir 2011

565. 7 WEIGHT 21.722

566. 8 WEIGHT 24.058

567. 9 WEIGHT 21.722

568. 10 WEIGHT 21.722

569. 11 WEIGHT 23.549

570. 12 WEIGHT 23.55

571. 13 WEIGHT 26.119

572. 14 WEIGHT 23.549

573. 15 WEIGHT 23.549

574. 16 WEIGHT 24.047

575. 17 WEIGHT 24.044

576. 18 WEIGHT 24.135

577. 19 WEIGHT 24.046

578. 20 WEIGHT 24.045

579. 21 WEIGHT 451.568

580. 22 WEIGHT 451.525

581. 23 WEIGHT 510.695

582. 24 WEIGHT 451.547

583. 25 WEIGHT 451.543

584. 310 WEIGHT 78.969

585. *1 TO 5 FIXED

[GCEK] Page 95

Page 96: Project Report

Design of Elevated Service Reservoir 2011

586. LOAD 1 EQX

587. 1893 LOAD X 1

588. LOAD 2 EQZ

589. 1893 LOAD Z 1

590. LOAD 3 DL

591. SELFWEIGHT Y -1

592. MEMBER LOAD

593. 49 TO 84 UNI GY -3.75

594. FLOOR LOAD

[GCEK] Page 96

Page 97: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 12

595. *YRANGE 10.9 11.1 FLOAD -36.5

596. YRANGE 10.9 11.1 FLOAD -1.5

597. ELEMENT LOAD

598. 406 TO 809 PR GY -1.

599. LOAD 4 LL

600. ELEMENT LOAD

601. 406 TO 809 PR GY -1.5

602. MEMBER LOAD

603. 49 TO 84 UNI GY -1.5

604. LOAD 5 WLX+

605. ELEMENT LOAD

606. 154 TO 157 176 TO 193 212 TO 229 248 TO 265 284 TO 301 320 TO 337 356 TO 373 -

607. 392 TO 405 PR GX 1.2

608. LOAD 6 WLZ+

609. ELEMENT LOAD

610. 167 TO 184 203 TO 220 239 TO 256 275 TO 292 311 TO 328 347 TO 364 383 TO 399 -

611. 400 PR GZ 1.2

612. LOAD 7 WLX-

[GCEK] Page 97

Page 98: Project Report

Design of Elevated Service Reservoir 2011

613. ELEMENT LOAD

614. 158 TO 175 194 TO 211 230 TO 247 266 TO 283 302 TO 319 338 TO 355 374 TO 390 -

615. 391 PR GX -1.2

616. LOAD 8 WLZ-

617. ELEMENT LOAD

618. 154 TO 166 185 TO 202 221 TO 238 257 TO 274 293 TO 310 329 TO 346 365 TO 382 -

619. 401 TO 405 PR GZ -1.2

620. LOAD 9 WATERLOAD

621. FLOOR LOAD

622. YRANGE 10.9 11.1 FLOAD -35

623. ELEMENT LOAD

624. 370 TO 405 PR -5

625. 334 TO 369 PR -10

626. 298 TO 333 PR -15

627. 262 TO 297 PR -20

628. 226 TO 261 PR -25

629. 190 TO 225 PR -30

630. 154 TO 189 PR -35

631. *LOAD COMBINATIONS

632. LOAD COMB 17 1.5(DL+LL+WATER LOAD)

[GCEK] Page 98

Page 99: Project Report

Design of Elevated Service Reservoir 2011

633. 3 1.5 4 1.5 9 1.5

634. LOAD COMB 18 1.2(DL+LL+WATER LOAD+EQX+)

635. 1 1.2 3 1.2 4 1.2 9 1.2

636. LOAD COMB 19 1.2(DL+LL+WATER LOAD+EQX-)

637. 1 -1.2 3 1.2 4 1.2 9 1.2

638. LOAD COMB 20 1.2(DL+LL+WATER LOAD+EQZ+)

639. 2 1.2 3 1.2 4 1.2 9 1.2

640. LOAD COMB 21 1.2(DL+LL+WATER LOAD+EQZ-)

641. 2 -1.2 3 1.2 4 1.2 9 1.2

642. LOAD COMB 22 1.5(DL+WATER LOAD+EQX+)

643. 1 1.5 3 1.5 9 1.5

644. LOAD COMB 23 1.5(DL+WATER LOAD+EQX-)

[GCEK] Page 99

Page 100: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 13

645. 1 -1.5 3 1.5 9 1.5

646. LOAD COMB 24 1.5(DL+WATER LOAD+EQZ+)

647. 2 1.5 3 1.5 9 1.5

648. LOAD COMB 25 1.5(DL+WATER LOAD+EQZ-)

649. 2 -1.5 3 1.5 9 1.5

650. LOAD COMB 26 1.2(DL+LL+WLX+)

651. 3 1.2 4 1.2 5 1.2

652. LOAD COMB 27 1.2(DL+LL+WLX-)

653. 3 1.2 4 1.2 6 1.2

654. LOAD COMB 28 1.2(DL+LL+WLZ+)

655. 3 1.2 4 1.2 7 1.2

656. LOAD COMB 29 1.2(DL+LL+WLZ-)

657. 3 1.2 4 1.2 8 1.2

658. LOAD COMB 30 1.5(DL+WLX+)

659. 3 1.5 5 1.5

660. LOAD COMB 31 1.5(DL+WLX-)

661. 3 1.5 6 1.5

662. LOAD COMB 32 1.5(DL+WLZ+)

663. 3 1.5 7 1.5

664. LOAD COMB 33 1.5(DL+WLZ-)[GCEK] Page 100

Page 101: Project Report

Design of Elevated Service Reservoir 2011

665. 3 1.5 8 1.5

666. LOAD COMB 34 0.9(DL+WATER LOAD) + 1.5EQX+

667. 3 0.9 9 0.9 1 1.5

668. LOAD COMB 35 0.9(DL+WATER LOAD) + 1.5EQX-

669. 3 0.9 9 0.9 1 -1.5

670. LOAD COMB 36 0.9(DL+WATER LOAD) + 1.5EQZ+

671. 3 0.9 9 0.9 2 1.5

672. LOAD COMB 37 0.9(DL+WATER LOAD) + 1.5EQZ-

673. 3 0.9 9 0.9 2 -1.5

674. LOAD COMB 38 0.9DL+ 1.5WLX+

675. 3 0.9 5 1.5

676. LOAD COMB 39 0.9DL+ 1.5WLX-

677. 3 0.9 6 1.5

678. LOAD COMB 40 0.9DL+ 1.5WLZ+

679. 3 0.9 7 1.5

680. LOAD COMB 41 0.9DL+ 1.5WLZ-

681. 3 0.9 8 1.5

682. LOAD COMB 100 SEISMIC MASS

683. 3 1.0 9 1.0

684. PERFORM ANALYSIS

[GCEK] Page 101

Page 102: Project Report

Design of Elevated Service Reservoir 2011

P R O B L E M S T A T I S T I C S

-----------------------------------

NUMBER OF JOINTS/MEMBER+ELEMENTS/SUPPORTS = 678/ 1213/ 5

ORIGINAL/FINAL BAND-WIDTH= 651/ 76/ 450 DOF

TOTAL PRIMARY LOAD CASES = 9, TOTAL DEGREES OF FREEDOM = 4038

SIZE OF STIFFNESS MATRIX = 1818 DOUBLE KILO-WORDS

REQRD/AVAIL. DISK SPACE = 37.7/ 50412.3 MB, EXMEM = 2925.6 MB

[GCEK] Page 102

Page 103: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 14

*********************************************************

* *

* TIME PERIOD FOR X 1893 LOADING = 0.55730 SEC *

* SA/G PER 1893= 1.794, LOAD FACTOR= 1.000 *

* FACTOR V PER 1893= 0.0431 X 2766.16 *

* *

*********************************************************

*********************************************************

* *

* TIME PERIOD FOR Z 1893 LOADING = 0.55730 SEC *

* SA/G PER 1893= 1.794, LOAD FACTOR= 1.000 *

* FACTOR V PER 1893= 0.0431 X 2766.16 *

* *

********************************************************

[GCEK] Page 103

Page 104: Project Report

Design of Elevated Service Reservoir 2011

685. *PRINT ANALYSIS RESULTS

686. LOAD LIST 17 TO 41

687. START CONCRETE DESIGN

STAAD SPACE -- PAGE NO. 15

CONCRETE DESIGN

688. CODE INDIAN

689. FC 25000 MEMB 1 TO 153

690. FYMAIN 415000 MEMB 1 TO 1213

691. FYSEC 415000 MEMB 1 TO 153

692. *-----------------------------------------------

693. *DESIGN OF 4 EXTERNAL 1 INTERNAL STAGING COLUMNS

694. DESIGN COLUMN 1 TO 5 14 TO 18 27 TO 31 40 TO 44

[GCEK] Page 104

Page 105: Project Report

Design of Elevated Service Reservoir 2011

STAAD SPACE -- PAGE NO. 16

============================================================================

[GCEK] Page 105

Page 106: Project Report

Design of Elevated Service Reservoir 2011

CHAPTER 9

9. CONCLUSION

Storage of water in the form of tanks for drinking and washing purposes,

swimming pools for exercise and enjoyment and sewage sedimentation

tanks are gaining increasing importance in the present day life. For small

capacities we go for rectangular water tanks while for bigger capacities we

provide circular water tanks.

Design of water tank is a very tedious method. It involves lots of

mathematical formulae and calculation. It is also time consuming. Hence

program gives a solution to the above problems.

This conclusion is drawn from the comparative assessment of provision

of different IS codes. We are dealing with different capacities so as to

compare which capacity can be most optimally economical.

There is a little difference between the design values of program to that

of manual calculation. The program gives the least value for the design.

Hence designer should not provide less than the values we get from the

program. In case of theoretical calculation designer initially add some

extra values to the obtained values to be in safer side.

[GCEK] Page 106

Page 107: Project Report

Design of Elevated Service Reservoir 2011

CHAPTER 10

10. References:

IIT Madras & IIT Kanpur literature

Reinforced Concrete Structures by B. C. Punmia

N. Krishnaraju, Advanced Design of Concrete structures

S.K.Parikh, Automated Optimum Design of RCC skeletons, Tata Mcgraw

– Hill Publishing Company Ltd., India, 1995

V.L. Shah & S.R.Karve, Structures Publication, India, 2003

Jan Bencat, Experimental Analysis of steel water tank tower

[GCEK] Page 107

Page 108: Project Report

Design of Elevated Service Reservoir 2011

APPENDIX

STUDY OF VARIOUS TANKS IN KARAD:-

PHOTO DESCRIPTIONA circular tank without gallery.

[GCEK] Page 108

Page 109: Project Report

Design of Elevated Service Reservoir 2011

A circular tank with

inlet, outlet & overflow

pipes.

Junctions of columns &

braces.

[GCEK] Page 109

Page 110: Project Report

Design of Elevated Service Reservoir 2011

Weak & poor condition

of the braces.

An Intze shaped tank.

[GCEK] Page 110