project!description! the!smart!green!tower! · 1! project!description! the!smart!green!tower!!...

13
www.freyarchitekten.com 1 Project description The Smart Green Tower BuildingIntegrated PV energy supply in the megawattclass with storage technology as the core of "Smart Green District" concepts

Upload: others

Post on 23-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • www.freyarchitekten.com 1

     Project  description  

    The  Smart  Green  Tower    

    Building-‐Integrated  PV  energy  supply  in  the  megawatt-‐class  with  storage  

    technology  as  the  core  of  "Smart  Green  District"  concepts  

       

       

       

  • www.freyarchitekten.com 2

    1.  Short  description    The   so-‐called   "Smart   Green   Tower"   pertains   to   an   approximately   51-‐meter-‐high  residential  and  commercial  tower,  which  on  account  of  its  planned  size,  architecture  and  environmental   equipment,   can   evolve   to   become   a   flagship   project   in   the   area   of  innovative  building-‐integrated  energy  systems.  The  most  outstanding  characteristic  is  a  sophisticated  energy  supply  concept  for  large  objects  with  a  high  solar  fraction,  which  a  consortium  of  experts  from  the  Fraunhofer  Institute  for  Solar  Energy  Systems  (ISE),  the  Siemens  AG,   the  ads-‐tec,  Frey  Architekten  as  well  as   the  FWTM  and  badenova  want  to  realise.   The  energy  concept  is  based  mainly  on  the  following  aspects:    

    - own  energy  generation  based  on  renewable  energy  sources,  in  a  volume  that  temporarily  exceeds  own  consumption  and  can  thus  be  used  by  other  buildings  in  the  neighbourhood  

    - flexible  internal  energy  storage  in  larger  dimension,  with  the  option  to  connect  further  energy  producers  in  the  district  

    - optimised  handling  of  energy  pursuant  to  the  current  offer,  demand  and  from  a  cost  perspective  within  the  building  

    - provision  of  balanced  energy  loads  from  the  building  in  conjunction  with  the  adjoining  district,  to  the  Smart  Grid  over  an  intelligent  connection  

     This   concept   will   be   realized   with   the   latest   technology.   In   particular,   an   intelligent  energy  management  within  and  outside  of  the  building  will  thereby  enable  an  optimised  regulation  of  all  local  energy  flows  (see  below).        2.  With  FWTM,  Freiburg  geared  to  become  a  Smart  Green  City    The  Freiburg  Economy  Tourism  and  Exhibition  Company  (Freiburg  Wirtschaft  Touristik  und   Messe   -‐   FWTM)   is   a   management   and   marketing   corporation.   Next   to   economic  development  and  strategic  management,  the  tasks  of  the  FWTM  also  include  promoting  innovation   and   technology,   cluster   development   on   the   tourism   marketing   and  exhibition,  conference  and  event  management.    The  Green  City  of  Freiburg  is  an  ecological  model  city  and  has  often  been  honoured  with  prestigious  environmental  awards.  This  success  at  the  same  time  constitutes  a  challenge  for   Freiburg   and   the   FWTM,   to   promote   and   implement   further   ecological   flagship  projects.  The  Smart  Green  Tower  Freiburg  is  like  a  new  lighthouse  for  the  Green  City,  a  building  of  high  symbolic  value.      The   Smart   Green   Tower   has   been   co-‐developed   and   advertised   by   FWTM.   Thanks   to  FWTM,   it   is  well-‐known   amongst   local   politics,   administration   and   in   the   public,   thus  supported   the   visibility   and   feasibility   of   this   project.   FWTM  will   proceed   supporting  this  project  by  promoting  the  Smart  Green  Tower  nationally  and  internationally.  

  • www.freyarchitekten.com 3

       The  concept  of  the  Smart  Green  Tower  will  be  designed  so  that  it  can  be  extended.  This  means  that  the  demonstration  building  should  form  a  perspective  standpoint  constitute  the  core,  for  developments  that  extend  beyond  those  of  a  single  building.  The  Tower  will  be  in  conjunction  with  existing  architecture  and  new  objects,  able  to  generate,  store,  use  as  needed  as  well  as  provision  energy  in  an  intelligent  manner.  Thus,  the  energy  concept  of  the  Smart  Green  Tower  is  fundamentally  different  from  projects  in  which  only  single,  self-‐contained  buildings  merely  produce  energy   for  own  consumption  or  else   feed   the  aforementioned  into  the  grid.  It  is  thus  also  consistent  with  the  objectives  of  the  Green  City   and   will   seamlessly   be   incorporated   into   Freiburg’s   new   energy-‐   and   resource-‐optimised  commercial  area  GIP  –  Green  Industry  Park,  to  which  the  northern  industrial  area  planning  to  be  remodelled.    The   vision:   Such   a   network   of   several   intelligent   objects   works   optimally   in   an  intelligent   grid,   and   thus   forms   the   basis   for   innovative   district   concepts,   in   which  various   Smart   Green   Buildings   communicate   in   a   meaningful   way   –   the   Smart   Green  District.  This   idea   leads   to   the  vision  of  a  Smart  Green  City,   in  which   the  Smart  Green  neighbourhoods  coalesce  into  an  urban  network.    This   concept   in   the   Smart   Green   Tower   will   for   the   first   time   be   implemented   in  Freiburg   at   the   freight   yard   area   in   the   north   of   the   city.   On   account   of   the   modern  architecture  that  enables  living  and  working  in  a  building,  the  building  itself  stands  for  the  pioneering   integrative  neighbourhood  concept  of   the  Freiburg   freight  yard  area.   It  can   however   in   principle   be   applied   to   all   urban   structures   –   a   key   objective   of   this  demonstration   project.   Further   Smart   Green   Tower   projects   have   already   been  requested  by  other  cities.      3.  Cooperation  project      A  consortium  of  experts  from  industry  and  academia  has  joined  forces  for  the  purpose  of  the   realisation   of   this   ambitious   project,   which   has   broad   support   within   the   city   of  Freiburg.    

    Partner   Contact   Address   Phone   E-‐Mail  

    Frey  Architekten     W.  Frey  

    Bertha-‐von-‐Suttner-‐Str.  14  79111  Freiburg  

    (+49)  761  /  477415  11  

    info@architekten-‐frey.de  

    FWTM   Dr.  B.  Dallmann  Rathausgasse  33  79098  Freiburg  

    (+49)  761  /    388  111  01  

    [email protected];  franziska.pankow  @fwtm.de  

    Fraunhofer  ISE  

    Dr.  M.  Vetter  

    Heidenhofstr.  2,  79100  Freiburg  

    (+49)  761  /    458  856  00  

    [email protected]  

       

  • www.freyarchitekten.com 4

       

    Siemens  AG   N.  Schmidt    Habsburgerstr.  132  79104  Freiburg  

    (+49)  761  /  271  235  0  

    [email protected]  

    ads-‐tec   T.  Speidel   Heinrich-‐Hertz-‐Str.  1,  72622  Nürtingen  (+49)  7022  /    252  211  01   t.speidel@ads-‐tec.de  

    badenova  AG  &  Co.  KG   P.  Majer  

    Tullastr.  61  79108  Freiburg  

    (+49)  761  /    279  35  40  

    peter.majer  @badenova.de  

       4.  Use  concept  –  time  schedule  –  construction  financing    In   the   case   of   the   planning   of   the   Smart  Green  Tower   the   local   architect’s   office,  Frey  Architekten,   purposely   deviates   from   common   standard   architectural   aesthetics   and  places   its   focus   on   a   building,  whose   outward   appearance   enables   the   overall   energy  concept   to  be  visible.  Not  only  are  photovoltaic  modules   installed  on   the   roof,  but   the  façade   is   also   activated   for   energy   generation   and   provided   with   circumferential   PV  modules  -‐  on  the  one  hand  in  order  to  harvest  energy,  where  it  is  needed  and  the  other  hand  also  to  protect  the  façade  from  overheating.  Thus,  an  –  for  a  residential  building  –  unusually  large  amount  of  electricity  can  be  produced  (for  more  information  see  below).    The  whole  complex  will  be  realised  on  a  5,600  square  metre  plot  and  consists  of  a  main  building   and   two  wings  with   a   total   gross   floor   area   of   approximately   15,000   square  metres  plus  garage.  The  main  building  will  be  realised  as  a  round  48-‐meter-‐high  tower,  which  finds  its  completion  by  a  solar  hut  on  top,  on  account  of  which  the  main  building  will  reach  a  total  height  of  about  51  metres.    On   the   upper   floors   of   a   total   of   16   floors,   approximately   70   one   to   four-‐room  apartments   with   be   realised   with   a   gross   floor   area   of   about   4500   square   metres.  Pursuant  to  the  current  plan  the  apartments  are  intended  to  the  most  part  to  be  rented.  This   is   planned   to   be   effected   pursuant   to   a   rental   model   with   neighbourhood  management   –  which   has   as   usual   been   deployed   by   Frey   Architekten–   that   entails   a  qualified   social   area   model.   Good   experience   has   been   demonstrated   with   the  aforementioned   in  many   other   buildings   that   have   been   realised   by   Frey  Architekten.  Some   of   these   buildings   have   as   a   consequence   evolved   to   become   role   models   of  neighbourhood  living.  A  further  area  of  about  3200  square  metres  is  envisaged  as  office  space   and   as   boarding   accommodation   –   for   instance,   for   the   employees   of   the   local  research  institutions  and  institutes.  A  restaurant  will  also  be  housed  in  the  tower.  The   western   wing   will   consist   of   five   floors   with   a   total   height   of   16   metres.   The  northern  wing  will  be  approximately  22.5  metres  high  and  will  consist  of  seven  stories.  Both  wings   have   been  planned   as   an   office   building.   Furthermore,   the   entire   complex  will  also  be  realised  with  a  garage  with  about  250  parking  spaces.        

  • www.freyarchitekten.com 5

     In   order   to   do   justice   to   the   lighthouse   character   of   this   project,   the   highly   efficient  battery   storage  system  as  well   as   the  overall   energy  management   system  should   later  also   be   set   up   in   a   showroom   and  made   accessible   to   visitor   groups.   Furthermore,   a  seminar   room   is   planned   directly   adjacent   to   the   showroom,   in   order   to   organise  "audience   appeal"   seminars,   workshops,   project   meetings   and   the   like.   The   seminar  room  can  also  be  made  available  to  visitors  of  the  Green  Industry  Park  Freiburg  North  as  well  as  the  Green  City  Freiburg.    The   Smart   Green   Tower   pertains   to   a   private   investment   project.   The   Green   Tower  GmbH   thereby   officially   assumes   the   role   of   the   project   developer.   The   planning  application  maturity  should  be  reached  in  winter  2014/2015.  The  construction  period  is  planned   from  mid-‐2015   to   mid   2017.   Already   in   May   2014,   the   city   of   Freiburg   will  present  the  project  to  the  public  within  the  framework  of  a  press  conference.      5.  Technology    The   following   constitutes   the   basis   for   the   innovative   energy   supply   concept   in   the  Smart  Green  Tower      

    - a  highly  efficient  PV  system  on  the  roof  combined  with  PV  façade  modules  with  a  power  output  of  about  400  kWp  

    - a  highly  efficient  energy  storage  of  about  0.5  MWh  in  the  form  of  a  lithium-‐ion  battery,  perspectively  enhanced  with  additional  battery  systems,  for  example  in  the  form  of  vanadium  redox  flow  batteries  

    - an  advanced  building  management  system  in  the  state  of  the  art  - the  coupling  of  the  building  management  system  with  PV  systems,  batteries  and  

    selected  consumer  groups  over  a  DC-‐intermediate  circuit  - the  integration  of  a  –  currently  in  development  –  energy  management   system  

    for   the  meaningful   use   and   distribution   of   energy  which   extends   beyond   the  building,  in  order  to  also  include  the  district  

       PV-‐system    In  the  case  of  the  Smart  Green  Tower,  PV  modules  will  deployed,  which  consist  of  high-‐performance   cells.   They   produce   a   higher   yield   with   optimal   exposure   and   have   an  excellent   low-‐light  performance.  Special  glass  /  glass  PV  modules,  which  provide   for  a  light   transmittance   in  different  scales,  will  hereby  be  originated.   In  order   to  realise  an  optimal   integration   in   the   façade   design,   an   innovative   interconnection   system   of   the  sockets  will  be  developed  for  this  purpose.      Storage  technology    Advanced   storage   systems   based   on   lithium-‐ion   technology   will   be   deployed   in   the  project,  whereby  their  operation  will  be  controlled  by  the  energy  management  system.      

  • www.freyarchitekten.com 6

     The  highly  flexible  and  dynamic  control  of  the  cells  in  the  field  of  storage  technology  is  unique  and  in  combination  with  fast,  highly  volatile  producers  of  renewable  energy,   in  particular  provides  for  an  ideal  platform  for  the  research  and  development  of  intelligent  building  concepts.  This  applies  to  aspects  of  the  optimisation  of  energy  consumption  in  buildings  as  well  as  to  the  development  of  future,  innovative  management  scenarios.    The  integration  of  a  lithium-‐ion  storage  in  the  building  as  a  link  between  decentralised  renewable  generation  systems  of  photovoltaics  and  the  distribution  grid  also  improves  the   integration  of  renewable  energies   into   the  grid  by  smoothing   their   fluctuations.  At  the  same  time,  an   improved  alignment  of   the  generation  and  consumption  at   the   local  level  is  ensured.  This  contributes  to  the  relief  of  the  grid  and  to  an  improvement  of  the  stability   of   the   grid.   The   direct   arrangement   in   the   building   and   the   proximity   of   the  lithium-‐ion  battery  to  the  decentralised  generation  systems,  as  such  already  allows  for  a  stabilisation  of  the  grid  at  the  feed  point.    Innovative  lithium-‐ion  storage  systems  can  play  an  important  role  in  the  future  overall  energy  consideration  of  complex  building  architectures  with  regard  to  the  avoidance  of  grid   expansion   costs   as  well   as   contribute   to   the   general   stabilisation   of   Smart   Grids,  without  having  to  concomitantly  sacrifice  the  benefits  of  renewable  energy.  Lithium-‐ion  storage  systems,  thus  already  provision  in  this  project,  a  consistent  contribution  to  the  sustainable  continuation  of  the  energy  transition.      Modern  Building  Management    A  comprehensive  building  management  system  is  intended  to  be  realised  in  the  project  Smart   Green   Tower,  which  will   be   provisioned   by   Siemens.   This  will   comprise   of   the  following  functions:    

    - energy  management  of  cold,  heat,  electricity,  - building  automation,  room  automation  and  energy  efficiency,  in  particular  

    energy-‐optimal  operation  without  sacrificing  the  comfort  of  heating,  ventilation,  air  conditioning  and  lighting,  

    - building  security  with  intrusion  detection  and  video  surveillance  as  well  as  access  control,  

    - technical  fire  protection  (fire  alarm  and  extinguisher  system)  and  evacuation.    Such  a  system  renders  it  possible  to  control,  monitor  and  optimise  all  the  disciplines  in  the  Smart  Green  Tower,  and  as  such  to  save  energy  in  a  sustainable  manner  and  reduce  costs  -‐  without  sacrificing  interior  comfort.  This  is  ensured  by  approved  applications  as  well  as  energy  saving  and  monitoring  functions  at  all  system  levels.                

  • www.freyarchitekten.com 7

     Coupling   of   the   building   management   system   with   power   supply   over   a   DC-‐intermediate  circuit    An  innovation  in  the  energy  supply  concept  of  the  Smart  Green  Towers  pertains  to  the  intention,   to   couple   the   building   management   system   with   a   direct   current   (DC)  intermediate   circuit.   Background:   On   the   consumer   side,   the   number   of   DC   loads   is  steadily  increasing.  Nevertheless  the  transmission  and  distribution  of  electrical  energy  –  with  a   few  exceptions  –,   is   still   effected  over  alternating  current   (AC).   In   the  case  of  a  predominant   supply   over   an  AC-‐coupled   photovoltaic   battery   system,   this  means   that  the   generated  direct   current  of   the  PV  generator   is  non-‐rectified,   and   subsequently   in  the  case  of  an   intermediate  storage  rectified  again   in   the  battery,   then   if  necessary  re-‐converted  again  in  alternating  current  and  distributed,  in  order  to  again  be  rectified  in  many  devices  –  with  correspondingly  high  efficiency  losses.    In  contrast  to  this  conventional  power  supply  of  buildings,  the  intention  in  this  project  is  to  couple  the  battery  storage  (see  below)  with  the  PV  system  over  a  DC  link.  In  addition,  the  intention  is  also  to  directly  connect  specific  consumer  groups  to  the  DC  intermediate  circuit,   such   as   heating,   ventilation,   air   conditioning,   elevators   and   lighting.   The   DC  intermediate   circuit   bus   offers   the   advantage   that   various   energy   sources   and   sinks,  with  different  characteristics  can  feed  excess  energy   into  the  grid  over  a  common  grid  inverter  or  else  draw  energy  from  the  latter  for  the  purpose  of  grid  support.      Energy  management    In   the  case  of   future  electricity  grids  with  a  high  share  of   renewable  energy,   it  will  be  important  to  not  only  ensure  that  the  generated  electrical  energy  is  efficiently  utilised,  but   that   is   also   only   then   consumed   when   it   is   plentiful   and   available   at   low   cost.  Conversely,  it  is  intended  in  the  event  of  a  low  supply  of  renewable  energy  to  reduce  the  drawing   of   electricity   by   selectively   switching   off   flexible   consumers   and   possible  drawing  the  residual  demand  from  the  battery  storage.  Load  peaks  of  the  Tower,  such  as  at  noon,   can  be  smoothed  over   the  battery  storage.  The  Tower  as   such  conducts   itself  intelligently   and   "grid-‐friendly",   much   in   the   same   way   as   one   should   in   future   also  expect   from   other   buildings,   which   are   connected   with   a   high   share   of   renewable  energies  to  the  grid.    Siemens  is  currently  developing  an  appropriate  add-‐on  module:  an  energy  management  system   (PowerManager)   that   complements   the   building   management   system.   Other  pilot  projects  by  Siemens  have  already  provided  experiences  and  useful  data  in  this  case.  Depending  on  the  progress  of  development,  it  is  envisaged  that  this  system  will  also  be  deployed  in  the  Smart  Green  Tower  project.  It  will  provide  for  a  targeted  recording  and  control  of  the  electrical  energy  producers,  consumers  and  storage  on  the  basis  of  specific  operator   strategies   such   as   self-‐consumption   optimisation,   peak   load   reduction   (peak  shaving)  or  load  shifting.  The  optimisation  criteria,  depending  on  the  operator's  strategy  thereby  pertain  to  increased  energy  efficiency  and  the  reduction  of  energy  supply  costs  or  the  CO2  emissions.      

  • www.freyarchitekten.com 8

       Some  of  the  novelties  in  the  project  are  the  intelligent  alignment  of  renewable  electricity  supply,  energy  demand  and  operator  strategies   -‐   for  example,   the  optimisation  of  self-‐consumption,  the  optimisation  of  electricity  procured  from  outside  sources  or  peak  load  reduction.      6.  Findings  and  objectives    The  consortium  expects  from  the  demonstration  project  Smart  Green  Tower,  to  among  others  acquire  key  findings  about    

    - the  interaction  of  renewable  energy  generation,  a  building  management  system  with  integrated  power  management  as  well  as  storage  technology  in  large  buildings,  with  the  power  grid  

    - the  connection  of  key  consumer  groups  such  as  heating,  ventilation,  air  conditioning,  lifts  to  a  DC  intermediate  circuit  

    - the  optimisation  of  operator  strategies,  such  as  self-‐consumption,  load  shifting  or  the  optimisation  of  the  supply  of  energy,  particularly  with  the  involvement  of  a  battery  storage  

    - options  for  the  enhancement  of  individual  intelligent  building  with  existing  architecture  and  new  buildings  to  Smart  Green  Districts  

    - recommendations  for  action  with  regard  to  follow-‐up  projects        Specific  findings  from  the  perspective  of  the  energy  supplier    From   the   perspective   of   the   local   grid   operator,   the   Smart   Green   Tower   offers   the  opportunity   to   demonstrate   how   appropriately   equipped   buildings   or   building  ensembles   can   conduct   themselves   system   conform   as   consumers   (who   do   not   care  about  the  grid  loads)  on  account  of  the  intelligent  integration  of  the  energy  production  in  the  building  itself  and  the  regulation  of  the  energy  consumption.  From  the  perspective  of  an  energy  distribution,  the  building  or  else  ensemble  is  regarded  as  a  consumer  and  storage  system  that  can  participate  in  energy  markets  as  a  whole  better  than  its  parts.  Since  the  volume  of  the  energy  that  has  to  be  exchanged  with  the  market  –  bundled  over  the  PowerManager  of  the  Tower  –  is  at  the  grid  connection  point  greater  than  the  energy  volumes  of  many  small  production  plants  with  many  feed  points.  This  raises  issues,  such  as   the   internal   settlement   in   a   local   grid   in   the   case  of   own   consumption,  which  have  hitherto  not  been   in   the   focus  of  a  public  energy  distribution,  but  are   increasing  often  being  posed  and  can  as  such  be  tested  in  the  Tower  and  the  included  buildings.    The   building   is   from   a   technical   perspective   also   interesting,   since   a   new   technology  (DC)   is   intended   to   be   deployed,   which   could   also   be   deployed   in   other   technical  applications,   if   it   were   sufficiently   tested.   Finally,   the   project   supports   the   efforts   of  badenova  in  the  association  KlimaSchutzPartner  Oberrhein  (Climate  protection  partners  of  the  Upper  Rhine),  with  the  realisation  of  a  modern  research  and  testing  infrastructure      

  • www.freyarchitekten.com 9

     around  the  industrial  area  north  of  Freiburg,  which  provides  for  the  deployment  of  new  components  of  the  energy  supply  in  an  urban  area.      7.  Scientific  monitoring    In   order   to   achieve   the   above   objectives   and   to   generate   relevant   findings,   the  consortium  aspires  to  realise  an  accompanying  scientific  research  in  connection  with  the  planned  Smart  Green  Tower  project,  under  the   leading  role  of  the  Fraunhofer  ISE.  The  partners  are  of  the  conviction  that  this  offers  important  insights  for  the  future,  since  one  can   currently   only   draw   on   a   few   experience   values   with   grid-‐connected   PV-‐battery  systems.  Although  the  first  systems  have  been  installed  both  for  the  enhancement  of  the  self-‐consumption   rate   in   single-‐family   houses   and   in   very   isolated   cases   (like  commercial  environments),  significant  results  with  systems  in  the  order  of  the  planned  Smart  Green  Tower   as  well   as   their   performance   and   behaviour   under   real   operating  conditions,  hitherto  hardly  exist.    It  is  therefore  intended  that  the  very  detailed  monitoring  with  comprehensive  scientific  analysis,  which   is  planned  within  the   framework  of   this  project,  should  therefore  shed  light  on  the  behaviour  of  the  deployed  components,  their  interactions  with  each  other  as  well   as   the  behaviour  of   the  overall   system.  On   this  basis,   optimisation  potentials   and  informed  recommendations  for  action  for  subsequent  projects  can  be  derived.    The  initial  aim  is  to  generate  a  sound  simulation-‐based  design  of  the  PV-‐battery  system  for  the  Smart  Green  Tower.  It  is  intended  with  the  help  of  the  models  that  are  available  at  the  Fraunhofer  ISE,  supported  by  data  from  the  laboratory  of  the  Fraunhofer  ISE,  to  set   up   a   system   simulation,   which   makes   it   possible   to   optimise   both   the   system  dimensioning  as  well  as  the  operational  management  strategies.    Through  the  subsequent  detailed  monitoring  during  the  operation,  the  data  will  then  be  determined,  which  can  be  used  to  verify  the  simulation  results  and  based  on  which  the  optimisation   potential   can   be   identified.   The   generated   results   can   then   be   used   for  subsequent  projects.    An  important  aspect  of  this  project   is  characterised  by  the  fact  that  the  planned  Smart  Green  Tower  is  intended  to  serve  as  a  nucleus  for  the  purpose  of  establishing  a  so-‐called  Smart  Green  District.  Therefore,  the  energy  concept  should  be  designed  so  that  it  can  be  easily   extended   to   other   producers   and   storage   capacities.   This   should   be   taken   into  account  in  this  project  at  the  outset,  and  also  in  the  case  of  the  simulation-‐based  system  planning.    The   planned   publications   are   intended   to   provide   for   wide   access   to   the   generated  results   and   should   thereby   ensure   that   the   lessons   learned   from   this   demonstration  project  can  be  profitably  used  in  similar  construction  projects.          

  • www.freyarchitekten.com 10

     Overview  of  the  project  phases  and  work  packages    Planning  AP  1   Concept  for  the  electrical  energy  supply  of  the  building  and  

    simulation-‐based  system  design  AP  2   Selection  of  the  components  of  the  electrical  energy  supply  and  

    requirements  for  the  system  integration  AP  3   Monitoring  concept  Demonstration  operation  AP  4   Installation  and  commissioning  of  the  measuring  equipment  AP  5   Data  acquisition,  analysis  and  evaluation  Optimisation   potentials   and   recommendations   for   action   for   subsequent  projects  AP  6   Determination  of  the  optimisation  potential  at  components  and  

    system  level  AP  7     Options  for  the  enhancement  to  a  Smart  Green  District  

    Integration  of  existing  buildings  with  their  own  generating  capacity  such  as  the  New  trade  fair  with  MW  PV  plant  Integration  of  new  building  with  own  generating  capacity  and  possibly  own  storage  capacities  such  as  the  FWTM  new  building  

         Description  of  the  individual  work  packages  in  detail    AP   1:   Concept   for   the   electrical   energy   supply   of   the   building   and   simulation-‐based  system  design    In  the  case  of  the  building  complex  of  the  Smart  Green  Tower,  a  split  of  the  loads,  which  can   be   supplied   over   the   conventional   AC-‐rail   and   the   loads   that   should   be   directly  connected  to  the  DC  intermediate  circuit  of  the  PV-‐battery  system  will  first  be  effected.  A  specification  will  be  prepared  for  these  DC-‐loads.  In  the  next  step  the  determination  of  the  load  profiles  will  be  based  on  the  available  information.    In   the   case   of   the   PV-‐battery   system   the   operating   scenarios   will   be   tested   and   the  associated   management   strategies   will   be   specified.   This   includes   the   supply   of   the  building  complex  itself  and  the  possible  provision  of  grid  services.    On   the   basis   of   the   determined   load   profiles,   optimised   system   configurations   for   the  individual   operating   scenarios  within   the   framework  of   the   simulation   studies  will   be  determined.   For   this   purpose,   the  models   to   be   deployed   for   the   components  will   be  adapted   and   validated   with   available   measurement   data   and   the   associated  management   strategies   implemented   in   the   simulation   environment.   Based   on   these  results,   a   specification   for   the   system  components  will  be  prepared  on   the  part  of   the  producer  and  on  the  part  of  the  storage.        

  • www.freyarchitekten.com 11

     AP   2:   Selection   of   the   components   of   the   electrical   energy   supply   and  requirements  for  the  system  integration    Based   on   the   results   of   work   package   1,   a   selection   of   market-‐available   system  components   with   which   the   developed   specification   can   possibly   be   optimally  implemented,  will  be  effected.  This  includes  the  selection  of  the  PV  generator  on  the  roof  of  the  Smart  Green  Tower  and  of  the  PV  façade  system,  of  the  lithium-‐ion  battery  storage  and  of  the  power  electronics  that  will  be  deployed.  Envisaged  as  an  energy  management  system  is  the  deployment  of  a  new  prototype  from  Siemens.    In   the   case   of   these   system   components,   the   requirements   for   the   system   integration  will  be  identified  and  the  necessary  adaptation  measures  for  a  safe,  reliable  and  efficient  operation   will   be   defined.   This   includes   the   communication   interfaces   between   the  individual  system  components.      AP  3:  Monitoring  concept    In  the  case  of  the  electric  power  system  of  the  Smart  Green  Tower,  a  detailed  monitoring  concept  will   be  developed   that   includes   the   energy   flows  of   the   generating   capacities,  the  battery  storage,  loads  (on  DC  and  AC  side),  as  well  as  the  energy  flows  into  and  from  the   connected  distribution  grid.  Furthermore,   the   irradiation  at  different  points  of   the  PV   roof   system   and   PV   façade   system   should   be   recorded,   in   order   to   verify   the  functioning  and  yields.    Based   on   the   prepared   concept,   appropriate   counters   will   be   selected,   which   will   be  connected  to  a  locally  installed  computer  (desktop  or  industrial  PC)  that  allows  remote  access  to  the  data.      AP  4:  Installation  and  commissioning  of  the  measuring  equipment    The  measuring  equipment  will  be  procured  and   installed  parallel   to   the   installation  of  the   PV-‐battery   system   and   taken   into   operation,   pursuant   to   the   Monitoring   Plan  developed  in  work  package  3.  Furthermore,  an  automated  data  transfer  from  the  locally  installed  computer  to  the  Fraunhofer  ISE  will  be  established.        AP  5:  Data  acquisition,  analysis  and  evaluation    Over  an  initial  period  of  two  years,  the  recorded  data  of  the  Smart  Green  Tower  will  be  precisely  -‐  processed,  analyzed  and  evaluated  –  on  a  daily  basis  –  in  ¼  hour  intervals  –  by  the  Fraunhofer  ISE.  After  the  end  of  a  calendar  month,  summary  reports  will  in  each  case   be   prepared   that   entail   the   precise   daily   evaluations,   and  made   available   to   the  project  partners.      

  • www.freyarchitekten.com 12

     AP  6:  Determination  of  the  optimisation  potential  at  components  and  system  level    The   data   that   is   collected   and   analysed   by   the   detailed  monitoring,  will   be   utilised   to  identify   optimisation   potentials   at   both   component   and   system   level.   This  will   on   the  one   hand   be   based   on   a   structured   analysis   of   the   actual   status   of   the   system   and   a  recommendation   for   action   derived   therefrom   for   the   further   development   of   the  individual  components.    On  the  other  hand,  the  collected  data  will  however  be  also  used  to  quantify  the  benefits  of  each  measure  that  can  be  achieved  with  the  help  of   the  system  simulation  set  up   in  work  package  1.      AP  7:  Options  for  the  enhancement  to  a  Smart  Green  District    The  realised  Smart  Green  Tower  is  intended  to  serve  as  the  nucleus  of  a  so-‐called  Smart  Green   District,   which   can   be   accomplished   by   connecting   existing   buildings   and   new  buildings,  in  each  case  with  own  producers  and  possibly  also  own  storage  capacities.  An  important  goal  is  to  thereby  design  an  optimised  local  energy  supply  at  the  district  level  from  an  energy  and  economic  point  of  view  and  to  also  to   implement   it   in  subsequent  projects.          Time  schedule  

    Work  packages  

    1.  Year   2.  Year   3.  Year  Q1  

    Q2  

    Q3  

    Q4  

    Q1  

    Q2  

    Q3  

    Q4  

    Q1  

    Q2  

    Q3  

    Q4  

    AP  1:  Concept  for  the  electrical  energy  supply  of  the  building  and  simulation-‐based  system  design                                                  AP  2:  Selection  of  the  components  of  the  electrical  energy  supply  (Battery,  power  electronics,  EMS  etc.)  and  requirements  for  the  system  integration                                                  AP  3:  Monitoring  concept                                                  AP  4:  Installation  and  commissioning  of  the  measuring  equipment                                                  AP  5:  Data  acquisition,  analysis  and  evaluation                                                  AP  6:  Determination  of  the  optimisation  potential  at  components  and  system  level                                                  AP  7:  Options  for  the  enhancement  to  a  Smart  Green  District                                                    

  • www.freyarchitekten.com 13

     8.  Necessary  funding    In   the   case   of   the   Smart   Green   Tower,   this   pertains   to   an   ambitious   research   project  with   direct   reference   to   practice   that   can   generate   interesting   insights   for   future  projects  and  applications.  The  project  is  characterised  by  a  high  degree  of  innovation  on  the  part  of  the  system  concept  for  objects  in  the  order  of  the  Smart  Green  Tower  within  the   district.   It   shows   also   an   exceptionally   high   level   of   commitment   and   pioneering  spirit  of  the  partners  involved.    The   research   and   development   work   that   is   planned   within   the   framework   of   the  construction   project   Smart   Green   Tower   goes   far   beyond   that   of   conventional  construction   projects   and   their   costs.   In   particular,   the   generation   of   the   appropriate  data  for  the  development  and  detection  of  the  necessary  control  algorithms,  in  order  to  systematically  set  up,  to  monitor  and  constantly  continue  to  further  develop  the  energy  management  system,   requires  enormous  scientific  effort.  This   is  a  prerequisite   for   the  subsequent  usefulness  of  the  findings  from  the  practical  operation,  especially  in  view  of  future  construction  projects.    However,   a   project   of   this   dimension   on   account   of   its   high   innovative   character  naturally   also   harbours   risks   that   likewise   also   significantly   exceed   those   of  conventional  construction  projects.    There  is  to  this  end  an  urgent  funding  requirement,  in  order  to  support  the  research  and  development  work  on   the  one  hand  and   in  order   to  mitigate   the  risks  associated  with  the  project  on  the  other  hand.