propagation on circulant multiconductor transmission lines

44
1 Interaction Notes Note 614 14 July 2010 Propagation on Circulant Multiconductor Transmission Lines with Random Wire Interchanges Carl E. Baum University of New Mexico Department of Electrical and Computer Engineering Albuquerque New Mexico 87131 Abstract This paper extends the results for propagation on random lay cables. As with previous results we consider the case characterized by circulant matrices for which some deterministic results have been found.

Upload: others

Post on 09-Jul-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Propagation on Circulant Multiconductor Transmission Lines

1

Interaction Notes

Note 614

14 July 2010

Propagation on Circulant Multiconductor Transmission

Lines with Random Wire Interchanges

Carl E. Baum University of New Mexico

Department of Electrical and Computer Engineering Albuquerque New Mexico 87131

Abstract

This paper extends the results for propagation on random lay cables. As with previous results we consider

the case characterized by circulant matrices for which some deterministic results have been found.

Page 2: Propagation on Circulant Multiconductor Transmission Lines

2

TABLE OF CONTENTS

Section Page

1. Introduction ............................................................................................................................... 3

2. Product-Integral Representation ................................................................................................ 3

3. Interchanging Wires at various Positions z Along Multiconductor Transmission Line ......... 4

4. Application to Circulant ,( )n mgf ............................................................................................ 8

5. Low-Frequency Form of the Product Integral .......................................................................... 13

6. Low-Frequency Form of Voltage, Current, and Input Impedance ............................................. 15

7. Concluding Remarks ................................................................................................................. 20

Appendix A. Properties of , ,v(( ( )) )n m uF z ............................................................................... 21

Appendix B. Permutation Matrices .......................................................................................... 22

Appendix C. Geometric-Factor Matrix For N Equal Currents (Common Mode) ..................... 25

Appendix D. Off-Diagonal Terms of ,( )n mgf ........................................................................ 30

Appendix E. Eigenmodes of Bicirculant Matrices ................................................................... 32

Appendix F. Terms in the Product Integral .............................................................................. 35

Appendix G. Stochastic Properties of Complex Matrices ........................................................ 36

References ................................................................................................................................. 43

`

Page 3: Propagation on Circulant Multiconductor Transmission Lines

3

1. Introduction

In analyzing the propagation of waves on a nonuniform multiconductor cable it is instructive to look at

certain aspects which are not statistical in nature [7] before tackling the more difficult statistical aspects. Here we

have found, based on the canonical problem of a cable with a single set of N wires on a common radius circular

cylinder (inside a reference cylindrical shell) with CN symmetry) that the common mode is unaffected on

interchange of wires along the cable. Furthermore, the differential modes for N = 2 and 3 are also unaffected

(negligible reflections).

We need to understand, for higher N, what the reflections on wire interchange do to the differential-mode

propagation. Such is the subject of this paper. Let us retain the above CN symmetry for this purpose. This will

lead to some statistical properties of the differential modes.

2. Product-Integral Representation

The general form of the N-conductor-plus-reference multiconductor-transmission-line (MTL) equations is

(for voltage and current vectors)

( )( )( )( )

( )( ) ( )( )( )( )

( )( ) ( )( )

( )( )( ) ( )( )

( )( ) ( )

0, 0 ,v

0

, ,,v ,v

, ,, 1,v

,,

,,, ;

, ,

,

0 (real)

0

nnn m u

n n

n m n mu u

n m g zn mn m u

n mg zn m

V z sV z sd z z sdz Z I z s Z I z s

z s F z

fF z

f

γ

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ = Γ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞Γ = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟=⎜ ⎟

⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠

( )( ) ( )( ), ,,n m gn mZ z s s f zμ′ = ≡ per-unit-length impedance matrix (N x N)

( )( ) ( )( ) 1, ,,n m gn mY z s s f zε

−′ = ≡ per-unit-length capacitance matrix (N x N) (2.1)

( )( ),fn mse g z≡

( )( ) ( )( ), ,c gn m n mZ z Z f z= characteristic impedance matrix

For the N wires (plus reference) in a uniform isotropic medium. We also have

Page 4: Propagation on Circulant Multiconductor Transmission Lines

4

( )( ) ( )( ), ,T

g gn m n mf z f z= (reciprocity) with nonnegative eigenvalues)

( )( ) ( )( ) 1, ,f gn m n mg z f z

−≡

1/2

Z με⎡ ⎤= ≡⎢ ⎥⎣ ⎦

wave impedance

[ ] 1/2v με −= ≡ propagation speed

vsγ = ≡ propagation constant

~ ≡ two-sided Laplace transform over time (t)

s jω= Ω + = Laplace-transform variable or complex frequency

This is a special case of a lossless system. Appendix A gives some important properties of , ,v(( ( )) )n m uF z .

The solution of (2.1) takes the form

( )( )( )( )

( )( )( )( )( )( )

( )( )( ) ( )( )

0, 0 ,v

0

, (product integral), ,v0 ,v

0

,,, ;

, ,

, ;

nnn m u

n n

z z s dzn m un u

z

V z sV z sU z z s

Z I z s Z I z s

U z z s e⎛ ⎞′ ′Γ⎜ ⎟⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ = ⎜ ⎟

⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

= ∏

(2.3)

The product integral has many important properties [4-6, 8, 11] which will help us.

3. Interchanging Wires at Various Positions z Along Multiconductor Transmission Line

At various positions z along the multiconductor transmission line the positions of the various wires

(excluding reference (or shield)) are interchanged. This is accomplished by a permutation matrix (Appendix B).

Applying this to vectors as

( ) ( )( )( ) ( )( )

,

,

,

,

n m n

n m n

P V z s

P I z s

i

i (3.1)

relocates each wire to a generally different position of some other wire, there being N such wire conditions. In the

process the wire numbering is permuted according to ,( )n mP at the position z.

Page 5: Propagation on Circulant Multiconductor Transmission Lines

5

Going along from 0z to 1z where such a permutation occurs we have from (2.1)

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

, 0,1

, , , 0,1 1 1

,

,

n m g nn m

Tn m g n m n m nn m

P f Z I z s

P f P P Z I z s

γ

γ

⎡ ⎤ ⎡ ⎤− ⎣ ⎦⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤= − ⎢ ⎥ ⎣ ⎦⎣ ⎦

i i

i i i i (3.2)

This indicates that ,( )gn mf is transformed as

( ) ( ) ( ) ( ), ,, ,1g n m g n mn m n m Tf P f P→ i i (3.3)

and similarly as one goes to permutations at 2z , etc. From the voltage vector we find the same for

( ) ( ) ( ) ( )1 1

, ,, ,1 1T

g n m g n mn m n mf P f P− −

→ i i (3.4)

and similarly along the transmission line.

Recalling the propagation supermatrix from (2.1) and how it fits in the product integral (2.3) we can write

( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

, 0 ,v

, ,1, ,,v ,v

1 0

1, ,, ,,v ,v

01

, ,, , 1,v ,v

0

, ;

, 1,

n m u

z zz s dz z s dzM n m n mu u

z zM

zzMz s dz z s dzn m n mu uzzM

z s z z s zn m m n mu u

U z z s

e e

e e

e ez z z

⎛ ⎞ ⎛ ⎞′ ′ ′ ′Γ Γ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞′ ′Γ ′ ′Γ∫∫ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠−

⎛ ⎞ ⎛ ⎞Γ Δ Γ Δ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ =⎜ ⎟⎝ ⎠

=

== Δ + =

∏ ∏

2, , M…

(3.5)

where we have chosen , ,v(( ( , )) ))n m uz s zΓ Δ to be uniform in each section of common length zΔ .

Assuming the zΔ is small compared to radian wavelength we can write

Page 6: Propagation on Circulant Multiconductor Transmission Lines

6

( )( )

( ) ( )( ) [ ]( ),, 2,v, ,,v ,v

1 , Oz s zn m u

n m n mu ue z s z zγ⎛ ⎞Γ Δ⎜ ⎟⎝ ⎠ ⎛ ⎞ ⎛ ⎞= + Γ Δ + Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ (3.6)

Inserting this in (3.2) we find

( )( )

( ) ( )( )

( ) ( )( ) [ ]( )( ) ( )( ) [ ]( )

( ) [ ] ( )( )

, 0 ,v

, ,,v ,v

2, ,,v ,v

2, ,,v ,v

1

, 0 ,,v ,v1

, ;

1 ,

1 , O

1 , O

11

n m u

n m n mu u

n m n mu u

M

n m n mu u

M

n m n mu u

U z z s

z s z

z s z M z

z s z M z

z z F zM

γ

γ

γ

=

=

⎛ ⎞⎜ ⎟⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞= + Γ Δ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎡ ⎤⎛ ⎞ ⎛ ⎞+ Γ Δ + Δ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞= + Γ Δ + Δ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

[ ]( )( ) [ ] ( )( ) [ ]( )

2

2, 0 , 0,v ,v

O

1 On m n mu u

M z

z z avg F z z z

γ

γ

+ Δ

⎛ ⎞ ⎛ ⎞= + − + =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(3.7)

Here we have included a factor 2M to account for the 2O( )M such times the quadratic factor appears.

Now , ,v(( ( )) )n m uF z transforms like (3.2) through (3.4) giving

( )( )( ) ( )( )

( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )

, 0 1,, 1 ,v

0 1 ,,

, , , ,1 1

, , ,,1 1

0

0

0

0

n m fn mn m u

f n mn m

Tn m n m n m n m

Tn m f n m n mn m

g zF z

g z

P f z P

P g z P

++

+

+ +

+ +

⎛ ⎞⎜ ⎟⎛ ⎞ =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠⎛ ⎞⎜ ⎟

= ⎜ ⎟⎜ ⎟⎝ ⎠

i i

i i

(3.8)

So the summation in (3.7) looks like

Page 7: Propagation on Circulant Multiconductor Transmission Lines

7

( ) ( )( )( )( ) ( )

( ) ( )( ) ( )

( ) ( )( )

( ) ( )( )

( )( ) ( )( )

, ,, ,

, ,1 , ,

, ,1

1, ,

11

, ,

0 01

0 0

1

1

M n m g n m gn m n m

f n m f n mn m n m

M

g gn m n m

M

f fn m n m

f gn m n m

f z F

M g z G

F f zM

G g zM

g z f z

=

=

=−

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟

≡⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=

=

(3.9)

Now, appealing to Appendix B ((B.9) through (B. 11)), we have, assuming that all permutations ,( )n mP are

equally likely,

( )( )( ) ( ) ( )( ) ( )

( )( )( ) ( ) ( )( ) ( )

, 0 ,, ,

,1

, ,2, 1 1

, 0 ,, ,

2,

, 1

1 (diagonal elements)

1 (off-diagonal elements)

var var

1

Tg n m g n mn m n m

N

gn nN

N N

g gn m n nn m n

Tg n m g n mn m n m

N

g n nn m

avg f z avg P f z P

fN

f fN N

f z P f z P

fN

=

= =

=

⎛ ⎞= ⎜ ⎟⎝ ⎠

⎧⎪⎪⎪

= ⎨ ⎡ ⎤⎪ ⎢ ⎥⎪ −⎢ ⎥⎪ − ⎢ ⎥⎣ ⎦⎩⎛ ⎞= ⎜ ⎟⎝ ⎠

=

∑ ∑

i i

i i

2

,1

2

, , ,2 2, , 1 , 1

1 (diagonal elements)

1 1 (off-diagonal elements)

N

g n nn

N N

g g gn m n m n mn m m n m

n m

fN

f f fN N N N

=

′′= =

⎧ ⎡ ⎤ ⎡ ⎤⎪ ⎢ ⎥ ⎢ ⎥−⎪ ⎢ ⎥ ⎢ ⎥⎪ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎪⎪⎨ ⎡ ⎤⎪ ⎢ ⎥⎡ ⎤⎪ ⎢ ⎥⎢ ⎥ −⎪ ⎢ ⎥⎢ ⎥− −⎪ ⎢ ⎥⎢ ⎥⎣ ⎦⎪ ⎢ ⎥⎣ ⎦⎩

∑ ∑

∑ ∑ (3.10)

In these formulae we have considered the geometric-factor matrix ,( )gn mf which has negative off-

diagonal terms (mutual inductance). The same formulas apply to its inverse ,( ( ))n mg z which has positive off-

diagonal terms (mutual capacitance).

Page 8: Propagation on Circulant Multiconductor Transmission Lines

8

4. Application to Circulant ,( )gn mf

As mentioned in Section 1, and illustrated in Fig. 4.1 let us consider the special case of N perfectly

conducting wires of radius 0r with centers on a common radius of 1Ψ and surrounded by a perfectly conducting

cylinder of radius 0Ψ . With N wires we have the wire centers positioned at

1

12

n n

N

φ φπφ

=

= (4.1)

From Appendix C we have the result for a single wire corresponding to n = 0 or N, but applying to any

individual wire

0 01,1 , 0 1

12g gn nf f n n

rπ⎡ ⎤⎛ ⎞ ⎛ ⎞Ψ Ψ

= +⎢ ⎥⎜ ⎟ ⎜ ⎟Ψ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦ (4.2)

From Appendix D we have the off-diagonal terms as

[ ]

[ ]

, ,

4 20 01 1

21 2 cos

14 2

2 1 cos

g gn m m nn m n mf f

n mN

nn mN

π

π π

≠ ≠=

⎛ ⎞⎛ ⎞−⎡ ⎤ ⎡ ⎤Ψ Ψ⎜ ⎟+ − ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟Ψ Ψ⎣ ⎦ ⎣ ⎦ ⎝ ⎠= − ⎜ ⎟⎡ ⎤⎛ ⎞−⎜ ⎟−⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

(4.3)

For this we find

( )( )( )1,1

,1,

2

(diagonal elements)

2 1 (off-diagonal elements)1

g

Ngn m

g mm

f

avg ff

N=

⎧⎪⎪= ⎨⎪

−⎪⎩∑

(4.4)

(independent of n). For the second term we have

Page 9: Propagation on Circulant Multiconductor Transmission Lines

9

[ ]

[ ]

4 20 01 1

,

21 2 cos

14 2

2 1 cosgn m n m

m nN

f nm nN

π

π π≠

⎛ ⎞⎛ ⎞−⎡ ⎤ ⎡ ⎤Ψ Ψ⎜ ⎟+ − ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟Ψ Ψ⎣ ⎦ ⎣ ⎦ ⎝ ⎠= − ⎜ ⎟⎡ ⎤⎛ ⎞−⎜ ⎟−⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

(4.5)

An alternate representation is

[ ]

[ ]

1,2

4 20 01 1

2

11

2 11 2 cos

1 14 1 2 1

2 1 cos

N

mm

N

m

fN

mN

nN m

N

π

π π

=

=

⎛ ⎞⎛ ⎞−⎡ ⎤ ⎡ ⎤Ψ Ψ⎜ ⎟+ − ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟Ψ Ψ⎣ ⎦ ⎣ ⎦ ⎝ ⎠= − ⎜ ⎟− ⎡ ⎤⎛ ⎞−⎜ ⎟−⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

∏ (4.6)

In matrix form we can write

( )( )( ) ( )

( ) ( )

,, 1,1

, ,1,2

1

1 11

g g n mn m

N

g n m n mmm

avg f z f

f uN

=

=

⎡ ⎤⎢ ⎥ ⎡ ⎤+ −⎣ ⎦⎢ ⎥−⎣ ⎦

∑ (4.7)

For the variance we have

( )( )( ),

2, ,

, 1 1

, , ,2 2, , 1 , 1

2 21, 1,1

1

2

var

1 1 (diagonal elements)

1 1 (off-diagonal elements)

1

gn m

N N

g gn m n nn m n

N N

g g gn m n m n mn m m n m

N

g gmm

f z

f fN N

f f fN N N N

f f

N

= =

′′= =

=

⎧ ⎡ ⎤ ⎡ ⎤⎪ ⎢ ⎥ ⎢ ⎥−⎪ ⎢ ⎥ ⎢ ⎥⎪ ⎢ ⎥ ⎣ ⎦⎪ ⎣ ⎦= ⎨

⎡ ⎤ ⎡ ⎤⎪⎢ ⎥ ⎢ ⎥⎪ −⎢ ⎥ ⎢ ⎥⎪ − −⎢ ⎥ ⎢ ⎥⎪ ⎣ ⎦ ⎣ ⎦⎩

=

∑ ∑

∑ ∑

∑2

, ,,1 1 1 1

11

N N N N

g gn m n mgn mn m m m

f f fNN ′

′= = = =

⎧⎪⎪⎪⎪⎨

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎪⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎪ −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎪ − ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎪ ⎣ ⎦⎩∑ ∑ ∑ ∑

Page 10: Propagation on Circulant Multiconductor Transmission Lines

10

[ ]

21,

22

1,21

2

1

N

g mm

N

g mm

f

N fN

=

=

⎧⎪⎪⎪

= ⎨⎡ ⎤⎪ − ⎢ ⎥⎪⎢ ⎥⎪ − ⎣ ⎦⎩

∑ (4.8)

For interpreting this result we have used the properties of bicirculant matrices

, ,1 1

N N

g gn m n mm n

sce sre f f= =

= ≡ =∑ ∑ (independent of n, m)

2, ,

1 1

2 2N N

g gn m n mm n

sce sre f f= =

= ≡ =∑ ∑ (independent of n. m)

,gn nde f≡ (independent of n) (4.9)

2,

2 gn nde f≡ (independent of n)

Then (4.7) can be written as

( )( )( ) ( )

[ ] ( ) ( )

,,

, ,

1

1 11

g n mn m

n m n m

avg f z de

sre de UN

=

⎡ ⎤+ − −⎣ ⎦−

(4.10)

and (4.8) can be written as

( )( )( )[ ]

[ ]

[ ] ( )

[ ][ ] ( ) ( )

2,2

,

2, ,2

2 2 (diagonal elements)2var (off-diagonal elements)

1

2 2 1

2 11

n m

n m

n m n m

sre deNf z sreN

sre de

N sre uN

−⎧⎪ −= ⎨⎪ −⎩

= −

− ⎡ ⎤+ −⎣ ⎦−

(4.11)

Similar results apply for ,( )fn mg .

Consider a few cases. For N = 1 there is only one element giving

Page 11: Propagation on Circulant Multiconductor Transmission Lines

11

( )( )( ) ( )( )( )( ) ( )

, 1,1

,var 0

g gn m

gn m

avg f z f

f z

=

= (4.12)

noting that there are no permutations. For N = 2 we have

( )( )( ) ( )( ) ( )

( )( )( )( ) [ ]( )

( )

,, 1,1

, ,1,2

1,1 1,2,

1,2 1,1

,,2

,1,221,2

21,2

1

1

var 2 2 1

1

0

0

g g n mn m

g n m n m

g ggn mg g

g n mn m

n mg

g

g

avg f z f

f u

f ff

f f

f z sre de

f

f

f

=

⎡ ⎤+ −⎣ ⎦

⎛ ⎞⎜ ⎟= =⎜ ⎟⎝ ⎠

= −

=

⎛ ⎞⎜ ⎟

= ⎜ ⎟⎜ ⎟⎝ ⎠

(4.13)

For N = 3 we have

( )( )( ) ( )

( ) ( )( )

( ) ( )

( )( )( ) ( )

[ ] ( ) ( )( )

,, 1,1

, ,1,2 1,3

,1,1

, ,1,2

1,3 1,2

2 2,, 1,2 1,3

2, ,

2,1,2

1,1 1,2

1

1 12

1

1 14

(cyclic nature)

var 1

1 14

2 1

1 24

g g n mn m

g g n m n m

g n m

g n m n m

g g

g n mg gn m

n m n m

n mg

g g

avg f z f

f f u

f

f u

f f

f z f f

sre u

f

f f

=

⎡ ⎤ ⎡ ⎤+ + −⎢ ⎥ ⎣ ⎦⎣ ⎦

=

⎡ ⎤+ −⎣ ⎦

=

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤+ −⎣ ⎦

=

⎡+ +⎢⎣ ( ) ( )2

, ,1n m n mu⎤ ⎡ ⎤−⎥ ⎣ ⎦⎦

(4.14)

Page 12: Propagation on Circulant Multiconductor Transmission Lines

12

These three cases correspond to the special cases in [7], in which the eigenmode propagation is not perturbed by

wire interchanges. For N = 2, 3 we have merely a sign change some number of times on the voltages and currents in

each of the differential eigenmodes.

Fig. 4.1 MTL with NC Symmetry: Example for N = 6.

n = 1 n = 2

n = 3

n = 4 n = 5

a

b

z θ φ

02r

n = 0, N

x

reference conductor (shield)

Page 13: Propagation on Circulant Multiconductor Transmission Lines

13

5. Low-Frequency Form of the Product Integral

With M uniform sections of our MTL we can write our product integral in the form

( )( )( )( ), ,v

, 0 ,v0

, ;z F z dzM gn m u

n m M uz

U z z s eγ⎛ ⎞

′ ′− ⎜ ⎟⎜ ⎟⎝ ⎠⎛ ⎞ =⎜ ⎟

⎝ ⎠ ∏

( )( ), ,v

1

M F z zgn m ueγ⎛ ⎞

− Δ⎜ ⎟⎜ ⎟⎝ ⎠

=

= ∏ (successive terms to left in dot-product sense) (5.1)

0Mz zz

M−

Δ =

Since the propagation supermatrix is uniform in each section of length zΔ we can evaluate each section analytically

as an exponential matrix. This gives the product of M matrix terms (successive multiplications on the left).

The product in (5.1) can then be approximated from Appendix F as

( )( ) ( ) ( )( ) [ ]( )

( ) ( )( ) [ ]( )

2, 0 , ,,v ,v ,v

1

2, ,,v ,v

1

, ; 1 O

1 O

M

n m M n m gn mu u u

M

n m gn mu u

U z z s z F z z

z F z M z

γ γ

γ γ

=

=

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞= − Δ + Δ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞= − Δ + Δ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ (5.2)

There are 2O( )M quadratic terms. Thus we have for random permutations

( )( )

( )( ) [ ] ( )( ) [ ]

( )( ) [ ] ( )( ) [ ]

, 0 ,v

2, 0 0,,v ,v

12

, 0 0,,v ,v

, ;

11 O

1 O

n m M uM

n m M g Mn mu u

n m M g Mn mu u

U z z s

z z F z z zM

z z avg F z z z

γ γ

γ γ

=

⎛ ⎞⎜ ⎟⎝ ⎠

⎛ ⎞ ⎛ ⎞⎡ ⎤= − − + −⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎡ ⎤= − − + −⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠

∑ (5.3)

Now we have (from (3.10)) for random permutations

Page 14: Propagation on Circulant Multiconductor Transmission Lines

14

( )( )( ) ( )( )( )

( )( )( ) ( )

( )( )( )

( )( )( )

, ,, ,v

,,

1,1

,1,

2

1,1

,1,

2

0

0

(diagonal elements)

1 (off-diagonal elements)1

(diagonal elements)

11

n m gn mgn m u

f n mn m

g

Ngn m

g mm

f

fn mf m

m

avg f zavg F z

avg g z

f

avg f zf

N

g

avg g zg

N

=

=

⎛ ⎞⎜ ⎟⎛ ⎞

= ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟

⎝ ⎠⎧⎪⎪= ⎨⎪

−⎪⎩

=

(off-diagonal elements)N

⎧⎪⎪⎨⎪⎪⎩

(5.4)

Using the exact results in Appendix F we can also use

( )( )( )( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

, ,v, 0 ,v

† 1

, , ,v1

, ,,v ,v1

, ;

1 cosh sinh

cosh 1 tanh

M F z zn m un m M u

M

n m gn m u

MM

n m gn mu u

U z z s e

z F z z

z F z z

γ

γ γ

γ γ

⎛ ⎞− Δ⎜ ⎟⎝ ⎠

=

=

=

⎛ ⎞ =⎜ ⎟⎝ ⎠

⎡ ⎤⎛ ⎞= Δ − Δ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞= − Δ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

(5.5)

which can be used for Monte-Carlo calculations. Expanding for small [ ]0MM z z zγ γΔ = − we have

( )( )

[ ] ( ) ( )( ) [ ]( )

( ) ( )( ) [ ] [ ]( )

,

,

, 0 ,v

2 22, ,v ,v1

2, ,v ,v1

, ;

1 1 1 O

11 O

n m

n m

n m M u

MM a n m gu u

Mn m g M a M au u

U z z s

z z F z z z

F z z z z zM

γ γ γ

γ γ

=

=

⎛ ⎞⎜ ⎟⎝ ⎠

⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎢ ⎥= + − − Δ + Δ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦⎡ ⎤⎛ ⎞⎛ ⎞= − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

(5.6)

which will find later use.

Page 15: Propagation on Circulant Multiconductor Transmission Lines

15

6. Low-Frequency Form of Voltage, Current, and Input Impedance

From Appendix E we have the result that the differential modes, and hence differential currents and

voltages, have average value zero. So we write

( ) ( )( )

( )

( ) ( )( )

( )

( ) ( )( , )

( ) ( )( , ) ( , )

1

( ) ( )( , )

( ) ( )( , ) ( , )

1

11

( , ) ,

1

1 ,

11

( , ) ,

1

1 1,

dif avgn n z s

Navg cnz s z s

n

dif avgn n z s

Navg cnz s z s

n

V z s V z s V

V V z s VN

I z s I z s I

I I z s IN N

=

=

⎛ ⎞⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠

= ≡

⎛ ⎞⎜ ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠

= ≡

( )( , )

cz sV ≡ common-mode voltage (average)

( )( , )cz sI ≡ common-mode current (or total current) (6.1)

( )( , ) ( )( )( , )

cz s ccz s

VZ

I≡ ≡ common-mode impedance (independent of z and s)

The common mode is unaffected by the wire interchanges and propagates deterministically along the transmission

line. From Appendix C we have from (C.18)

( )( ) NcgZ Zf= (6.2)

Setting up our gedanken experiment, let us set

( )( ) ( )( ) ( )( ) ( )( ) ( )( ),,, , ,n mn mn n g nc zV z s Z I z s Z f z I z s= =i i (6.3)

For the common mode we have

Page 16: Propagation on Circulant Multiconductor Transmission Lines

16

( )( )

( )( ) ( )

( ) ( )

( )

,

,

( ) ( )

( )

( )

1( ) ( )

11

,

1

1,

1

1, (independent of )

,

n m

n m

c cn

cg

Nc

gm

N cg

V z s V

I z sZ F z

N

Z I z s f z nN

Z f I z s

=

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

=

=

i (6.4)

We can see that the row (and column) sum (we have frequently encountered) is slosely related to the common-mode

geometric factor ( )Ngf .

As we have seen (in [7]), there are no common-mode reflections on wire interchange. Hence, with no

reflections back to the source we have

( )( )

( )( )

( )0,

0,

cN

gcV s

Z fI s

= (6.5)

independent of frequency.

Now look at the differential-signal propagation. Note that, with the common mode not generating any

differential modes on wire interchange, the reciprocity theorem assures us that the differential signals do not couple

to the common mode. At any z we can expand the differential voltages and currents in terms of only the eigenmodes

for 1,2, , 1Nβ = −… (Appendix E). Each of these modes have zero average. For all z we can then say

( )

( )

( )

1

( )

1

, 0

, 0

N difn

nN dif

nn

V z s

I z s

=

=

=

=

∑ (6.6)

There can be various reflections and transmission losses at each z , but the zero averages still hold.

Now let us write (using Appendix F)

Page 17: Propagation on Circulant Multiconductor Transmission Lines

17

( )( )( )( )( )( )

( )( )( )( )

( )( )( )( )( )( )

( )( )( )( ), ,v

( ) ( )1 0

, 0 ,v ( ) ( )0

( )

, 0 ,v ( )

1, 0 ,v

, ,, ;

, ,

,, ;

,

, ;n m u

dif difn n

n m M u dif difn n

difn

n m M u difn

F z zn m M u

M

V z s V z sU z z s

Z I z s Z I z s

V z sU z z s

Z I z s

U z z s eγ

⎛ ⎞Δ⎜ ⎟⎝ ⎠

=

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎛ ⎞ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎛ ⎞⎜ ⎟⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠

⎛ ⎞ =⎜ ⎟⎝ ⎠

=

( ) ( ) ( )( ) ( )1

, ,,v ,v1 cosh sinhn m n mu u

Mz F z zγ γ

=

⎡ ⎤⎛ ⎞ ⎛ ⎞Δ + Δ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦∏

(6.7)

noting the sign reversal on zΔ in going from larger to smaller z . Now constrain

( )( ) ( ) ( )( ) ( )( ) ( )( ), ,, , ,n m n mn M c n M g M n MV z s Z I z s Z f z I z s= =i i (6.8)

to properly terminate the transmission line.

Writing out (6.7) gives

( )( ) ( )( ) ( )( ) ( )( )( )( )

( )( ) ( )( ) ( )( ) ( )( )( )( )

( ), 0 , 01,1 1,2

( )0

( ), 0 , 02,1 2,2

( )0

, ; , , ; ,

,

, ; , , ; ,

,

difn m M n n m M n M

difn

difn m M n n m M n M

difn

U z z s V z s U z z s Z I z s

V z s

U z z s V z s U z z s Z I z s

Z I z s

+

=

+

=

i i

i i (6.9)

Enforcing (6.8) gives

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( ) ( )( )

,

,

( ) ( ), 0 , 0 01,1 1,2

( ) ( ), 0 , 0 02,1 2,2

, ; , ; , ,

, ; , ; , ,

n m

n m

dif difn m M n m M f M n M n

dif difn m M n m M f M n M n

U z z s U z z s g z V z s V z s

U z z s U z z s g z V z s Z I z s

⎡ ⎤+ =⎢ ⎥⎣ ⎦⎡ ⎤+ =⎢ ⎥⎣ ⎦

i i

i i (6.10)

Eliminating ( ( )( ) ,difn MV z s ) gives

Page 18: Propagation on Circulant Multiconductor Transmission Lines

18

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ),

, , ,

1 ( ), 0 , 01,1 1,2

1 ( ), 0 , 02,1 2,2

, ; , ; 0,

, ; , ; 0,

n m

n m n m n m

difn m M n m M f M n

difn m M n m M f M f c n

U z z s U z z s g z V s

U z z s U z z s g z g Z I s

⎡ ⎤+⎢ ⎥⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

i i

i i i i

(6.11)

The input impedance is then found from

( )( ) ( )( ) ( )( )( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )

, ,

, , ,

, ,

( ) ( ) ( ),

( ), , 0 , 01,1

1, 0 , 02,1 2,2

1,

0, 0, 0,

0, , ; , ;

, ; , ;

1 tanh

n m n m

n m n m n m

n m n m

dif dif difn n m n

difn m n m M n m M f M g M

n m M g M n m M g c

n m g fM

V s Z s I s

Z s U z z s U z z s g z f z

U z z s f z U z z s f Z

f z z gγ

=

=

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤+⎢ ⎥⎣ ⎦

⎡ ⎤= + Δ⎢ ⎥

⎢ ⎥⎣ ⎦∏

i

i i

i i i i

i ( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )

,

, , , ,

11,1 tanh

n m

n m n m n m n m

M g M

n m f g M f cM

z f z

g z z f z g Zγ−

=

⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤⎢ ⎥+ Δ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

i

i i i i

(6.12)

Now set

( )( ) ( ) ( )( ) ( ), , , ,,n m n m n m n mg M g f M ff z f g z g≡ ≡ (6.13)

This basically assures that wire n at the source connects to wire n at the load. Expanding for small 0[ ]Mz zγ −

gives

( )( ) ( ) [ ] ( )( ) ( ) [ ]( )

( ) ( ) [ ] ( )( ) ( ) [ ]( )( ) ( )( ) [ ] ( )( ) ( ) [ ]( )

, ,

, , ,

, ,

, ,

,

3( ), , 0

11

3, 0

1

2, 0

1

11 O

11 O

11 O

n m n m

n m n m n m

n m n m

n m n m

n

Mdif

n m n m M g f

Mg n m M f g

f c

Mn m M g f

g

Z s z z f z g M zM

f z z g z f M zM

g Z

z z f z g M zM

f

γ γ

γ γ

γ γ

=−

=

=

⎡ ⎤⎡ ⎤⎢ ⎥= + − + Δ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎢ ⎥+ − + Δ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤⎢ ⎥= + − + Δ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

i

i i i

i i

i ( ) ( ) [ ] ( )( ) ( ) [ ]( )( ) ( )

, ,

, ,

2, 0 0

1

11 Om n m n m

n m n m

Mn m M f g M

f c

z z g z f z zM

g Z

γ γ=

⎡ ⎤⎡ ⎤⎢ ⎥− − + −⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑i

i i

Page 19: Propagation on Circulant Multiconductor Transmission Lines

19

( ) [ ] ( )( ) ( )

( ) ( )( ) [ ]( ) ( )

, ,

, , ,

, 01

20

1

11

O

n m n m

n m n m n m

Mn m M g f

Mg f M c

z z f z gM

f g z z z Z

γ

γ

=

=

⎡ ⎡⎡ ⎤⎢ ⎢= + − ⎢ ⎥⎢ ⎢⎢ ⎥⎣ ⎦⎣⎣

⎤⎤⎤⎥⎥− + −⎥⎥⎥⎥⎦⎦ ⎦

∑i i

(6.14)

Here we see that at low frequencies, as we would expect,

( ) ( ) ( ) [ ]( ),, 01 On min

n m c MZ s Z z zγ⎛ ⎞ ⎡ ⎤= + −⎜ ⎟ ⎣ ⎦⎝ ⎠ (6.15)

Since the cable is electrically short.

We can also look at the signal transfer to the load ( ,n mcZ ). From (6.10)

( )( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )( ) ( )( ) ( )

( ) [ ]

, ,

, ,

1,

11,

, 0

cosh 1 , 0,

, 0,

cosh 1

11

n m n m

n m n m

difMn m g f n M n

M

dif dif difn m n n

difn

Mn m g f

M

n m M

z z f z g V z s V s

V z s T s V s

T s

z z f z g

z zM

γ γ

γ γ

γ

=

=

⎡ ⎤⎡ ⎤ ⎛ ⎞⎢ ⎥Δ + Δ =⎢ ⎥ ⎜ ⎟⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎛ ⎞⎜ ⎟⎝ ⎠

⎡ ⎤⎡ ⎤⎢ ⎥= Δ + Δ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

= − −

i i

i

i

( )( ) ( ) [ ]( ), ,2

01

On m n m

Mg f Mf z g z zγ

=

⎡ ⎤+ −⎢ ⎥

⎢ ⎥⎣ ⎦∑ i

(6.16)

Now from (3.10) for random permutations with the choice of (6.14) we have, noting the zero average

values of the differential signals

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) [ ] ( )1,1

0

, 0 ,

, , 0

1 1

dif difM n

dif

n m M g n m

avg V z s avg V z s

avg T s

z z fγ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎡⎢= + −⎢⎢⎣

Page 20: Propagation on Circulant Multiconductor Transmission Lines

20

( ) ( ) ( )

[ ]

( ) ( ) ( ) [ ] ( )

( ) ( ) ( )

( ) ( )

1, ,

1,1

1, ,

, 1,1 1,

, ,2

20

, 0

, ,2

, ,2

1 11

O

1 1 ,

1 11

111

m n m

m n m

n m m

Ng n m n m f

m

M

difn m M g

Ng n m n m f

m

Ng f n m f n

m

f u gN

z z

avg Z s z z f n m

f u gN

f g g uN

γ

γ

=

=

=

⎤⎡ ⎤⎥⎢ ⎥+ − ⎥⎢ ⎥−⎥⎣ ⎦ ⎦

⎛ ⎞⎡ ⎤+ −⎜ ⎟⎣ ⎦⎝ ⎠⎡⎛ ⎞⎛ ⎞ ⎡= = −⎢⎜ ⎟⎜ ⎟ ⎢⎣⎝ ⎠⎝ ⎠ ⎢⎣

⎤⎡ ⎤⎥⎢ ⎥ ⎡ ⎤+ −⎣ ⎦⎥⎢ ⎥−⎥⎣ ⎦ ⎦

⎡ ⎤− + ⎢ ⎥

− ⎢ ⎥⎣ ⎦

i

i

i ( ) ( )

[ ] ( ),

,

0

1

O n m

m n m

M cz z Zγ

⎡ ⎤⎡ ⎤⎢ ⎥−⎣ ⎦⎢ ⎥⎣ ⎦

⎤⎛ ⎞+ − ⎥⎜ ⎟⎜ ⎟⎥⎝ ⎠⎦

i

(6.17)

For the variances we appeal to Appendices B and G. Since ( )difT starts with identity, we find from (G.5)

that

( ) ( )

[ ]

,

20

var

O

v

difn m

M

T j

k z z

jk j

ω

ωγ

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎡ ⎤= −⎜ ⎟⎣ ⎦⎝ ⎠

= =

(6.18)

Similarly we find for the input impedance

( ) ( )

[ ]

,

20

var

O

difn m

M

Z j

k z z

ω⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞⎡ ⎤= −⎜ ⎟⎣ ⎦⎝ ⎠

(6.19)

So while the averages are first order in frequency, the variances are second order. To calculate these to second order

the matrices in (6.14) and (6.17) need to be expanded through second order.

7. Concluding Remarks

So now we have a beginning on the theory of random-lay cables. While it strictly applies to random wire

interchanges in a circulant system, one may expect that some features of this will lead toward properties of more

general situations.

Page 21: Propagation on Circulant Multiconductor Transmission Lines

21

Appendix A. Properties of , ,v(( ( )) )n m uF z

From Section 2 we have a 2N x 2N supermatrix

( )( )( ) ( )( )

( )( ) ( ),

,

,, 1,v

,

0

0

n m

n m

n m gn m u

g n m

f zF z

f z−

⎛ ⎞⎜ ⎟⎛ ⎞ = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠

(A.1)

We quickly find

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

2, , ,,v ,v ,v

, ,, ,v

, ,

,

1 01

0 1

1 for 1

0 for

n m n m n mu u u

n m n mn m u

n m n m

n m

F z F z F z

n mn m

⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎢ ⎥= =⎜ ⎟ ⎢ ⎥⎝ ⎠

⎣ ⎦=⎧

= ⎨ ≠⎩

(A.2)

So this supermatrix is a square root of the superidentity. From this we also find

( )( ) ( )( )1

, ,,v ,vn m n mu uF z F z

−⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(A.3)

With zeros on the diagonal we have

( )( ), ,vn m utr F z⎛ ⎞⎜ ⎟⎝ ⎠

= 0 = sum of 2N eigenvalues (A.4)

For the determinant (A.2) gives

( )( )2, ,v

det 1n m uF z⎛ ⎞ =⎜ ⎟

⎝ ⎠ (A.5)

We also have [9] with square ,( )n mA and ,( )n mD

( ) ( )( ) ( )

( ) ( )( ), ,, ,

, ,

0det det

n m n mn m n m

n m n m

BB C

C D

⎛ ⎞⎜ ⎟ = −⎜ ⎟⎝ ⎠

i (A.6)

Page 22: Propagation on Circulant Multiconductor Transmission Lines

22

(since the zero matrix commutes with all matrices of same size). Applied to , ,v(( ( )) )n m uF z we have

( )( ) ( )( ) ( )( )( )( ) ( )

, ,

12, ,v

,

det det

det 1 1

1 for N even1 for N odd

n m n mn m g gu

Nn m

F z f z f z−⎛ ⎞⎛ ⎞ = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= − = −

⎧= ⎨ −⎩

i

(A.7)

resolving the ambiguity in (A.4).

Since the eigenvalues of the superidentity are all 1 (2N of them), the eigenvalues of , ,v(( ( )) )n m uF z are all

+1. In order that the trace be zero, then we have

( )( ) ( )( ) ( )( ), ,v

1 (N are +1 and N are -1)

n m n nu uuF z x xββ β

β

λ

λ

⎛ ⎞ =⎜ ⎟⎝ ⎠

= ± (A.8)

This is also consistent with (A.7), with the determinant as the product of the eigenvalues.

Appendix B. Permutation matrices

Consider N x N permutation matrices ,( )n mP of the form

( ),

0 0

010 00

00 10 0

0

n mP

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

(B.1)

where each row has exactly one element 1 with N-1 elements 0, and similarly for columns. Applying this to our

N-conductor transmission line, this corresponds to moving a wire at some position m to position n corresponding to

the non zero elements of ,( )n mP . Note that

Page 23: Propagation on Circulant Multiconductor Transmission Lines

23

( ) ( ) ( ), , ,1T

n m n m n mP P =i (B.2)

i.e., reordering followed by unreordering is an identity. From this we have

( ) ( )1, ,

Tn m n mP P

−= (B.3)

so that the inverse is not singular.

Since (for general N x N matrices and ,( )n mP in particular)

( ) ( )( ), ,det detT

n m n mP P⎛ ⎞ =⎜ ⎟⎝ ⎠

(B.4)

then we have from (3.2)

( )( ),det 1n mP = ± (B.5)

with both values appearing, depending on the particulars of the row/column reordering.

In the combination

( ) ( ) ( ), , ,T

n m n m n mP Q Pi i (B.6)

the diagonal elements are reordered as diagonal element. The off-diagonal elements are reordered as off-diagonal

elements. This property allows us to state

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

, , , ,

, , , ,det det

Tn m n m n m n m

Tn m n m n m n m

tr P Q P tr Q

P Q P Q

⎛ ⎞ =⎜ ⎟⎝ ⎠⎛ ⎞ =⎜ ⎟⎝ ⎠

i i

i i (B.7)

There is a list of the properties of such matrices in [2], such as

Page 24: Propagation on Circulant Multiconductor Transmission Lines

24

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1, , , , , ,

, , , , , ,

, , , ,

T Tn m n m n m n m n m n m

T Tn m n m n m n m n m n m

Tn m n m n m n m

P Q P P Q P

P Q P P R P

P Q R P

− −⎡ ⎤ =⎢ ⎥⎣ ⎦⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

i i i i

i i i i i

i i i

(B.8)

There are stochastic properties, assuming that all permutations are equally likely, including

( )( ),n mavg P ≡ expected value of ( ),n mP

( ),1

n muN

=

,n mu = 1 for all n,m

( ) ( ) ( )

( ) ( ) ( )

, , ,

,

,2,

, , ,

22, ,

1 (diagonal elements)

1 (off-diagonal elements)

var

1 1 (diag

Tn m n m n m

n nn

n mn mn m

Tn m n m n m

n m n nn n

avg P Q P

QN

QN N

P Q P

Q QN N

⎛ ⎞⎜ ⎟⎝ ⎠⎧⎪⎪⎪= ⎨⎪

−⎪⎪⎩⎛ ⎞⎜ ⎟⎝ ⎠

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

∑ ∑

i i

i i

2

, , ,2 2, , ,

onal elements)

1 1 (off-diagonal elements)n m n m n mn m m n m

n m

Q Q QN N N N

′′

⎧⎪⎪⎪⎪⎨ ⎡ ⎤⎪ ⎢ ⎥⎡ ⎤⎪ ⎢ ⎥⎢ ⎥ −⎪ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎪ ⎢ ⎥⎣ ⎦⎩

∑ ∑

(B.9)

Note that variance is also defined as

( )( ) ( ) ( ) 2, , ,var n m n m n mR avg R avg R⎛ ⎞⎡ ⎤= −⎜ ⎟⎣ ⎦⎝ ⎠

(B.10)

The form that these take allows one to write

Page 25: Propagation on Circulant Multiconductor Transmission Lines

25

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

, , ,

, , , , ,2,

, , ,

22, , ,

,

, ,2 2, ,

1 11 1

var

1 1 1

1 1

Tn m n m n m

n m n m n m n m n mn n m

n m

Tn m n m n m

n m n m n mn m n

n m n mn m m

avg P Q P

Q Q uN N N

P Q P

Q QN N

Q QN N N

′′

⎛ ⎞⎜ ⎟⎝ ⎠

⎡ ⎤⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥= + −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦

⎛ ⎞⎜ ⎟⎝ ⎠

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥= − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎢ ⎥+ −⎢ ⎥− −⎣ ⎦

∑ ∑

∑ ∑

i i

i i

( ) ( )2

, , ,,

1n m n m n mn m

Q uN

⎡ ⎤⎡ ⎤⎢ ⎥ ⎡ ⎤⎢ ⎥ −⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

(B.1)

Appendix C. Geometric-Factor Matrix For N Equal Currents (Common Mode)

As in Fig. 4.1, let us consider N wires of radius 0r at a common distance of 1Ψ from the center of the

surrounding circular cylindrical conductor (of radius 0Ψ ). The wire centers are placed on angloes

0

0

, 1, , or 0, , 12

n n n N n N

N

φ φπφ

= = = −

=

… … (C.1)

noting that wire number zero and N correspond to the same wire.

From [1] we consider the conformal transformation defined by

jx jy e φζ ≡ + = Ψ (complex coordinate)

( ) ( ) ( )vw u jζ ζ ζ= + (complex potential)

( )

( )

1/1

1

1

1 1

NNw

N

e

w nN

ζζ

ζζ

′−⎡ ⎤= Ψ +⎢ ⎥⎣ ⎦⎛ ⎞⎡ ⎤⎜ ⎟′ = − −⎢ ⎥⎜ ⎟Ψ⎣ ⎦⎝ ⎠

(C.2)

This ( )w ζ′ corresponds to N wires in free space. To include the effect of the conducting boundary of radius 0Ψ

we find a potential due to image wires (of opposite charge) at a common radius

Page 26: Propagation on Circulant Multiconductor Transmission Lines

26

20

11

Ψ′Ψ =Ψ

(C.3)

This corresponds to the symmetry of reciprocation [12]. So we map coordinates as

20ζζΨ′ = (C.4)

and find another potential as

( )20

1

1 1N

w nN

ζζ

⎛ ⎞⎡ ⎤Ψ⎜ ⎟′′ = −⎢ ⎥⎜ ⎟Ψ⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

(C.5)

Adding these two potentials gives

( ) ( ) ( )

120

1

11

1

N

N

w w w

nN

ζ ζ ζ

ζ

ζ

′ ′′= +

⎛ ⎞⎜ ⎟⎡ ⎤

−⎜ ⎟⎢ ⎥Ψ⎣ ⎦⎜ ⎟= −⎜ ⎟⎡ ⎤Ψ⎜ ⎟−⎢ ⎥⎜ ⎟Ψ⎢ ⎥⎣ ⎦⎝ ⎠

(C.6)

Note that we require 02r to be small compared to the spacing between the wires, which is for large N

1 10 02 ,

2r r

N Nπ πΨ Ψ (C.7)

Similarly we need

0 0 1r Ψ − Ψ (distance to the outer conductor) (C.8)

Consider the complex potential on

1 1,je φζ ζ= Ψ = Ψ (C.9)

Page 27: Propagation on Circulant Multiconductor Transmission Lines

27

This gives

( )

( )

( ) ( )1 1

1 11

1 1 1arg1 1

1 11 arg1

v

jN

jN

jN jN

jN jN

jN

jN

j j

ew nN e

e j enN Ne e

j enN N e

u e j e

φ

φ

φ φ

φ φ

φ

φ

φ φ

ζ−

− −

⎛ ⎞−⎜ ⎟= −⎜ ⎟−⎝ ⎠⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟= − −

⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠⎛ ⎞−⎜ ⎟= − −⎜ ⎟−⎝ ⎠

= Ψ + Ψ

(C.10)

( )1 0ju e φΨ =

So the circle of radius 1Ψ is an electric equipotential. The magnetic potential v( )ζ on this circle phase wraps as

one passes around on the circle.

Now with the outer conductor at zero potential we find the electric potential on a wire as (looking at the

wire centered on 0φ = )

( )

1 0

0

1

200

1 1

, 0 2

1 11

1 1

j

Nj

Nj

r e

re

u nN r

e

φ

φ

φ

ζ φ π

ζ

′−

′= Ψ = + ≤ ≤

⎛ ⎞⎡ ⎤⎜ ⎟+ −⎢ ⎥⎜ ⎟Ψ⎣ ⎦⎜ ⎟= − ⎜ ⎟⎡ ⎤⎡ ⎤Ψ⎜ ⎟+ −⎢ ⎥⎢ ⎥⎜ ⎟Ψ Ψ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

(C.11)

Expanding for small 0 1N /r Ψ gives, keeping leading terms,

0

1

0

12

0 02

1 1

1 1

1 1

O

Nj

jN

jN jN

re

rN e

r rN e N e

φ

φ

φ φ

′ ′

⎡ ⎤+ −⎢ ⎥Ψ⎣ ⎦

= + + −Ψ

⎛ ⎞⎡ ⎤⎜ ⎟= + ⎢ ⎥⎜ ⎟Ψ Ψ⎣ ⎦⎝ ⎠

Page 28: Propagation on Circulant Multiconductor Transmission Lines

28

0 0 02

1 1 11 1 O

Njr r r

e N Nφ′⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟+ − = +⎢ ⎥ ⎢ ⎥⎜ ⎟Ψ Ψ Ψ⎣ ⎦ ⎣ ⎦⎝ ⎠

(C.12)

Note that this is asymptotic in small 0 1N /r Ψ , which requires the wire radius to be very small compared to the

spacing.

Similarly we have

1200

1 1

200

1 1

1 1

1 O

Njr

n e

rn N

φ−

′−⎛ ⎞⎡ ⎤⎡ ⎤⎜ ⎟Ψ⎡ ⎤⎢ ⎥+ −⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥Ψ Ψ⎢ ⎥⎣ ⎦⎜ ⎟⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

⎛ ⎞ ⎛ ⎞Ψ⎡ ⎤⎜ ⎟= − + ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟Ψ Ψ⎣ ⎦ ⎝ ⎠⎝ ⎠

(C.13)

for constant 0 1/Ψ Ψ , again asymptotic for small 0 1/N r Ψ .

Then from (C.9) the electric potential on the wire is approximately (for thin wires compared to spacing)

( )2

010 1

1 1N

u n nN Nr

ζ⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤ΨΨ⎢ ⎥⎜ ⎟⎜ ⎟ + −⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟Ψ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦

(C.14)

Since the electric potential on the outer circle of radius 0Ψ is zero we have

2

010 1

1 1N

u n nN Nr

⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤ΨΨ⎢ ⎥⎜ ⎟⎜ ⎟Δ + −⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟Ψ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦

(C.15)

The change in the magnetic potential around a wire is given by

( )

0

1

1 1v

2v 1

jNre

N N

N

φ φ

π

′⎛ ⎞′− = −⎜ ⎟⎜ ⎟Ψ⎝ ⎠

Δ =

(C.16)

Page 29: Propagation on Circulant Multiconductor Transmission Lines

29

There are N such wire currents giving

( ) ( )v v 1 2N N D πΔ = = (C.17)

The geometric factor for such N currents (total) is then

( )( )

201

0 1

1 1v 2

NN

guf n nN N Nrπ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤ΨΨΔ ⎢ ⎥⎜ ⎟⎜ ⎟≡ + −⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟Δ Ψ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦

(C.18)

As a special case of one wire we have

( )

1,1

,

21 01

0 1

0

1

1 12

for 0

n n

g

g

g

f n nr

Nrf

f

π

⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤ΨΨ⎢ ⎥⎜ ⎟⎜ ⎟ + −⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟Ψ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦

→Ψ

′≡

(C.19)

Note that 0r must be small compared to both 1Ψ and 0 1Ψ −Ψ , and hence small compared to 0Ψ . For a circular

cylinder of radius 1Ψ centered on the origin we have

( ) 01

12

cylgf n

π⎛ ⎞Ψ

= ⎜ ⎟Ψ⎝ ⎠ (C.20)

which is a well-known result.

Page 30: Propagation on Circulant Multiconductor Transmission Lines

30

Appendix D. Off-Diagonal Terms of ,( )n mgf

Recall that the potential function for a single wire at φ = 0 or N is (from (C.6))

( )

( )

120

1

120

1

2

1

11

1

11

1

, 1, , 1nj

Nn

w nN

u nN

e n Nπ

ζ

ζ

ζ

ζ

ζ

ζ

ζ

⎛ ⎞⎜ ⎟−Ψ⎜ ⎟= − ⎜ ⎟Ψ⎜ ⎟−⎜ ⎟Ψ⎝ ⎠

⎛ ⎞⎜ ⎟−⎜ ⎟Ψ

= − ⎜ ⎟⎜ ⎟Ψ

−⎜ ⎟⎜ ⎟Ψ⎝ ⎠

= Ψ = −…

(D.1)

This gives

( )

2

2 201

4 20 01 1

11

1

22 1 cos1

21 2 cos

njN

n njN

n

e

u nN

e

nNn

Nn

N

u

π

πζ

π

π

⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟

= − ⎜ ⎟⎜ ⎟⎡ ⎤Ψ⎜ ⎟−⎢ ⎥

Ψ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠⎛ ⎞⎜ ⎟⎡ ⎤⎛ ⎞−⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎜ ⎟=⎜ ⎟⎡ ⎤ ⎡ ⎤Ψ Ψ ⎛ ⎞⎜ ⎟+ −⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎜ ⎟Ψ Ψ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

= Δ

(D.2)

From (C.17) we have the vΔ going around a single wire as

( ) 2v 1Nπ

Δ = (D.3)

so we have

Page 31: Propagation on Circulant Multiconductor Transmission Lines

31

( )0,

,0

0

4 20 01 1

v 1

21 2 cos1

4 22 1 cos

m

m

g m

g

uf

mN

nm

N

f

π

π π

Δ=

Δ

⎛ ⎞⎡ ⎤ ⎡ ⎤Ψ Ψ ⎛ ⎞⎜ ⎟+ − ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟Ψ Ψ ⎝ ⎠⎣ ⎦ ⎣ ⎦= ⎜ ⎟⎡ ⎤⎛ ⎞⎜ ⎟− ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦⎝ ⎠=

(D.4)

Noting the bicyclic form of this matrix we have

[ ]

[ ]

, ,

4 20 01 1

21 2 cos

14 2

2 1 cos

n m m ng gn m n mf f

n mN

nn mN

π

π π

≠ ≠=

⎛ ⎞⎛ ⎞−⎡ ⎤ ⎡ ⎤Ψ Ψ⎜ ⎟+ − ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟Ψ Ψ⎣ ⎦ ⎣ ⎦ ⎝ ⎠= ⎜ ⎟⎡ ⎤⎛ ⎞−⎜ ⎟−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

(D.5)

Besides being bicirculant, ,( )n mgf has some additional properties.

sre ( ),1

n m

Ng

mf

=≡ ≡∑ single row sum (independent of n)

= sce ( ),1

n m

Ng

nf

=≡ ≡∑ single column sum (independent of m) (D.6)

Interchanging rows and columns by a permutation matrix gives

( ) ( ) ( )

( ) ( ) ( )

,

,

, ,1

, ,1

sre

sce

n m

n m

N Tn m g n m

mN T

n m g n mn

P f P

P f P

=

=

=

= =

i i

i i

(D.7)

merely interchanging the order of the terms of the row and column sums. Similarly we have

,

2 2

1sre

n m

N

gm

f=

≡ ∑ (independent of n)

Page 32: Propagation on Circulant Multiconductor Transmission Lines

32

,

2 2

1sce

n m

N

gn

f=

= ≡ ∑ (independent of m) (D.8)

with the same permutation property as in (D.7).

Taking the inverse,

( ) ( ), ,

1n m n mf gg f

−= (D.9)

this is also a bicirculant matrix, and the properties above apply to it as well.

Appendix E. Eigenmodes of Bicirculant Matrices

The bicirculant character of the geometric-factor matrix imparts much symmetry to this matrix. Its general

properties are discussed in [3 (Appendices A and B). In particular the eigenmodes take the form

( ) [ ]1/2

2cos

22 1

cos

1

n

N

wNNN

β

πβ

π β

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎜ ⎟⎡ ⎤ ⎜ ⎟= ⎢ ⎥ ⎛ ⎞−⎣ ⎦ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎜ ⎟⎝ ⎠

(E.1)

1, 2, , 1 for even

211, 2, , for odd

2

N N

N Nβ

⎧ −⎪⎪= ⎨ −⎪⎪⎩

( ) [ ]1/2

2sin

22 1

sin

1

n

N

wNNN

β

πβ

π β

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎜ ⎟⎡ ⎤ ⎜ ⎟= ⎢ ⎥ ⎛ ⎞−⎣ ⎦ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎜ ⎟⎝ ⎠

Page 33: Propagation on Circulant Multiconductor Transmission Lines

33

( ) 1/2

2

111

for even

11

n Nw N N−

−⎛ ⎞⎜ ⎟+⎜ ⎟⎜ ⎟−

= ⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟+⎝ ⎠

(E.1)

( ) ( ) 1/20

11

(common mode)

1

n n Nw w N−

⎛ ⎞⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎝ ⎠

These have most of the eigenvalues βλ applying to two modes, and we can have

for 1,2, ,N Nβ βλ λ β−= = … (E.2)

Note that ( )n Nw is the common mode. In this normalization the common-mode current is

1/2;0

1

Nc N c n

nI I I N w

== = ∑ (E.3)

This is treated separately in the analysis.

The differential modes correspond to

1, , 1Nβ = −… (E.4)

Since the modes are biorthonormal we have

( ) ( ) ,1 for

11 for n nw w β ββ β

β ββ β′′

′=⎧= = ⎨ ′≠⎩

i (E.5)

Selecting β′ as N (the common mode) gives

( ) ( ) 1/2 1/2

; ;1

1

0 for

Nn n n NN

nw w N w N

N

β ββ

β

− −

== =

= ≠

∑i (E.6)

Page 34: Propagation on Circulant Multiconductor Transmission Lines

34

and hence

;1

0 for N

nn

w Nβ β=

= ≠∑ (E.7)

Thus all the differential modes have average value zero. Removing (subtracting) the common mode then leaves the

sum of the remaining currents equal to zero since they are expanded in terms of N – 1 eigenmodes, all of which have

average value zero.

The eigenvalues of bicirculant matrices are calculable from

( ) ( )

( ) ( ) ( ),1

for 1, ,

n m

n n

Ng n n

w w N

f w w

β β β

β β ββ

λ β

λ=

= =

= ∑

i …

(E.8)

The inverse matrix is given by

( ) ( ) ( ) ( ), ,

1 1

1n m n m

Nf g n ng f w wβ β β

βλ

− −

=≡ = ∑

1 eigenvalues for 1. , Nβλ β− = = … (E.9)

We can also note that for a bicirculant matrix, such as ,( )n mX , we have

( ) ( ) ( )

( ) ( ) ( )

( )

,1

* *,

1

real vector

Nn m n n

Nn m n n

n

X w w

X w w

w

β β ββ

β β ββ

β

λ

λ

=

=

=

=

=

∑ (E.10)

So we have

( ) ( ) ( ) ( )

( ) ( )

* *, , , ,

*

1

(commute)

real matrix

n m n m n m n mN

n n

X X X X

w wβ β β ββ

λ λ=

=

= =∑

i i (E.11)

Page 35: Propagation on Circulant Multiconductor Transmission Lines

35

Appendix F. Terms in the Product Integral

From (5.1) we have an individual term in the product integral

( )( )

( ) [ ] ( )( ), ,v,, ,v ,v1

11!

gn m un m

F z zp

n m gu upe z F z

p

γγ

⎛ ⎞− Δ ∞⎜ ⎟

⎝ ⎠

=

⎛ ⎞⎛ ⎞= + Δ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ (F.1)

Note that

( )( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )

22 , , , ,

, 1,v , ,,,

0 1 0

0 10

n m gn m n m n mgn m u n m n mg n mn m

f zF z

f z−

⎛ ⎞ ⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟ ⎝ ⎠⎝ ⎠

(F.2)

for all z , and likewise for any even p. Next we have

( )( ) ( )( ) ( )( )

( )( )

, , ,,v ,v ,v 1

, ,v for odd

p

g g gn m n m n mu u u p

gn m u

F z F z F z

F z p

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞⎜ ⎟⎝ ⎠

=

=

(F.3)

This allows us to write

( )( )( ) ( )

( )( ) ( )

( ) ( )( ) [ ]( )

, ,v

, ,v

, ,v

, ,v

sinh

2, ,v

1 cosh

1 O

as 0

gn m u

gn m u

gn m u

F z zn m u

F z z

F z zn m u

e z

z

z

γ

γ

γ

γ

γ

γ

⎛ ⎞− Δ⎜ ⎟

⎝ ⎠

⎛ ⎞Δ⎜ ⎟

⎝ ⎠

⎛ ⎞Δ⎜ ⎟

⎝ ⎠

⎛ ⎞= Δ⎜ ⎟⎝ ⎠

⎛ ⎞= − = Δ⎜ ⎟⎝ ⎠

Δ →

(F.4)

Page 36: Propagation on Circulant Multiconductor Transmission Lines

36

Appendix G. Stochastic Properties of Complex Matrices

G.1. General

Consider a complex matrix of the form

( ) ( ) ( ), , ,n m n m n ma b j c= +

( ) ( ), ,,n m n mb c = real N x N matrices (G.1)

As before (Appendix B) the average is a linear operation

( ) ( ) ( )

( ) ( ) ( )

, , ,

, , , , ,21 11 1

Tn m n m n m

n m n m n m n m n mn n

avg P a P

a a uN N N

⎛ ⎞⎜ ⎟⎝ ⎠

⎡ ⎤ ⎡ ⎤⎡ ⎤= + −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

∑ ∑

i i

(G.2)

So we have

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,T T

n m n m n m n m n m n mavg P b P j avg P c P⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

i i i i (G.3)

which is complex valued. Stated another (shorter) way we have

( )( ) ( ) ( ) ( ), , , , , ,2,

1 11 1n m n m n m n m n m n mkk n n mn m

avg a a a uN N N

⎡ ⎤⎢ ⎥⎡ ⎤

⎡ ⎤⎢ ⎥= + −⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦

∑ ∑ (G.4)

For the variance we need some measure of the deviation of , ,( ) ( )n m n ma avg a− which we would like to be

real valued (like a 2-norm). For a complex vector ( )nx one definition is [10]

( )( ) ( ) ( )( ) ( ) ( ) *var n n n n nx avg x avg x x avg x⎛ ⎞⎡ ⎤ ⎡ ⎤≡ − −⎜ ⎟⎣ ⎦⎣ ⎦⎝ ⎠i (G.5)

This gives a real-valued variance.

Page 37: Propagation on Circulant Multiconductor Transmission Lines

37

We need to extend the variance to complex-valued matrices. For this purpose we note that for our NMTL

problem we have a random matrix which operates on (multiplies) a vector of sources which we can consider as a

fixed (not random) complex valued vector ( )ny (N components). So let

( ) ( ) ( ),n n m nk kx a y= i (G.6)

represent the signals propagating down the transmission line. Our random variables enter through ,( )n m ka , which

represents the kth choice of our transmission matrix.

The average value of ( )n kx is simply

( )( ) ( ) ( ),n n m nk kk kavg x avg a y

⎡ ⎤= ⎢ ⎥

⎢ ⎥⎣ ⎦i (G.7)

This is consistent with (G.2, (G.3), except to note that this works for complex-valued matrices as well. Note further

that

( )( ) ( ), ,T

n m n mk kk kavg a avg a⎛ ⎞= ⎜ ⎟

⎝ ⎠ (G.8)

i.e., it is symmetric. With

( ) ( ) ( ), , ,n m n m n mk k ka b j c= + (G.9)

then we have

( )( ) ( ) ( ), , ,n m n m n mk k kk k kavg a avg b j avg c

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

(G.10)

both parts being symmetric.

The variance is more problematical. Using the definition in (G.4) we have the usual form for vectors [10]

Page 38: Propagation on Circulant Multiconductor Transmission Lines

38

( )( ) ( ) ( )( ) ( ) ( )( )*

var n n n n nk k k k kk k k

x avg x avg x x avg x′ ′

⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟= − −⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

i (G.11)

Substituting from (G.6) we have

( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( ) ( )

*, ,

, ,

*,

varT

n n n m n mk k kk k

n m n m nk kk

n n m n

x avg y a avg a

a avg a y

y D y

′′

′′

⎛ ⎡ ⎤⎜= −⎢ ⎥⎜ ⎢ ⎥⎣ ⎦⎝⎞⎡ ⎤

− ⎟⎢ ⎥ ⎟⎢ ⎥⎣ ⎦ ⎠

=

i

i i

i i

( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( )

( ) ( )( ) ( )

, , , , ,

†,

, ,

, ,

, ,

(Self adjoint)

(symmetric)

(skew symmetric)

n m n m n m n m n mk k k kk k k

n m

n m n mT

n m n mT

n m n m

D avg a avg a a avg a

D

E j F

E E

F F

′ ′′ ′

⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟= − −⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

=

= +

=

= −

i

(G.12)

So one choice of variance for an N x N matrix is just ,( )n mD . Note that if *,( ) ( ) ( )n n m ny D yi i is used (equally

valid) then *,( )n mD appears instead.

Breaking ,( )n m ka into real and imaginary parts we have

Page 39: Propagation on Circulant Multiconductor Transmission Lines

39

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )

, , , ,

, , , ,

, , , ,

, , ,

n m n m n m n mk k k kk kT

n m n m n m n mk k k kk kT

n m n m n m n mk k k kk kT

n m n m n m nk k kk k

a avg a a avg a

b avg b b avg b

c avg c c avg c

j b avg b c avg c

′ ′′ ′

′ ′′ ′

′ ′′ ′

′′ ′

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤+ − −⎢ ⎥

⎢ ⎥⎣ ⎦

i

i

i

i ( )( )

( ) ( )( ) ( ) ( )( )( ) ( )

,

, , , ,

, ,

m k

T

n m n m n m n mk k k kk k

n m n mk k

j c avg c b avg b

E F

′ ′′ ′

⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= +

i

(G.13)

G.2 Bicirculant matrices

Noting that the averages are symmetric and the matrices are bicirculant we have

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( ) ( )

2 2

, , , , ,

2

, , , , , , ,

2

, , , , , ,

n m n m n m n m n mk k k k kk k

n m n m n m n m n m n m n mk k k k k k kk k

n m n m n m n m n m n mk k k k k kk

E b avg b c avg c

b b avg b avg b b b avg b

c c avg c avg c c c

′ ′′ ′

′ ′ ′′

′ ′′

⎡ ⎤ ⎡ ⎤= − + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤= + − −⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ + − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

i i i

i i ( )( ),n m kkavg c

′⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦i

(G.14)

where the ,( )n m kb are assumed bicirculant (hence symmetric). Noting the property of the average in (G.4) we have

( ) ( )( )

( ) ( )

, ,

, ; , ; , ; , ; , ,2,

1 1

n m n mk kk

n m k n m k n m k n m k n m n m kn n m m

n m

b avg b

b b b b u bN N N

′′

⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤⎢ ⎥ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑ ∑

i

i

(G.15)

where for this result we have used the property of bicirculant matrices that all row and column sums are the same.

Then the last term in (G.15) is just the transpose and

Page 40: Propagation on Circulant Multiconductor Transmission Lines

40

( ) ( )( ) ( )( ) ( )

( )

( ) ( )

, , , ,

, ; ,

, ; , ; , ,2,

12

12

n m n m n m n mk k k kk k

n m k n m kn

n m k n m k n m n m kn m nn m

b avg b avg b b

b bN

b b u bN N

′ ′′ ′

⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎡ ⎤

= ⎢ ⎥⎢ ⎥⎣ ⎦⎡ ⎤⎢ ⎥ ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥+ − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∑

i i

(G.16)

Similarly we have

( )( )

( )

( ) ( ) ( ) ( )

( ) [ ]( ) ( )

2

,

2

, ; ,

, , , ,2,

2

, , ,2,

12 1

1 12 1

1 2 1

n m kk

n m k n mn

n m n m n m n mn n m

n m

n m n m n mn m

avg b

bN

b b uN N N

b N uN N

⎡ ⎤⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤= ⎢ ⎥

⎢ ⎥⎣ ⎦⎡ ⎤⎢ ⎥⎡ ⎤

⎡ ⎤⎢ ⎥+ −⎢ ⎥ ⎣ ⎦⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤⎢ ⎥+ − +⎣ ⎦⎢ ⎥−⎣ ⎦

∑ ∑

(G.17)

So the bicirculant property significantly simplifies the result. So (G.15) is reduced to three symmetric matrices for

,( )n m kb and three symmetric matrices for ,( )n m kc , exactly as in (G.18) with b replaced by c.

Next consider

Page 41: Propagation on Circulant Multiconductor Transmission Lines

41

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

( )

, , , , ,

, , , ,

, , , ,

, , , ,

,

n m n m n m n m n mk k k k kk k

n m n m n m n mk k k kk k

n m n m n m n mk k k k

n m n m n m n mk k k kk k

n m kk

F b avg b c avg c

c avg c b avg b

b c c b

b avg c c avg b

avg b

′ ′′ ′

′ ′′ ′

′ ′′ ′

′′

⎡ ⎤ ⎡ ⎤= − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤

− − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= −

⎡ ⎤ ⎡ ⎤− +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎡

− ⎢⎣

i

i

i i

i i

( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )

, , ,

, , , ,

n m n m n mk k kk

n m n m n m n mk k k kk k k k

c avg c b

avg b avg c avg c avg b

′ ′ ′′

′ ′ ′ ′′ ′ ′ ′

⎤ ⎡ ⎤+⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎦ ⎣ ⎦⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

i i

i i

(G.18)

Noting the average in (G.4) the last terms give

( )( ) ( ) ( )( ) ( )( ), , , ,

0

n m n m n m n mk k k kk k k kavg b avg c avg c avg b

′ ′ ′ ′′ ′ ′ ′

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦=

i i (G.19)

Similarly due the commuting property of ,(1 )n m and ,( )n mu with bibirculant matrices we have

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

, , , ,

, , , ,

0

0

n m n m n m n mk k k kk k

n m n m n m n mk k k kk k

b avg c avg b b

c avg c avg c b

′ ′′ ′

′ ′ ′′ ′

⎡ ⎤ ⎡ ⎤− +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦=

i i

i i

(G.20)

This leaves

( ) ( ) ( ) ( ) ( )

( ) ( ), , , , ,

, ,, (commutator)

n m n m n m n m n mk k k k k

n m n mk k

F b c c b

b c

= −

⎡ ⎤= ⎢ ⎥⎣ ⎦

i i (G.21)

which is zero if the two matrices commute.

Page 42: Propagation on Circulant Multiconductor Transmission Lines

42

Note now that circulant matrices have the same eigenvectors (but generally different eigenvalues); the

commutator is then zero (they commute) giving

( ) ( ), ,0n m n mkF = (G.22)

Therefore,

( ) ( )( ) ( ) ( )( )

( )

, , , ,

, real matrix

n m n m n m n mk k kk k

n m k

a avg a a avg a

E

′ ′′ ′

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= ≡

i (G.23)

From (G.15) then we need to compute the variances of ,(b )n m and ,(c )n m separately and add. This allows the

alternate formulae in (B.11) to be used in each case (more compact).

As special cases we can have

( ) ( )( ) [ ]( )

( )

, ,

, 0 ,

1

(real)

from

n m n m

n m M n m

b

c k z z X

jk s jγ ω

=

= −

= =

(G.24)

Then we have

( ) ( ) ( ) ( ) ( )

( )( )[ ] ( )( )

2, , , , ,

,

20 ,

var

var

var

Tn m n m n m n m n m

n m

M n m

P a P avg c avg c

c

k z z X

⎛ ⎞⎛ ⎞ ⎡ ⎤= −⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠

=

⎡ ⎤= −⎣ ⎦

i i

(G.25)

The reader can note that these formulae reduce to those in [2] for real ,( )n ma .

Page 43: Propagation on Circulant Multiconductor Transmission Lines

43

References

1. C. E. Baum,”Design of a Pulse-Radiating Dipole Antenna as Related to High-Frequency and Low-Frequency Limits”, Sensor and Simulation Note 69, January 1969.

2. F. C. Breslin, “Stochastic Behavior of Random Lay Cables”, Interaction Note 442, July 1984.

3. J. B. Nitsch, C. E. Baum, and R. J. Sturm, “The Treatment of Commuting Nonuniform Tubes in Multiconductor-Transmission-Line Theory”, Interaction Note 481, May 1990.

4. C. E. Baum, J. B. Nitsch, and R. J. Sturm, “Nonuniform Multiconductor Transmission Lines”, Interaction Note 516, February 1996.

5. C. E. Baum, “Symmetric Renormalization of the Nonuniform Multiconductor-Transmission-Line Equations with a Single Modal Speed for Analytically Solvable Sections”, Interaction Note 537, January 1998.

6. C. E. Baum, “High-Frequency Propagation on Nonuniform Multiconductor Transmission Lines”, Interaction Note 589, October 2003.

7. C. E. Baum, “Aspects of Random-Lay Multiconductor Cable Propagation Which Are Not Statistical”, Interaction Note 595, December 2004; Proc. 18th Zurich EMC Symposium, Munich, September 2007, pp. 389-392.

8. S. Steinberg and C. E. Baum, “Lie-Algebraic Representations of Product Integrals of Variable Matrices”, Mathematics Note 92, September 1998.

9. F. R. Gantmacher, The Theory of Matrices, Chelsea, 1960.

10. A. Papoulic, Probability, Random Variables, and Stochastic processes, McGraw Hill, 1965.

11. J. D. Dollard and C. N. Friedman, Product Integration, 1979.

12. E. G. Farr and C. E. Baum, “Radiation from Self-Reciprocal Apertures”, ch. 6, pp. 281-308, in C. E. Baum and H. N. Kritikos (eds.), Electromagnetic Symmetry, Taylor & Francis, 1995.

Page 44: Propagation on Circulant Multiconductor Transmission Lines

44