propiedades fÍsico-mecÁnicas de nueve tableros...

95
UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES " PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS CONTRACHAPADOS DE PINO, DE TRES FABRICANTES NACIONALES" TESIS PROFESIONAL Que como requisito parcial para obtener el título de INGENIERO FORESTAL presenta: ELIA LÓPEZ SÁNCHEZ Chapingo, Texcoco, Edo. de México Noviembre del 2000

Upload: others

Post on 28-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

UNIVERSIDAD AUTÓNOMA CHAPINGO

DIVISIÓN DE CIENCIAS FORESTALES

" PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS CONTRACHAPADOS DE PINO, DE TRES FABRICANTES NACIONALES"

TESIS PROFESIONAL

Que como requisito parcial

para obtener el título de

INGENIERO FORESTAL

presenta:

ELIA LÓPEZ SÁNCHEZ

Chapingo, Texcoco, Edo. de México Noviembre del 2000

Page 2: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

i

ÍNDICE GENERAL Página

ÍNDICE GENERAL.....................................................................................................................i

ÍNDICE DE CUADROS ..........................................................................................................iii

ÍNDICE DE FIGURAS................................................................................................................v

RESUMEN........................................................................................................................……vii

SUMMARY......................................................................................................................…....viii

1 INTRODUCCIÓN................................................................................................................1

2 OBJETIVOS.........................................................................................................................3

2.1. Objetivo general.............................................................................................................3

2.2. Objetivos específicos.....................................................................................................3

3 ANTECEDENTES...............................................................................................................4

3.1 Descripción general de los tableros a base de madera...................................................4

3.2 Características y propiedades de los tableros contrachapados......................................5

3.3 Normas para tableros contrachapados...........................................................................7

3.4 La industria de los tableros contrachapados en México..............................................10

3.5 Estudios realizados para tableros contrachapados.......................................................11

4 MATERIALES Y MÉTODOS...........................................................................................13

4.1 Materiales ................................................................................................................13

4.2 Metodología..............................................................................................................14

4.2.1 Evaluaciones y ensayos a realizar......................................................................14

4.2.2 Obtención de las probetas..................................................................................15

4.2.3 Calidad de las chapas y armado de tableros.......................................................16

4.2.4 Espesor de los tableros.......................................................................................16

4.2.5 Escuadría de los tableros....................................................................................17

4.2.6 Adherencia.........................................................................................................18

4.2.7 Densidad ...........................................................................................................19

4.2.8 Contenido de humedad.......................................................................................20

4.2.9 Ensayo de flexión estática..................................................................................21

4.2.10 Ensayo de tracción paralela a la fibra................................................................24

4.2.11 Ensayo de cizalle................................................................................................26

4.2.12 Análisis estadístico de los resultados.................................................................28

Page 3: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

ii

5 RESULTADOS Y DISCUSIÓN.........................................................................................30

5.1 Calidad de las chapas y armado de tableros.................................................................30

5.2 Espesor de los tableros................................................................................................31

5.3 Escuadría de los tableros..............................................................................................32

5.4 Adherencia...................................................................................................................33

5.5 Densidad ....................................................................................................................35

5.6 Contenido de humedad................................................................................................39

5.7 Ensayo de flexión........................................................................................................41

5.8 Ensayo de tracción paralela a la fibra.........................................................................47

5.9 Ensayo de cizalle.........................................................................................................49

6 CONCLUSIONES...............................................................................................................56

7 RECOMENDACIONES......................................................................................................59

8 BIBLIOGRAFÍA CITADA.................................................................................................60

9 ANEXOS.............................................................................................................................64

Page 4: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

iii

ÍNDICE DE FIGURAS Página

1. Distribución de cuadrantes para la obtención de las probetas para ensayo........................15

2. Esquema de la toma de mediciones equidistantes en los tableros evaluados.....................16

3. Medición del espesor en los tableros antes de ser seccionados...........................................17

4. Esquema de medición de la escuadría en los tableros........................................................18

5. Obtención de las probetas para adherencia, a partir del cuadrante “A” de la figura 1........18

6. Obtención de las probetas para la determinación de la densidad a partir de la sección “D”

de la figura 1........................................................................................................................19

7. Introducción de las probetas de densidad al horno de laboratorio......................................20

8. Obtención de las muestras para la determinación del contenido de humedad a partir de

las secciones CH de la figura 1...........................................................................................20

9. Esquema de ensayo de flexión estática................................................................................21

10. Forma y dimensiones de las probetas para el ensayo de tracción. ......................................25

11. Esquema de tracción paralela a la fibra en contrachapados con mordazas especiales para

tracción y cortante en tableros contrachapados...................................................................26

12. Obtención de las probetas para el ensayo de cizalle, a partir de la sección “C” de la

figura1..................................................................................................................................27

13. Forma y dimensiones de las probetas para el ensayo de cizalle .........................................27

14. Esquema de prueba de cizalle............................................................................................28

15. Valores medios por espesor evaluado................................................................................. 32

16. Porcentaje de probetas bajo prueba de adherencia.............................................................35

17. Valores medios de densidad normal por espesor................................................................36

18. Valores medios de densidad anhidra por espesor...............................................................38

19. Valores medios del contenido de humedad por espesor evaluado......................................40

20. Valores medios de esfuerzo en el límite de proporcionalidad por espesor.........................46

21. Valores medios del módulo de ruptura por cada espesor...................................................46

22. Valores medios del módulo de elasticidad por espesor.......................................................47

23. Valores promedio de tracción paralela a la fibra por espesor..............................................49

24. Carga máxima promedio en de cizalle por espesor evaluado..............................................51

Page 5: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

iv

25. Carga media por unidad de superficie obtenida bajo prueba de cizalle por espesor

evaluado...............................................................................................................................51

26. Porcentajes de probetas falladas y no falladas en la prueba de cizalle o cortante.............53

Page 6: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

v

ÍNDICE DE CUADROS Página

1. Clasificación de los tableros a base de madera según el INFOR (1987)...............................4

2. Dimensiones nominales y sus tolerancias para los tableros contrachapados según la norma

NMX-G-18-1976...................................................................................................................8

3. Clasificación de los tableros contrachapados según la norma APA PS1-83

(Poblete,1990)........................................................................................................................8

4. Grados de tableros para interiores y exteriores según APA PSI-83

(Poblete,1990)........................................................................................................................9

5. Combinaciones de las vistas para los tableros tipo1 y tipos 2 y 3 según la Norma NMX-

G-326-1978 (SECOFI,1978)................................................................................................10

6. Calidad en los tableros contrachapados sujetos a prueba....................................................29

7. Valores medios de espesor real por espesor evaluado nominal..........................................31

8. Escuadría media de los tableros evaluados (cm).................................................................33

9. Adherencia de los tableros..................................................................................................34

10. Valores medios de densidad normal...................................................................................35

11. Análisis de varianza para densidad normal ........................................................................36

12. Prueba t para comparación de medias de densidad normal (g/cm3)...................................36

13. Valores medios de densidad anhidra (g/cm3) en los tableros evaluados............................37

14. Análisis de varianza para densidad anhidra........................................................................37

15. Prueba de t para medias entre espesores de los tableros evaluados.....................................38

16. Valores medios de contenido de humedad (%)....................................................................39

17. Análisis de varianza del contenido de humedad................................................................40

18. Prueba de t para las medias del contenido de humedad......................................................40

19. Valores medios de esfuerzo en el límite de proporcionalidad por espesor (kg/cm2)...........42

20. Valores medios del módulo de ruptura por espesor evaluado(kg/cm2).............................42

21. Valores medios del módulo de elasticidad por espesor (kg/cm2).......................................42

22. Análisis de varianza para esfuerzo en el límite de proporcionalidad.................................43

23. Análisis de varianza para módulo de ruptura....................................................................43

24. Análisis de varianza para módulo de elasticidad..............................................................44

25. Prueba de t para el ELP por espesor....................................................................................44

Page 7: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

vi

26. Prueba de t para el MOR por espesor...............................................................................45

27. Prueba de t para el MOE por espesor................................................................................45

28. Valores medios de tracción paralela en los tableros evaluados.........................................47

29. Análisis de varianza para tracción paralela........................................................................48

30. Prueba de t para medias de tracción paralela a la fibra por espesor....................................48

31. Valores medios de carga máxima obtenida en prueba de cizalle (kg)................................49

32. Valores medios de carga por unidad de superficie en prueba de cizalle (kg/cm2)............50

33. Análisis de varianza para carga máxima en cizalle (kg).................................................... 50

34. Análisis de varianza para carga por unidad de superficie en cizalle ((kg/cm2).................50

35. Prueba de t para medias de carga máxima en cizalle (kg)...................................................51

36. Prueba de t para medias de carga por unidad de superficie en cizalle ((kg/cm2).................51

37. Origen y porcentajes de falla en las probetas bajo cizalle...................................................52

38. Ficha descriptiva de las propiedades físicas y mecánicas evaluadas en cada tablero

estudiado..............................................................................................................................54

39. Tabla comparativa de cuatro propiedades en madera sólida de pino y 3 tipos de tableros a

base de madera.....................................................................................................................55

Page 8: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

vii

RESUMEN

En el presente trabajo se evaluaron algunas propiedades físicas y mecánicas de tres

tableros contrachapados de pino de cada uno de los siguientes espesores 3, 6 y 9 mm

provenientes de tres diferentes fabricantes ubicados en las regiones norte, centro y sur del País.

Se determinó que los tableros contrachapados de pino producidos en tres empresas diferentes

cumplen con las especificaciones de dimensiones y calidad que establece la norma mexicana

NMX-C-326-1978 “Tableros contrachapados de pino”, se obtuvieron valores de densidad,

adherencia, resistencia mecánica a flexión estática, tracción y cizalle y se compararon con los

resultados obtenidos en otros trabajos. El estudio mostró que la calidad de las chapas fue

subvalorada, así mismo el espesor de los tableros se encontró fuera de las especificaciones

establecidas por la norma antes mencionada. En superficie el promedio general corresponde al

especificado según dimensiones nominales, no así la escuadría donde el 89% de los tableros

no presentaron la correspondiente diagonal. La adherencia fue encontrada excelente para el

80% de los tableros y para el restante 20% adecuada. Los valores promedio de densidad

normal se registraron en 0.62 g/cm3 para el espesor de 3 mm y para los de 6 y 9 mm en 0.58

g/cm3 con lo clasificándose como de densidad baja a media según la FAO (1983). En flexión

estática el promedio de los valores inferiores de ELP, MOR, y MOE respectivamente fueron

99.430, 289.034 y 105,948.89 kg/cm2 para el espesor de 3 mm; de 246.019, 313.830 65 y

65,132.39 kg/cm2

para el espesor de 6 mm y 209. 473, 470.295 y 115,122.86 kg/cm2 para el

de 9 mm; conforme a Echenique y Plumtre (1994). Los valores obtenidos de ELP y MOR se

clasificaron en el nivel bajo de resistencia a la flexión mientras que los valores del MOE se

clasifican desde bajo a muy alto de tal clasificación. En el ensayo de tracción paralela a la

fibra el rango de valores fue de 4.311 a 11.609 kg/cm2. En la prueba de cizalle los valores de

carga máxima fueron 112.429, 45.954 y 83.952 kg respectivamente para cada espesor

estudiado, 3, 6 y 9 mm; la carga por unidad de superficie fue de 17.22, 7.162 y 13.091 kg/cm2

en orden para cada espesor. En general, de los fabricantes, el de la región norte presentó el

mejor tablero de 6 mm, el de la región centro el de 3 mm y el de la región sur del de 9 mm.

Page 9: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

viii

SUMMARY

In currently work to evaluated some physical and mechanical properties of boards

plywoods of 3, 6 and 9 mm coming from three different manufacturers were evaluated located

in the regions north, center and south of the country. The objectives consisted on determining

if the boards pine plywoods taken place in three different companies to comply with the

specifications of dimensions and quality that it establishes the norm Mexican NMX-C-326-

1978 “Boards pine plywoods", besides giving to know the values of density, adherence,

mechanical resistance to static flexion, traction and shearing for the rehearsed boards. The

results were compared with those obtained in other works. The study showed that the quality

of the foils was undervalued, similarly the thickness of the boards was outside of the

specifications established down by the norm NMX-C-326-1978. In surface the general average

corresponds the one specified according to nominal dimensions, in seize the diagonal where

89% of the boards didn't present the corresponding measure. As the same norm, the adherence

was opposing excellent for 80% of the boards and for the remaining 20 appropriate%. The

values average of normal density registered in 0.62 g/cm3 for the thickness of 3 mm and for

those of 6 and 9 mm in 0.58 g/cm3 with that which the plywoods are classified in the boards of

low density to stocking according to the FAO (1983). In static flexion the average of values

lower of ELP, MOR, and MOE respectively were 99.430, 289.034 y 105,948.89 kg/cm2 for

the thickness of 3 mm, 246.019, 313.830 y 65,132.39 kg/cm2for that of 6 mm and 209.473,

470.295 y 115,122.86 kg/cm2 for that of 9 mm; According to Novelo (1964) the values of

ELP and of the MOR they registered in the low level of resistance to the flexion and the values

of the MOE embrace the range described by the levels low to very high of such a

classification. In the rehearsal of parallel traction to the fiber the range of values went from

4.311 to 11.609 kg/cm2, same that don't reach the suitable value average of 18 kg/cm

2 for this

test for Vignote and Jiménez (1996). In the shearing test the values of load maxim were

112.429, 45.954 and 83.952 kg respectively for each studied thickness, 3, 6 and 9 mm; The

load for surface unit was of 17.22, 7.162 and 13.091 kg/cm2 in order for each thickness. In

general, of the makers, that of the north region presented the best board of 6 mm, that of the

region center that of 3 mm and that of the south region of that of 9mm.

Page 10: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

1

1. INTRODUCCIÓN

La madera presenta una serie de características y propiedades ventajosas en su empleo

respecto de otros materiales. Sin embargo también presenta las desventajas propias de su

origen, como los defectos naturales y su variabilidad dimensional ante cambios de humedad

en el ambiente en que se encuentre.

Por las características inherentes a la madera se tenía por un material cuyas

propiedades no podían ser controladas o modificadas por el hombre, sin embargo, esto ha

cambiado mediante el manejo integrado de los bosques y posteriormente con la manipulación

de la materia prima durante el proceso industrial. Lo anterior establece la pauta de un mejor

aprovechamiento de la madera logrando a la par cierta disminución de la presión existente

sobre los recursos forestales.

Dentro de las tecnologías propias del subsector forestal, la industria de los tableros se

muestra como alternativa para la optimización en el empleo de la madera, además de que

tecnológicamente tienden a sustituir a la madera sólida por las características que presentan,

es decir, características más isotrópicas, propiedades tecnológicas de mayores magnitudes,

mayor estabilidad aunadas a la opción de poder obtener tableros de grandes dimensiones.

La industria de los tableros es considerada como de gran importancia dentro del sector

forestal por la gran cantidad de materia prima que consume, por los empleos que genera, por

las inversiones de capital que representa y por las actuales perspectivas de crecimiento que

muestra. (CNIF, 1997.)

Los productos generados por la industria de los tableros, como la mayoría de los

productos de la industria forestal, no presentan normas y /o especificaciones estándares claras

y precisas que regulen su producción y aunque se saben los beneficios de esos productos, no

se conocen las magnitudes de esos beneficios o ventajas que los tableros tienen en relación

con otros productos, esto aunado a una falta de interés y posiblemente aún a la carencia de

los recursos suficientes y el equipo adecuados para la determinación de dichas magnitudes o

valores.

Page 11: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

2

En general, la industria mexicana se muestra en gran desventaja respecto a países

exportadores como Estados Unidos y Canadá ,con quienes comparte un Tratado de Libre

Comercio (TLC) o como Indonesia y Japón entre otros (FAO, 1990), que desde hace ya

muchos años han establecido una efectiva normalización y control de sus productos,

consiguiendo con ello efectivos beneficios para sus industrias y recursos con los que cuentan

(ANPMP, 1950).

En este sentido y tratando de que se tenga como punto de partida un conocimiento

cercano a cuáles son las características y propiedades de los tableros contrachapados que se

producen nacionalmente, se ha iniciado una línea de investigación sobre los tableros a base de

madera producidos en México, a desarrollar en diferentes etapas. En este caso y con el

presente trabajo se propone evaluar las características y propiedades de tres tableros

contrachapados de pino de cada uno de los espesores de 3, 6 y 9 mm que se ofrecen en el

comercio para uso en interiores, abarcando tres proveedores de las regiones norte, centro y sur

que surten a las madererías del centro del país. Se evalúan las propiedades mecánicas de

flexión (ELP, MOR y MOE), cizalle y tracción paralela a la fibra, previamente valoradas las

características físicas de densidad y contenido de humedad junto con la adherencia y calidad y

escuadría de los tableros. Estos resultados se presentan tan solo como un indicador de las

características y propiedades de los contrachapados debido al número limitado de los tableros

seleccionados.

Este trabajo, junto con otros, busca mostrar una parte de la panorámica general que se

espera obtener de la industria nacional de los tableros producidos y que a su vez permita

obtener una valoración para cada tipo de tablero y para cada fabricante en particular.

Page 12: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

3

2. OBJETIVOS.

2.1 General:

Evaluar y dar a conocer la calidad y las propiedades físico-mecánicas que

presentan nueve tableros contrachapados de pino en sus espesores de 3, 6 y 9

mm producidos en tres regiones del País.

2.2 Específicos:

a) Determinar si los tableros ensayados, cumplen con las especificaciones de

dimensiones y calidad que establece la norma mexicana para los tableros

contrachapados de pino.

b) Estimar los valores de adherencia, densidad, resistencia mecánica a flexión,

tracción y cizalle que poseen los tableros contrachapados evaluados.

Page 13: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

4

3. ANTECEDENTES

3.1 Descripción general de los tableros a base de madera.

El Instituto Forestal de Santiago de Chile (INFOR, 1987), clasifica a los diferentes tipos

de tableros a base de madera conforme se especifica en el Cuadro 1.

Cuadro 1.- Clasificación de los tableros a base de madera según el INFOR( 1987) TIPOS DENSIDAD APROXIMADA (kg/m

3)

Tableros contrachapados (Plywood)

-A base de coníferas (Contrachapados de maderas

suaves)

-A base de latifoliadas (Contrachapados de maderas

duras)

Normalmente entre 400 y 700 dependiendo básicamente

de la especie.

Tablero de fibra (fiberboards)

-Aislante

-De densidad media (incluido el MDF)

-Duros (insulation boards)

-Extraduros (Special densified hardboards)

20 a 400

>400 a 800

>800 a 1200

>1200 a 1450

Tablero de partículas (particle boards)

-De baja densidad

-De densidad media

- Tableros de partícula tradicionales

- Tableros de partícula no tradicionales

-De hojuelas (Flakeboards o waferboards)

-De hebras u hojuelas orientadas (Oriented

strandboards u OSB)

-De alta densidad

>=400

>400 a 800

600 a 800

>800

Combinaciones entre tableros y/o con otros

materiales Variable

Page 14: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

5

3.2 Características y propiedades de los tableros contrachapados

Los enchapados poseen una serie de ventajas sobre las de la madera maciza que se

pueden resumir de la forma siguiente: uniformidad mayor en las propiedades de resistencia a

lo largo y ancho del panel por el tipo de acomodo y la continuidad en sus fibras; reducción e

igualdad de las contracciones y dilataciones logrando mayor estabilidad dimensional;

aumento de resistencia el cuarteo y agrietado de los extremos permitiendo que puedan ponerse

clavos y tornillos más cerca del extremo que cuando se trata de madera maciza; pequeña o

nula tendencia a torcerse o alabearse si el contrachapado está bien construido; la chapa permite

un uso más amplio de maderas caras (preciosas) y es el único medio de emparejar dibujos

logrando excelentes resultados que se añaden a la variabilidad de los posibles efectos

decorativos que se pueden obtener; permite hacer superficies curvas e irregulares, imposibles

de conseguir con madera maciza; su ligereza le da una mayor manejabilidad al ser trabajada y

da la facilidad de ser cortada en cualquier forma que se desee (Panshin, 1959). Aunado a lo

anterior, se hace mención de un supuesto mejor rendimiento en el aprovechamiento de la

madera para contrachapados que para madera aserrada (Zamudio, 1977).

Para efectos del presente trabajo y conforme a las normas NMX-C-326-78 y NMX-

G-18-1976, se entenderá por tablero contrachapado (triplay) a un conjunto de chapas secas

ensambladas entre sí de tal manera que el hilo de la madera de una chapa se encuentre en

ángulo de 90º con respecto a la de la otra y pegadas mediante el uso de aglutinantes, ya sean

resinas sintéticas, vegetales o animales, bajo temperatura y alta presión para formar un

tablero cuya resistencia sea igual o mayor que la propia madera (SECOFI. 1978).

Se constituyen generalmente de un número impar de chapas. La vista y la trascara y

todas las capas numeradas en non generalmente están orientadas con la dirección de la fibra

paralela a la dirección larga del tablero. Las capas numeradas en par presentan un ángulo recto

respecto del alma del tablero y de las caras. Estas hojas se conocen como chapas interiores o

contramallas y no ejercen mucha influencia sobre las propiedades mecánicas del tablero. La

forma alternada de la dirección de la fibra de cada chapa contigua y el número impar de

chapas equilibra las deformaciones, minimiza contracciones, pandeos y rajaduras del tablero

(Zamudio, 1977)

Page 15: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

6

Se aplica también el término contrachapado a paneles en los que el elemento de sostén

es una tabla de cierto grosor predeterminado y va en lugar del alma corriente de chapa.

Aunque el contrachapado es una forma de construcción laminada, el término laminado

aplicado a madera indica paneles multifolios, vigas y otras estructuras en las que la dirección

de las vetas de todas las partes de conjunto son paralelas (Panshin,1959).

Devlieger (1990) indica que la chapa de buena calidad puede definirse como

uniformemente lisa, de rigidez uniforme, razonablemente apretada, libre de manchas y

defectos anatómicos, de un grosor homogéneo (espesor constante) y libre de marcas de

cuchilla. En estas condiciones, la cara suelta de la chapa es físicamente idéntica a la cara

apretada. Las características de calidad determinan en el proceso de producción de tableros el

uso de la chapa, es decir, determinará su empleo como cara, trascara, alma o contramalla. Los

defectos de la chapa ocurren con frecuencia durante su producción y se hacen evidentes

posteriormente a su salida del torno o en los productos fabricados afectando su calidad

Según Muñoz (1992), describe los defectos que se observan en la chapa, según su

origen, dividiéndolos en aquellos causados por las propias características anatómicas, por

exceso de almacenamiento y los ocasionados por desajustes mecánicos.

Panshin (1959), agrupa las posibles aplicaciones de los tableros contrachapados en los

siguientes rubros un tanto imprecisos, pero que muestran la diversidad de aplicaciones de los

tableros contrachapados:

Uso en la industria de la construcción: aceras, cimientos curvos de viviendas,

rascacielos, diques o puentes, tejados, cubiertas de pared, suelos y subsuelos, forro para

cubrimiento de enlucidos, tableros mural, decoración, acabado de áticos y basamentos,

tabiques secundarios y desvanes, garajes, construcciones rurales como establos y gallineros,

revestimientos interiores y exteriores, casas prefabricadas.

Uso en la ebanistería: muebles corrientes y de calidad, tableros y alas de las mesas,

respaldos de caja, frentes y fondos de cajón, respaldos de espejo, muebles para máquinas de

coser, adornos, asientos y respaldos de sillas de aulas y teatros, bancos para iglesia. Se aplican

Page 16: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

7

a muebles de comedor, armarios, libreros y botiquines. No se usa en las patas del mueble,

travesaños de silla, mecedoras y demás partes macizas.

Usos industriales: carrocerías de camiones y de barcos, revestimiento de hospitales y

restaurantes y recientemente de trenes aerodinámicos. Tableros de mesa, equipos de oficina y

paneles de pared, construcción de vagones de carga como revestimiento y vagones viajeros.

Otros usos: construcción de botes, revestimiento de trasatlánticos, fabricación de casas

remolcables. En la industria automotriz para tableros de suelo, entrepaños, bastidores de

tapicería. En la industria cinematográfica para la construcción de escenarios. Para

construcción de aviones y planeadores. Elaboración de puertas, baúles, cajas de viaje, cajones

de embalaje, cestas de frutas y verduras, juguetes, jaulas, tableros para tenis de mesa,

patrones, tableros de anuncio y/o exposición, tablas de muestra (gamas) y aparatos de

diversión.

3.3 Normas para tableros contrachapados

En México se tienen sólo tres normas vigentes en relación con los tableros

contrachapados, éstas son la norma NMX-C-326-1978. “Tableros contrachapados de pino”

(SECOFI, 1978), que establece la clasificación de los tableros contrachapados, sus

dimensiones comerciales y una breve descripción sobre el método de evaluar la calidad de los

mismos, la cual sustituyó a la anterior NOM-G-14-1978, (SECOFI, 1978); la norma DGN-G-

18-1976, “Tableros contrachapados de maderas finas (cedro y caoba) y duras tropicales”

(SECOFI, 1976), misma que como su nombre lo indica, es específica para ese tipo de

maderas. Actualmente se encuentran bajo análisis para su correspondiente aprobación normas

que versan sobre el comportamiento de tableros contrachapados como elementos estructurales

en muros, (ONNCCE, 1998). Cabe citar que en los casos donde se requiere tomar como

referencia alguna norma se suelen utilizar las normas ASTM, las normas DIN y las normas

APA.

Page 17: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

8

Los tableros contrachapados cubiertos por la NOM-G-18-1976 (SECOFI,1976), se

clasifican en los siguientes tres tipos:

Tipo 1.Tipo interior resistente a la humedad

Tipo 2.Tipo resistente al agua y a moderada exposición a la intemperie.

Tipo 3.Tipo exterior a prueba de agua para cuando se requiera esta resistencia y para

usos marinos.

Las dimensiones nominales y sus tolerancias deben ser las indicadas en el Cuadro 2.

Cuadro 2. Dimensiones nominales y sus tolerancias para los tableros contrachapados

según la norma NMX-G-18-1976.

Dimensiones nominales (mm) Tolerancias

Ancho: 760, 910, 1220 + 1.6 mm

Largo: 1830, 2140, 2440 +1.6 mm

Espesor: 3, 4, 5.5, 6, 9, 12. + 0.4 mm

Espesor: 14, 16, 19, 21, 22, 25, 38 + 3% de espesor

Nota: Para tableros sin pulir se dará una tolerancia de + 0.8mm del espesor especificado.

La norma APA PS1-1983 clasifica los contrachapados de acuerdo con su capacidad de

exposición en tipos para interiores y para exteriores, como se indica en el Cuadro 3.

Cuadro 3. Clasificación de los tableros contrachapados según la norma APA PS1-83

(Poblete, 1990)

De interiores De exteriores

a) Encolados con adhesivos para

interiores

b) Encolados con adhesivos

intermedios

c) Encolados con adhesivos para

exteriores

Son aquellos tableros que luego de ser

repetidamente sometidos a severos

tratamientos en húmedo y seco mantienen

sus uniones.

Dentro de cada una de los tipos anteriores se reconocen varios grados que se basan en

la calidad de las láminas y en la estructura del tablero. Ver Cuadro 4.

Page 18: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

9

Cuadro 4. Grados de tableros para interiores y exteriores según APA PSI-83

(Poblete, 1990). Grados de tableros para interiores Grados de tableros para exteriores.

Grado Cara Contracara Interiores Lijado Identificación del

grado

Calidad mínima de lámina

Cara Contracara Interiores Lijado

N-N

N-A

N-B

N-D

A-A

A-B

A-D

B-B

B-C

C-C

C-D

C-D

C-D

N

N

N

N

A

A

A

B

B

C

C

C

C

N

A

B

D

A

B

D

B

C

C

D

D

D

C

C

C

D

D

D

D

D

D

C Y D

D

D

D

2

Caras

2

Caras

2

Caras

2

Caras

2

Caras

2

Caras

2

Caras

2

Caras

2

Caras

1

Caras

1

Caras

Marino, A/A

A-B/B-

B/HDO/MDO

EXTERIOR

ESPECIAL

A-A/A-

B/HDO/MOD

A-A

A-B

A-C

B-B concreto

B-B

B-C

C-C unidas

C-C

A-A (HDO)

B-B(HDO)

B-B(HDO

concreto)

B-B(MDO)

ESPECIALES

--

NE

A

A

A

B o

mejor

B

B

C

unidas

C

A

B

B

B

C

--

NE

A

B

C

B o mejor

B

C

C

C

A

B

B

B

C

--

NE

C

C

C

C o

mejor

C

C

C

C

C unidas

C unidas

C unidas

C

C

---

---

2

Caras

2

Caras

2

Caras

--

2Caras

2Caras

1 Cara

Sin

--

--

--

--

--

HDO: High Density Overlay = Cara de alta densidad

MDO: Médium Density Overlay = Cara de densidad media

Conforme la NOM-G-326-1978 (SECOFI,1978) los grados de la chapa se indican por

la letra N, A, B, C y D, siendo N la de mejor calidad y D la de menor calidad. Las

combinaciones de las vistas para los tableros tipo 1 y tipos 2 y 3 se presentan en el Cuadro 5.

Page 19: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

10

Cuadro 5. Combinaciones de las vistas para los tableros tipo1 y tipos 2 y 3 según la

Norma NMX-G-326-1978 (SECOFI,1978). TABLEROS TIPO 1 TABLEROS TIPO 2 Y 3

COMBINACIONES CARA TRASCARA COMBINACIONES CARA TRASCARA

NN

NA

NB

ND

AA

AB

AD

BB

BD

CD

DD

N

N

N

N

A

A

A

B

B

C

D

N

A

B

D

A

B

D

B

D

D

D

NN

AA

AC

AD

BB

BC

CD

N

A

A

A

B

B

C

N

A

C

D

B

C

D

3.4 La industria de los tableros contrachapados en México

Según la CNIF (1997) en México se encuentran actualmente en operación 32 plantas

productoras de chapa y tableros contrachapados, con una capacidad instalada de 1,366,000

metros cúbicos rollo anual, una producción de 874,000 metros cúbicos rollo, con una

ocupación de mano de obra igual a 10,000 y una inversión de 720,000 millones de dólares.

Para el primer semestre de 1997, la producción maderable destinada a chapa y triplay

registró un aumento del 152% respecto de 1996. Durante el periodo 1996-1997 abarcó el 4%

del total de la producción forestal maderable, esto es 169 mil m3r. Posterior a la madera

aserrada, los tableros contrachapados contribuyen en gran parte a la formación de una

balanza comercial favorable que tradicionalmente se ha presentado negativa para México.

En 1997 las importaciones de estos se registraron en 19, 331 millones de dólares y las

exportaciones en 8,465 millones de dólares, mostrando un saldo negativo de 13,353 millones

de dólares. (CNIF,1997). En el contexto del TLC, México se encuentra colocado por la FAO

en una posición muy lejos de la producción y del comercio exterior de los productos

forestales de sus socios comerciales del norte (CNIF. 1997). Según la FAO (1990), para el

Page 20: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

11

año 2010 en México se registrará un consumo de tableros contrachapados de 2702 toneladas,

equivalente en más o menos a una cantidad de 12,239 mil m3r (CNIF. 1997) y que,

comparados con la producción actual de 121,000 m3r, muestran un reto extraordinario y de

gran magnitud para México al cual se le añade la premura de la tasa cero a la que pronto se

encontrará la totalidad del comercio entre los socios del TLC. Lo anterior tomando como

referencia la producción actual de tableros contrachapados de Estados Unidos y Canadá que

ascienden a 31,568 y 7,497 m3 respectivamente. (CNIF, 1997).

3.5 Estudios realizados para tableros contrachapados

Al igual que el número de normas, el número de estudios y de tipos de tableros

evaluados y reportados sus resultados son escasos. En 1982, la Subsecretaría Forestal y de la

Fauna publica un diagnóstico sobre la industria de los tableros de madera en México (SARH-

SFF, 1982). En esta publicación se da a conocer una tabla reportando los valores de los

ensayos de flexión estática e impacto de tableros contrachapados de 7 especies nacionales,

incluyendo al género Pinus. No se reportan valores de adherencia, tracción, cizalle, ni

densidad. Los valores reportados para el caso de los tableros de pino, en el ensayo de flexión,

son:

PROPIEDAD 3 mm 6 mm

Esfuerzo en el límite de proporcionalidad. (Kg/cm2) 446.4 355.6

Máximo esfuerzo de ruptura (Kg/cm2) 738.8 532.3

Módulo de elasticidad (Kg/cm2)*1000 1323 901

Trabajo al Límite de proporcionalidad. (Kg-cm2)/cm

3 0.110 0.075

Trabajo a la carga máxima (Kg-cm2)/cm

3 0.130 0.078

Por otro lado, Ruiz (1990) en su tesis de licenciatura, desarrolla un análisis de los tipos

y calidades de la materia prima utilizada en la fabricación de tableros contrachapados de la

fábrica “Enchapados Alfa”. Destaca que de los resultados obtenidos, la materia prima utilizada

cumple satisfactoriamente con las normas mínimas estipuladas para los tipos y calidades de

trocería exigidas. Asimismo, el coeficiente de aprovechamiento arrojó un porcentaje promedio

del 39.85 %.

Page 21: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

12

Otro trabajo relacionado con la calidad de la materia prima y de la chapa producida, es

el de Muñoz (1992), quien analiza los factores que influyen en la producción de chapa

desenrollada en el Edo. de Campeche, incluyendo además de la materia prima, la maquinaria

utilizada, el proceso de producción y la experiencia de los operadores y encargados de

producción. Concluye que entre los inconvenientes que presenta esta industria, están las malas

técnicas de almacenamiento y la mala conformación del arbolado aprovechado. En lo que

respecta a la experiencia de los operarios y ajustes de la máquina, principalmente los tornos,

indica que cumplen con las especificaciones. No obstante, recomienda que se mejoren y

modernicen los equipos, capacitar más al personal y, sobre todo, se deben establecer controles

de calidad acordes a normas internacionales que les permitan a estos productos competir en el

mercado internacional, tanto en precio como en calidad.

Trujillo (1993) define las secuelas para los tiempos y temperaturas de seis especies de

maderas para la producción de chapa rebanada. De los resultados obtenidos, se ratifica que el

tiempo de acondicionamiento requerido está en relación con la densidad y el contenido de

humedad de la madera, observándose que las maderas de mayor densidad y con contenidos de

humedad bajos requieren tiempos de calentamiento más prolongados para obtener chapa de

alta calidad de calentamiento.

Zavala (1994) determinó y analizó para contrachapados la distribución de la

temperatura en las líneas de pegamento y el efecto de la carga de los platos de la prensa en la

compactación del triplay de abeto Douglas al 6, 12 y 16 % de contenido de humedad.

Encontró que la temperatura en las líneas de pegamento más externas aumenta rápidamente al

cerrarse la prensa manteniendo una diferencia respecto a las dos líneas internas, misma que

disminuye al avanzar el prensado, por otra parte encontró que la compactación es más drástica

durante los primeros 6 minutos del prensado.

Corral (1997) trabajó sobre la optimización del uso de la trocería para la producción de

triplay y de madera aserrada, esto en función al diámetro y calidad de la trocería. Indicó un

coeficiente de aprovechamiento mayor en la producción de triplay, aunado a una mejor

rentabilidad, que en aserrío. Además encontró que las trozas de mejor calidad presentaban

una relación directa con su coeficiente de aprovechamiento

Page 22: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

13

4. MATERIALES Y MÉTODOS

4.1 Materiales

Se usaron 9 tableros contrachapados para la evaluación, correspondiendo a la calidad

que comercialmente se ofrecen para uso en interiores como BC y BD , en espesores de 3, 6 y

9 mm, de pino, provenientes de tres fábricas nacionales, una del norte, la segunda del sur del

País, y la tercera del centro, que respectivamente corresponden a las localidades de Durango,

Oaxaca y Toluca, Edo. de México; en este mismo orden se citarán para cada prueba. Estos

tableros en general reunieron las siguientes características equivalentes:

Espesor: 3 mm, 6 mm, 9 mm.

Ancho nominal: 1.22 m

Largo nominal: 2.44 m

Nº de chapas: 3

Adhesivo: Urea-formaldehído

Especie: Pinus sp.

Nº de tableros: 1 por espesor por proveedor. Total 9 tableros

Calidad: Interiores, BC y BD.

Además de los tableros sujetos de prueba, se ocupó el siguiente equipo de ensayo y de

laboratorio:

Máquina universal de ensayos mecánicos con mordazas para cada prueba

Recipientes para prueba de humectación

Sierra radial de banco.

Sierra circular de banco

Horno de laboratorio para temperatura de 103 ºC.

Calibrador micrométrico.

Balanza de precisión con aproximación al 0.01g.

Flexómetro.

Vernier digital

Page 23: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

14

4.2 Metodología

4.2.1 Evaluaciones y ensayos a realizar.

Para satisfacer los objetivos planteados, los tableros seleccionados y las muestras

obtenidas de estos se sometieron a los siguientes ensayos y evaluaciones:

Calidad de las chapas y armado de tableros

Escuadría y dimensiones lineales

Contenido de humedad

Densidad normal del tablero

Espesor medio y rango de variación

Adherencia. Resistencia de unión entre chapas en prueba de humedad.

Flexión estática: Módulo de elasticidad, Módulo de rigidez y Esfuerzo al límite de

proporcionalidad.

Tracción paralela.

Cizalle.

El material se seccionó en el Laboratorio de Plantas piloto de la División de Ciencias

Forestales. Posteriormente las primeras cinco evaluaciones se realizaron en el laboratorio de

anatomía de la madera de la División de Ciencias Forestales. Las restantes tres evaluaciones se

realizaron en el laboratorio de materiales del Instituto Nacional de Investigaciones Forestales y

Agropecuaria en su Campo Experimental San Martinito, Puebla y el laboratorio de materiales

del Departamento de Ingeniería de Materiales de la Universidad Autónoma Metropolitana

unidad Azcapozalco, en una máquina universal de 5 Ton de capacidad. Los ensayos físicos y

mecánicos se realizaron tomando como referencia las normas NMX-C-326-1978

(SECOFI,1978); ASTM D3045-87 (ASTM,1992-c); ASTM D 3500-90 (ASTM,1992-b) y

DIN 52 375 y APA PS 1-83 (POBLETE, 1990).

Page 24: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

15

4.2.2 Obtención de las probetas.

Se utilizó un tablero por espesor por fabricante, se dividió como se indica en la Figura

1 para obtener las probetas con las que se realizaron cada una de las pruebas y ensayos citados,

siguiendo el esquema empleado por Manzano (2000). Primeramente y antes de cortar el

tablero, se determinaron las dimensiones de cada uno, así como su escuadría y calidad de las

chapas.

La sección “A” del tablero se utilizó para obtener las probetas de adherencia, la sección

“F” se utilizó para obtener las probetas de flexión estática, la sección “T” se destinó para

obtener las probetas para el ensayo de tracción paralela, la sección “C” para las probetas para

el ensayo de cizalle. Aparte de las probetas anteriores, se empleó la franja “D” para la

obtención de las probetas para la evaluación de la densidad y las dos franjas “CH” para la

evaluación del contenido de humedad. Cabe indicar que las probetas que presentaron defectos

se desecharon para evitar que influyeran en los resultados, tal como lo recomienda Díaz

(1960).

Figura 1. Distribución de las secciones para la obtención de las probetas para ensayo.( F = flexión,

CH = contenido de humedad, T = tracción, A= adherencia, C = cizalle,D = densidad. Unidades en

mm).

Page 25: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

16

4.2.3 Calidad de las chapas y armado de tableros.

La calidad de las chapas de la cara y trascara, así como el número de defectos, parches

y resanes, se evaluó tomando como referencia la norma mexicana NMX-C-326-1978

“Tableros contrachapados de pino”, (SECOFI, 1978), especificaciones en las cuales se indican

las clases de chapa y sus requisitos.

Esta evaluación se realizó visualmente antes de cortar las probetas. Al mismo tiempo,

se hizo una inspección sobre la presencia de grietas, su número y magnitud, así como defectos

de formación que presentaron los tableros (traslapes, separaciones y ensambles).

4.2.4 Espesor de los tableros

Con el propósito de tener un conocimiento de todo el perímetro de cada tablero, antes

de ser seccionados el espesor y la uniformidad, como propuesta del presente trabajo, se

midió en catorce puntos en la periferia de los nueve tableros contrachapados (Figuras 2 y 3),

así como en cada una de las probetas obtenidas para los diferentes ensayos. Este espesor se

midió con una precisión de 0.01mm.

Figura 2. Esquema de la toma de mediciones equidistantes en los tableros evaluados

Page 26: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

17

Figura 3. Medición del espesor en los tableros antes de ser seccionados.

4.2.5 Escuadría los tableros.

Antes de cortar cada tablero, a cada 40.6 cm en sus dimensiones largo y ancho se tomó

respectivamente la medida real del ancho y largo del tablero tal como se indica en la Figura 4,

empleándose instrumentos con una precisión de 1 mm. La norma DIN 68 705 T 2,

“Contrachapados de uso general”, (Poblete, 1990) estipula que respecto a su rectitud en los

cantos, los tableros no deben tener una desviación mayor a 1.5 mm en 1000 mm.

La escuadría admite una tolerancia de 2 mm en 1000 mm, y en la longitud y ancho

admite una variación máxima de 3 mm. En el caso de la norma NMX-C-326-1978,

“Tableros contrachapados de pino”, (SECOFI, 1978), se acepta una tolerancia de 1.6 mm

en el ancho y longitud, y 0.4 mm en el espesor.

Page 27: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

18

Figura 4. Esquema de medición de la escuadría en los tableros.

4.2.6 Adherencia.

De cada tablero se cortaron tres cuadrantes de 305 x 305 mm, de cada uno de éstos, se

cortaron 5 probetas de 50 mm x 127 mm a lo largo de la fibra de la cara (Figura 5).

Figura 5. Obtención de las probetas para adherencia, a partir del cuadrante “A” de la figura 1.

(15 piezas de 50 x 130 mm)

A1

A2

A3

A4

A5

A6

A7

A8

A9

A

10

A

11

A

12

A

13

A

14

A

15

L2

A1

A2

D1 D2

L1

50mm

127 mm

Page 28: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

19

Las probetas se sometieron a un pretratamiento de agua a temperatura ambiente

durante 4 horas, secándolas posteriormente a una temperatura entre 20 y 38 ºC durante 20

horas, repitiéndose el ciclo. El resultado se determinó según la norma NMX-C-326-1978

(SECOFI, 1978). Las muestras se examinaron y se consideró como falla una delaminación

visible y continua de por lo menos 6.35 mm o más de profundidad. El número de ciclos

mínimo que la muestra debió pasar sin delaminarse es diez, y cuando menos el 85 % debió

pasar tres ciclos según norma NMX-C-326-1978. (SECOFI, 1978).

4.2.7 Densidad del tablero.

Se cortaron 10 probetas de 25 mm de arista de la franja central de cada tablero. Estas

probetas, (Figuras 6) se pesaron inmediatamente (Ph) y se evaluó su volumen (Vh).

Posteriormente, se introdujeron a una estufa de laboratorio a una temperatura de 103 +/- 2 ºC,

hasta obtener un peso constante (Figura 7). Posteriormente se pesaron (Po) y nuevamente se

midió su volumen (Vo).

Figura 6. Obtención de las probetas para la determinación de la densidad a partir de la sección

“D” de la figura 1. (80 piezas de 25 X 25 mm).

Con los datos anteriores se estimó su densidad normal (Dn) y su densidad anhidra (Do)

mediante las siguientes expresiones (ASTM D 2395-83):

Dn = Ph / Vh, (g/cm3) Do = Po / Vo (g/cm

3)

150

550 mm

Page 29: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

20

Figura 7. Introducción de las probetas de densidad al horno de laboratorio.

4.2.8 Contenido de humedad

De cada uno de los tableros de prueba, se cortaron ocho muestras de 110 x 110 mm,

(Figura 8). Todas las astillas flojas deben eliminarse antes del pesaje, según NMX-C-326-

1978, (SECOFI, 1978).

Figura 8. Obtención de las muestras para la determinación del contenido de humedad a partir

de las secciones CH de la figura 1 (8 probetas de 110 X 110 mm).

550mm 550mm

110mm CH

1

CH

2

CH

3

CH 4

Page 30: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

21

Las muestras se colocaron en una báscula con una aproximación de 0.5 g, Se registró

su peso inicial (Pi). Posteriormente, se colocaron en una estufa a 103 +/- 2 ºC hasta alcanzar

un registro constante. Después del secado la muestra se colocó en la báscula para registrar su

masa anhidra (Po). Con los resultados anteriores se aplicó la siguiente expresión:

Pi - Po

CH = --------------- 100

Po

donde:

C.H. = Contenido de humedad, en %.

Este procedimiento es equivalente en las normas DIN 52 375 y APA-PS-1-83.

(Poblete, 1990).

4.2.9 Ensayo de flexión estática.

Esta prueba se manejó según la norma ASTM D 3043 – 87. Método de prueba a

flexión para tableros estructurales. (ASTM, 1992c). El ensayo consistió en aplicar una carga

en el centro de los apoyos de la probeta (Figura 9), para evaluar su módulo de elasticidad

(MOE), módulo de rotura (MOR) y carga el límite de proporcionalidad (ELP).

Figura 9. Esquema de ensayo de flexión estática.

Page 31: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

22

La norma establece que el ancho de las probetas debe ser de 25 mm para tableros de

hasta 6 mm de espesor y de 50 mm para tableros de mayor espesor. La longitud de las

probetas, para ensayos paralelos a la fibra, debe ser de 48 veces el espesor más 50 mm.

Aunque la norma no establece el número de probetas que se extraen de cada tablero, aquí se

ensayaron 10 probetas para cada tablero, con medidas finales de 19.4 x 2.5, 33.8 x 2.5 y 48.2 x

5 cm respectivamente para las probetas de espesores de 3, 6 y 9 mm; la diferencia en

dimensiones busca equilibrar la superficie de las probetas con su espesor para que sean

probadas relativamente bajo las mismas condiciones, tal como se han hecho en otros estudios,

(Poblete,1990; Devlieger,1990).

El espesor de las probetas se midió en dos puntos cercanos a los extremos,

registrándose el promedio con una aproximación de 0.02 mm. El ancho se midió en la parte

media de cada probeta. Los puntos de apoyo de las probetas se colocaron a una separación de

48 veces el espesor. (144, 288 y 432 mm respectivamente para las probetas de los tableros de

3, 6 y 9 mm.)

La carga concentrada se aplicó a una tasa constante de tal manera que fuera equivalente

a un esfuerzo máximo de la fibra de 0.0015 in/in (mm/mm) por minuto. Para el cálculo de la

tasa de movimiento de la masa de carga se aplicó la relación (ASTM,1992c):

N = zL2/6d

donde:

N = tasa de movimiento de la masa de carga, in/min (mm/min).

L = separación de apoyos, in. (mm).

d = espesor de la probeta, in. (mm)

z = valor unitario del esfuerzo de la fibra, in/in x min. (mm/mm x min) de la

fibra extrema = 0.0015.

Conforme a esta fórmula las velocidades de prueba fueron de 0.068, 0.136 y 0.204

pg/min correspondientemente con los espesores de 3, 6 y 9 mm. Durante la deflexión se hizo

el gráfico carga – deformación con el cual se determinó el límite de proporcionalidad, trabajo

Page 32: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

23

en el límite de proporcionalidad, módulo de elasticidad, trabajo a la carga máxima y trabajo

total.

4.2.9.1 Esfuerzo al límite de proporcionalidad

En cada probeta se determinó la tensión unitaria básica de flexión estática (ELP)

mediante la expresión:

ELP = (3PL*L)/(2b*h2)

donde:

ELP= Esfuerzo en el límite de proporcionalidad

PL= Carga en el límite de proporcionalidad

L= Claro o luz de la probeta

b= Ancho de la probeta

h= Altura o espesor de la probeta

4.2.9.2 Módulo de ruptura.

En cada probeta se determinó la tensión unitaria máxima o de rotura a la flexión

estática (MOR) mediante la fórmula:

MOR= (3Q*L) / (2b*h2)

donde:

MOR= Módulo de ruptura

Q= Carga máxima

L= Claro o luz de la probeta

b= Ancho de la probeta

h= Altura o espesor de la probeta

Page 33: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

24

4.2.9.3 Módulo de elasticidad

En cada probeta se determinó el módulo de elasticidad a la flexión (MOE) mediante la

expresión:

MOE= (PL*L3) / (4FL*b* h

3)

donde:

MOE= Módulo de elasticidad

PL= Carga en el límite de proporcionalidad

L= Claro o luz de la probeta

FL= Flecha en el límite de proporcionalidad.

b= Ancho de la probeta

h= Altura o espesor de la probeta

4.2.10 Ensayo de tracción paralela a la fibra

Las probetas de ensayo se obtuvieron del cuadrante “T”. De éste, se cortaron 10

probetas por tablero, mismas que tuvieron una dimensión y forma como se indica en la Figura

10, siendo el modelo A para los tableros de 9 mm y el modelo B para los de 3 y 6 mm, tal

como lo establece la norma ASTM D 3500-90. “Método de prueba normalizado para ensayos

de tracción paralela en tableros estructurales”, (ASTM, 1992-b). Este ensayo se realizó para

determinar la resistencia a la tracción de los tableros, en una dirección paralela a la fibra de las

chapas de la cara y trascara.

Cabe indicar que el modelo de la probeta se diseña así , con el propósito de provocar la

falla en la sección central más delgada, ya que la resistencia a la tracción paralela a la fibra en

la madera es más alta.

Page 34: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

25

Figura 10. Forma y dimensiones de las probetas para el ensayo de tracción. A) para los

tableros de 9 mm, B) para los tableros de 3 y 6 mm. (Fuente: ASTM, 1992-b)

Se midió el espesor y el ancho de la probeta en su parte central, posteriormente se

montó la probeta en la máquina de ensayo mediante las abrazaderas para tracción y cortante en

tableros contrachapados (Figura 11). Se aplicó la carga en forma continua y a una velocidad

constante, de 0.035 pulgadas/min., (0.9 mm/min). Se registró la carga máxima obtenida

durante el ensayo. Según la norma que rigió esta prueba la falla se produjo en la zona central

de la probeta.

Page 35: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

26

Para cada probeta se determinó la tensión unitaria máxima de tracción paralela

mediante la expresión:

Rtp= Q / (e x a)

donde:

Rtp= Tensión unitaria máxima de tracción paralela

Q= Carga máxima obtenida durante el ensayo.

e= Espesor de la probeta en su parte central

a= Ancho de la probeta en su parte central.

4.2.11 Ensayo de cizalle.

Este ensayo es complementario al de adherencia antes descrito, y su principal objetivo

es evaluar la calidad del encolado. Se realizó aplicando una carga de tracción paralela a la

fibra de las caras para provocar el cizalle en la línea de unión (Figura 14).

Figura 11. Esquema de tracción paralela a la fibra con mordazas especiales para

tracción y cortante en tableros contrachapados.

Page 36: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

27

Las dimensiones y forma de las probetas se indica en las figuras 12 y 13, siguiendo el

procedimiento de la norma APA PS 1 – 83. Para ello se ensayaron 35 probetas de cada tablero.

Figura 12. Obtención de las probetas para el ensayo de cizalle, a partir de la sección “C” de la

figura 1. ( 35 piezas de 25 x 81 mm (1” x 3 ¼”)).

Figura 13. Forma y dimensiones de las probetas para el ensayo de cizalle.

25 mm

75

mm

1” 1”

1”

3 ¼”

1/8”

1”

Page 37: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

28

Figura 14. Fotografía de prueba de cizalle

4.2.12 Análisis estadístico de los resultados

El modelo estadístico utilizado para el análisis de varianza fue el siguiente

yijk= μ + Ei + Sj + ESij +Ek(ij)

para i = 1,2,3; j=1,2,3; k=1,2,...,n.

donde:

yijk = variable de respuesta

μ = media general

Ei = efecto de la i-ésima región

Sj = efecto del j-ésimo espesor

E * Sij = efecto de la interacción de la i-ésima región con el j-ésimo espesor.

Ek(ij) = error asociado con la k-ésima submuestra de la iésima región y el

j-ésimo espesor

Antes de realizar el análisis de varianza y la prueba de F para cada variable, cada una

de éstas fue sometida a la prueba de Shapiro-Wilks para verificar el de normalidad con el

siguiente procedimiento en el programa Statical Analisis Sistem (SAS):

Page 38: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

29

DATA;

INPUT PRO $ TABL REGIÓN ESP PROB PRUEBA;

CARDS;

1

2

.

.

N

;

PROC SORT; BY TABL;

PROC UNIVARIATE NORMAL; VAR PRUEBA: BY TABL;

RUN;

Se obtuvieron las medias ajustadas de mínimos cuadrados para cada variable de cada

uno de los tableros (que representan combinaciones de regiones de origen y espesores), por

medio del siguiente procedimiento en SAS:

DATA;

INPUT PRO $ REGIÓN ESP PROB PRUEBA;

CARDS;

1

2

.

.

N

;

PROC MIXED;

CLASS REGIÓN ESP;

MODEL PRUEBA = REGIÓN ESP REGIÓN * ESP/ DDFM = SATTERTH;

LMEANS REGIÓN ESP REGIÓN * ESP / PDIFF;

RUN;

Las medias ajustadas de cada prueba por tablero dentro de cada espesor considerado

fueron comparadas por medio de la prueba t de Student evaluando las medias en orden

descendente conforme sus valores registrados. Se empleó una α=0.05 y 63 grados libertad

siendo t α=0.05,63=2, es decir, si /t/>[+2,-2] entonces las medias son estadísticamente diferentes.

Los intervalos de confianza fueron establecidos con una probabilidad al 95%

Con base en estos resultados se procedió a realizar el análisis y determinación de la

calidad de los tableros para ser caracterizados individualmente y por espesor, así mismo, se

realizó la comparación entre los tableros de diferente procedencia.

Page 39: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

30

5. RESULTADOS Y DISCUSIÓN

5.1 Calidad de las chapas y armado de tableros.

La evaluación de calidad en los tableros probados conforme la NOM-G-326-1978

(SECOFI,1978), registrada en el Anexo 2, muestra los resultados indicados en el Cuadro 6.

Cuadro 6. Calidad en los tableros contrachapados sujetos a prueba.

Tablero* Calidad

comercial Calidad

real Observaciones

13 BD BD Las vistas cumplen con los requisitos especificados por la norma para el nivel de clasificación indicado.

23 BD BD La vista B cumple lo establecido por la norma no así la vista D que no cumple las mínimas especificaciones indicadas para esa clasificación.

33 BD CD La vista B no cumple lo establecido por la norma para ese nivel de calidad por lo cual se reclasifica a nivel C. La vista D cumple las mínimas especificaciones indicadas para esa clasificación.

16 BC AC La vista B cubre lo establecido por la norma, cumpliendo aún con las características de la clasificación A. La vista C cumple lo establecido.

26 BC AB La vistas cubren con lo establecido por la norma para su nivel de clasificación, calificando ambas vistas para el siguiente nivel superior.

36 BD AD La vista B cubre lo establecido por la norma, cumpliendo aún con las características de la clasificación A. La vista D cumple lo establecido.

19 BD BD Las vistas cumplen con los requisitos especificados por la norma para el nivel de clasificación con que se comercializaron.

29 BD AC La vistas cubren con lo establecido por la norma para su nivel de clasificación, calificando ambas vistas para el siguiente nivel superior.

39 BD BD Las vistas cumplen con los requisitos especificados por la norma para el nivel de clasificación con que se comercializaron.

* El primer dígito corresponde a la región origen del tablero y el segundo al espesor.

Conforme la norma APA PSI-83(1983), dentro de la clasificación de los diferentes

tipos de tableros contrachapados los grados reconocidos se basan en la calidad de las caras o

láminas externas y en la estructura del tablero mismo. En la presente evaluación, la calidad de

la chapa interna (o alma) de los tableros no fue analizada por encontrarse estructurando a los

tableros mismos; únicamente fue evaluado el número de piezas que conformaban el alma de

los contrachapados.

Page 40: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

31

El contar con un sistema de control de calidad de productos finales, en este caso de

tableros, así como de cada etapa de producción es fundamental para detectar y eliminar las

causas que están afectando el proceso y consecuentemente el contrachapado.

Una chapa es considerada de buena calidad cuando su espesor es constante, su

superficie lisa y posee una rigidez uniforme. La obtención de esta calidad de chapa está más

en función de las características físicas de la materia prima utilizada que por otras causas;

aún más por consecuencia de la variabilidad de la madera dentro de la misma especie es que la

chapa puede resultar afectada, sin embargo algunos defectos propios de la madera pueden ser

eliminados, corregidos o disminuidos durante el proceso de fabricación de tableros.

De los tableros ensayados, cuatro de ellos sí presentaron la calidad establecida y cuatro

fueron aún de mejor calidad que la de registro, lo cual indica que en este aspecto cumplen con

ventaja los niveles de calidad que según la chapa, establece la norma mexicana NMX-C-326-

1978.

5.2 Espesor de los tableros.

De cada tablero y de cada grosor evaluados se determinó su espesor conforme la

metodología establecida, obteniéndose los resultados que se muestran en el Cuadro 7.

Cuadro 7. Valores medios de espesor real por espesor nominal evaluado (mm).

Tablero Media Límite Límite Desviación Coef. Var.

inferior Superior Estándar (%)

3 3.645 3.628 3.662 4.560 10.830

6 5.896 5.879 5.913 6.550 6.305

9 8.721 8.704 8.739 9.70 7.155

Límites del intervalo de confianza al 95% de probabilidad.

Conforme la norma NMX-C-326-1978, Tableros contrachapados de pino, (SECOFI,

1978), se acepta una tolerancia de 0.4 mm en el espesor, es decir, que para los tableros de 3, 6

y 9 mm sus rangos de variación en espesor nominal respectivamente son 2.6 a 3.4, 5.6 a 6.4

y 8.6 a 9.4 mm. Los valores medios de los espesores de 6 y 9 mm mostrados en el Cuadro 7

se encuentran dentro de los rangos especificados, no así los valores medios para el espesor de

Page 41: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

32

3 mm y los valores particulares de cada tablero mostrados en el Anexo 4 que indican que

ninguno de los tableros evaluados se encuentra dentro de los rangos establecidos.

Figura 15. Valores medios por espesor evaluado.

Principalmente las irregularidades en espesor que presentan los tableros tienen su raíz

en las irregularidades que a su vez presentan las chapas empleadas para su fabricación, esto

debido a un mal ajuste del ángulo de incidencia, en el cual el bisel de la cuchilla roza

demasiado el rollizo ocasionando una sucesión de rechazos de corte, provocando variaciones

dimensionales en el espesor de la chapa (Devlieger, 1990).

5.3 Escuadría de los tableros

En dimensiones nominales de 2440 X 1220 mm se admite una tolerancia de 1.6 mm

para largo y ancho, lo que indica que los rangos de variación nominales admitidos para los

tableros de 3, 6 y 9 mm son 2438.4 a 2441.6 mm en largo y 1218.4 a 1221.6 mm en ancho.

Conforme las dimensiones especificadas en la norma NMX-C-326-1976 la diagonal

correspondiente a las dimensiones nominales de 244 x 122 cm es 272.8 cm. En el Cuadro 8

se muestran los valores medios de la escuadría de cada tablero evaluado.

Page 42: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

33

Cuadro 8. Escuadría media de los tableros evaluados (cm).

Tablero Longitud Ancho Diagonal Diagonal Diferencia

N° promedio Promedio real nominal entre diagonales

13 244.10 122.10 272.80 272.93 -0.13

23 244.10 122.05 272.60 272.91 -0.31

33 243.86 122.09 272.75 272.72 0.03

16 243.90 121.90 272.47 272.67 -0.2

26 245.10 122.75 274.00 274.12 -0.12

36 244.15 122.05 272.70 272.96 -0.26

19 243.95 122.10 272.60 272.80 -0.2

29 244.05 121.97 272.60 272.83 -0.23

39 244.05 122.05 272.70 272.87 -0.17

Media 244.14 122.12 272.80 272.98 -0.18

La media general de todos los tableros corresponde al especificado conforme las

dimensiones nominales, no así 8 de los 9 tableros evaluados, esto es el 88.8 % que no cumple

con la diagonal nominal correspondiente.

La errónea diagonal en los tableros, ocasionada por el incorrecto dimensionado en el

proceso de producción puede ser causa de pérdidas tanto en el material, como en energía y

mano de obra durante el redimensionado, esto en caso de sobredimensionado. Cuando el

tablero no cumple con las mínimas dimensiones establecidas puede ser causa de aumento en

costos del consumidor final por requerir un número mayor de tableros para cubrir sus

necesidades. El rango de variación en la escuadría fue desde 1.2 hasta 3.1mm, el cual se

considera que puede deberse a la falta de ajuste en la colocación del tablero en la mesa de

dimensionado.

5.4 Adherencia.

La metodología especificada para la evaluación de la adherencia de los tableros estableció

que las muestras examinadas como mínimo deberían pasar diez ciclos sin delaminarse y

cuando menos el 85 % tendrían que pasar tres. Los resultados para las 305 probetas

evaluadas se muestran en el Cuadro 9 y Figura 16.

Page 43: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

34

Cuadro 9. Adherencia de los tableros.

Tablero Probetas no falladas Probetas falladas Ciclos

n° % n° % soportados

13 15 100.00 0 0.00 +10

23 15 100.00 0 0.00 +10

33 15 100.00 0 0.00 +10

16 14 93.33 1 6.67 9*

26 15 100.00 0 0.00 +10

36 10 66.67 5 33.33 10*

19 15 100.00 0 0.00 +10

29 15 100.00 0 0.00 +10

39 15 100.00 0 0.00 +10

Total 129 96 % 6 4% ---

+ Tableros que resisten un mayor número de ciclos.

* Ciclos máximos soportados hasta mostrar delaminación.

Del total de las probetas evaluadas el 4% fue considerada como fallidas y el 96%

como probetas no fallidas al llegar a los 10 ciclos.

Las reacciones químicas que la madera presenta al ser expuesta a temperaturas

mayores a los 300°F (149°C) provocan la condensación de ciertos grupos hidroxilos

formando uniones menos atrayentes a los adhesivos, así mismo, los extractivos de la madera al

ser sometidos a tales temperaturas pueden disolverse y cubrir las caras de la chapa, generando

una superficie menos polar y por lo tanto más difícil de humedecer con los adhesivos. Aunado

a lo anterior se ha observado que aún cuando el adhesivo tenga buen contacto con la chapa se

presenta una falta de adhesión química debida a la oxidación de la superficie (Zavala, 1991).

En general, la adherencia es resultado de la interacción que se establece entre los

parámetros que intervienen en el proceso de prensado, es decir, entre el adhesivo, la

temperatura, la presión y la química de la madera misma, un inadecuado manejo de estos

parámetros influyen determinantemente en la calidad y la productividad del triplay.

Dado que estos tableros fueron fabricados con urea-formaldehido, se consideran

tableros para interiores, por lo que, los resultados de la prueba de adherencia indican que

cumplen adecuadamente con las exigencias para tal uso.

Page 44: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

35

Figura 16. Porcentaje de probetas bajo prueba de adherencia.

5.5 Densidad

Las propiedades físicas y mecánicas que presentan los tableros contrachapados en

general son muy similares a la madera (Vignote y Jiménez, 1996). Respecto a los valores

promedio de la densidad normal de los tableros evaluados, estos se presentan en el

Cuadro 10 y Figura 17.

Cuadro 10. Valores medios de densidad normal (g/cm3).

Espesor Media

Límite Límite Desviación Coef. de var.

(mm) inferior superior estándar (%)

3 0.625 0.618 0.632 0.0582 9.29

6 0.587 0.580 0.594 0.0431 7.34

9 0.580 0.573 0.587 0.1318 22.73

Límites del intervalo de confianza al 95% de probabilidad.

Empleando la clasificación para madera reportada por Díaz (1960), citado por Salinas

(2000), los tableros de 6 y 9 mm se encuentran clasificados como semipesados y los de 3 mm

como pesados. La FAO (1983), sin indicar un rango de variación definido, reporta que los

contrachapados de densidad baja a media registran valores medios de 520 y 730 kg/m3

respectivamente. Los valores que presentaron los tableros evaluados van de los 0.5800 a los

0.6259 g/cm3, es decir, de los 580 a los 625.9 kg/m

3 encontrándose insertos dentro del rango

Page 45: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

36

que describen los valores medios reportados por la FAO para contrachapados de densidad

baja a media.

Para estimar si la diferencia entre los valores obtenidos es estadísticamente

significativa se llevó a cabo el análisis de varianza presentado en el Cuadro 11.

Cuadro 11. Análisis de varianza para densidad normal

Fuente de Grados de F Pr > F

Nivel de

variación libertad Calculada significancia

Región 2 25.21 0.0001 **

Espesor 2 48.82 0.0001 **

Reg*Esp 4 53.05 0.0001 **

Error 261 † :

Hay diferencias en tratamientos si Pr > F < . = 0.05

**: Significancia al 0.01 de probabilidad (Altamente significativo)

El análisis de varianza mostró que las diferencias en densidad entre los diferentes

espesores así como entre las empresas origen de los tableros evaluados son altamente

significativas ya que Pr > F < = 0.0001, así mismo se muestra una clara interrelación entre

las empresas y sus tableros producidos.

Con el fin de establecer las diferencias y las similitudes entre los tableros del mismo

espesor, en el Cuadro 12 se muestra la comparación de medias por medio de la prueba de t de

Student con un = 0.05, obteniéndose los resultados que se indican. Los valores en una

misma columna con la misma literal son estadísticamente similares, valores con literales

distintas son estadísticamente diferentes.

Cuadro 12. Prueba t para comparación de medias de densidad normal (g/cm3).

Empresa de origen de

los tableros Espesor de los tableros* 3mm 6 mm 9mm

Región (N) 0.5824 a 0.6235 a 0.6129 b Región (C) 0.6072 b 0.5628 a 0.5623 a Región (S) 0.6881 c 0.5759 b 0.5648 a

Media 0.6259 0.5932 0.5800 (N) Región norte, (C) Región centro, (S) Región sur

*: Medias de la misma columna con la misma literal son iguales al 0.05 de probabilidad.

Page 46: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

37

Figura 17. Valores medios de densidad normal por espesor.

Los valores medios de la densidad anhidra obtenidos en los tableros probados se

presentan en el Cuadro 13 y Figura 18.

Cuadro 13. Valores medios de densidad anhidra en los tableros evaluados (g/cm3).

Espesor Media Desviación Límite Límite Coef. de var.

(mm) estándar Inferior superior (%)

3 0.597 0.006 0.585 0.610 1.0

6 0.543 0.006 0.531 0.556 1.1

9 0.529 0.006 0.517 0.541 1.2

Límites del intervalo de confianza al 95% de probabilidad.

Los valores promedio de densidad anhidra registrados en el Cuadro 13 muestran

diferencias entre sí. El análisis de varianza que permite evaluar estadísticamente dichas

diferencias entre tableros dentro de cada espesor se presenta en el Cuadro 14.

Cuadro 14. Análisis de varianza para densidad anhidra.

Fuente de Grados de F Pr > F Nivel de

variación libertad Calculada significancia

Región 2 10.7 0.0001 **

Espesor 2 33.42 0.0001 **

Reg*Esp 4 9.49 0.0001 **

Error 261 † :

Hay diferencias en tratamientos si Pr > F < . = 0.05

**: Significancia al 0.01 de probabilidad.

Page 47: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

38

El nivel de significancia de las diferencias en cada fuente de variación indicada en el

Cuadro 14, estadísticamente muestra diferencias altamente significativas, ya que para cada

fuente de variación la Pr > F mostró valores inferiores a =0.05 e iguales a =0.01.

La prueba de t de Student para densidad anhidra presentada en el Cuadro 15

especifica claramente las diferencias entre las medias de los tableros evaluados, esto dentro de

cada espesor evaluado.

Cuadro 15. Prueba de t para medias entre espesores de los tableros evaluados.

Empresa de origen Espesor de los tableros*

De los tableros 3mm 6 mm 9mm

Región (N) 0.554 b 0.556 a 0.530 a

Región (C) 0.577 b 0.526 a 0.527 a

Región (S) 0.662 a 0.549 a 0.530 a

Media 0.598 0.582 0.529 (N) Región norte, (C) Región centro, (S) Región sur

* : Medias en la misma columna con la misma literal son iguales al 0.05 de probabilidad.

Las diferencias entre los valores promedio por tablero dentro de cada espesor están

relacionadas con el proceso de fabricación, el adhesivo, el prensado y principalmente por la

densidad de la madera con la que fueron fabricados, ya que en la manufactura de los

contrachapados la densidad de la madera empleada influye determinantemente en casi todas

las etapas del proceso de formación. En el corte de la lámina en maderas de muy baja

densidad las paredes celulares no resisten el corte disminuyendo la producción y

dificultándola; en especies de alta densidad, por la resistencia que presentan al corte de las

láminas se requiere un consumo de energía mayor aunado a una pérdida más acelerada del

filo de las cuchillas (Devlieger, 1990).

Las maderas que presentan una densidad alta presentan mayor resistencia al secado de

las láminas y, así mismo, durante el encolado requieren uniones más resistentes; por otro lado,

el adhesivo, en caso de maderas de baja densidad, puede penetrar excesivamente en las

chapas. Según Devlieger, (1990) los valores de densidad de la madera para la fabricación de

chapas y contrachapados, pueden variar entre 0.40 y 0.70 g/cm3, estando el óptimo entre 0.50

y 0.55 g/cm3.

Page 48: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

39

Figura 18. Valores medios de densidad anhidra por espesor evaluado.

5.6 Contenido de humedad.

El contenido de humedad presente en los tableros bajo uso puede modificar sus

propiedades físicas y mecánicas (Pérez, 1983). Los valores medios del contenido de

humedad para los tableros evaluados se registran en el Cuadro 16 y Figura 19.

Cuadro 16. Valores medios de contenido de humedad (%).

Espesor Media

Límite Límite Desviación Coef. de var.

(mm) inferior superior estándar (%)

3 9.647 9.302 9.990 1.049 10.6

6 9.496 9.151 9.839 0.558 5.9

9 9.155 8.811 9.498 0.039 0.4

Límites del intervalo de confianza al 95% de probabilidad.

El rango de valores medios del contenido de humedad en los tres espesores evaluados

va de 9.155 a 9.647 %. Dobbin et. al. (1990) reporta para los tableros contrachapados en uso

un contenido de humedad promedio de 11%. Respecto de este valor la humedad encontrada

en los tableros es inferior, representando una ventaja por la mayor resistencia que obtienen

por ello.

Page 49: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

40

En el Cuadro 17 se evalúan estadísticamente las diferencias existentes entre cada

espesor por medio de un análisis de varianza.

Cuadro 17. Análisis de varianza del contenido de humedad.

Fuente de Grados de F Pr > F Nivel de

variación Libertad calculada Significancia

Región 2 14.90 0.0001 **

Espesor 2 2.14 0.1259 NS

Reg*Esp 4 3.67 0.0095 *

Error 63 * ,** : Significancia al 0.05 y al 0.01 de probabilidad (significativo y altamente significativo).

NS: No Significativo.

El análisis de varianza muestra que las diferencias presentes en las fuentes de

variación espesor y empresa - espesor no son significativas estadísticamente, pues Pr > F

presentó valores superiores a =0.05, solo se muestra una diferencia entre las empresas

origen de los tableros.

Por medio de la prueba de t de Student que se presenta en el Cuadro 18 se especifican

las diferencias entre las medias del porcentaje de contenido de humedad de los tableros

evaluados, esto dentro de cada espesor evaluado.

Cuadro 18. Prueba de t para las medias del contenido de humedad.

Empresa de origen Espesor de los tableros*

de los tableros 3 mm 6 mm 9 mm

Región (N) 9.664 a 9.138 b 9.789 a

Región (C) 9.407 a 10.898 a 8.679 b

Región (S) 9.869 a 8.451 b 8.997 ab

Media 9.647 9.496 9.155 (N) Región norte, (C) Región centro, (S) Región sur

* Medias en la misma columna con la misma literal son iguales al 0.05 de probabilidad.

Según Zavala (1994) el contenido de humedad presente en las chapas para la

fabricación de tableros dificulta la polimerización de los adhesivos y tiende a separar las

chapas en forma de delaminaciones o ponchaduras, así mismo, por su material de origen el

contenido de humedad presente en los tableros puede repercutir en su resistencia mecánica,

lo anterior fundamentado en lo que Pérez (1983), citado por Salinas (2000), indica del

contenido de humedad presente en la madera; que afecta su resistencia mecánica en sus

Page 50: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

41

diferentes esfuerzos aumentando en diferentes porcentajes conforme aumente el contenido de

humedad.

Figura 19. Valores medios del contenido de humedad por espesor evaluado.

5.7 Ensayo de flexión estática.

En la evaluación de las distintas propiedades de la madera es obligatorio el empleo de

probetas de ensayo libres de defectos en contraste con las estructuras de madera formadas por

piezas de tamaños mayores no libres de defectos, mismas que soportan cargas durante

periodos variables en comparación al tiempo normalizado de los ensayos. Por esta razón los

valores de resistencia de los ensayos de probetas pequeñas no pueden aplicarse a directamente

al diseño de elementos estructurales en madera, deben ser tomados como punto de referencia,

ponderando hasta que los valores obtenidos en ensayo sean equivalentes a los valores

correspondientes a las condiciones de uso práctico. El análisis de la presente prueba considera

los valores medios obtenidos en el ensayo para las propiedades de esfuerzo en el límite de

proporcionalidad (ELP), módulo de ruptura (MOR) y módulo de elasticidad (MOE) que

respectivamente se registran en los Cuadros y Figuras 19, 20 y 21. Se presentan juntos los

cuadros de estas tres propiedades con la finalidad de analizar el comportamiento de cada

tablero dentro de cada espesor en cada una de dichas propiedades.

Page 51: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

42

Cuadro19.Valores medios de esfuerzo en el límite de proporcionalidad por espesor (kg/cm2).

Espesor Media

Desviación Límite Límite Coef. de var.

(mm) Estándar inferior superior (%)

3 234.36 80.58 214.90 253.81 34.38

6 148.63 80.80 129.18 168.08 54.36

9 176.68 44.85 155.88 197.47 25.39

Límites del intervalo de confianza al 95% de probabilidad.

Cuadro 20. Valores medios del módulo de ruptura por espesor evaluado(kg/cm2).

Espesor Media

Desviación Límite Límite Coef. de var.

(mm) Estándar inferior superior (%)

3 814.41 328.53 750.08 878.74 40.34

6 576.15 243.89 511.82 640.47 42.33

9 700.13 169.61 631.35 768.89 24.23

Límites del intervalo de confianza al 95% de probabilidad.

Cuadro 21. Valores medios del módulo de elasticidad por espesor (kg/cm2).

Espesor (mm) Media Desviación Límite Límite Coef. de var.

Estándar inferior superior (%)

3 52,133.84 26,106.49 46,545.53 57,722.15 50.08

6 46,193.83 26,808.29 40,605.52 51,782.14 58.03

9 42,650.63 11,513.55 36,676.47 48,624.78 27.00

Límites del intervalo de confianza al 95% de probabilidad.

Según Vignote y Jiménez (1996) las propiedades de los contrachapados y de la

madera sólida son muy similares. Por no contarse con valores de esfuerzo en el límite de

proporcionalidad registrados específicamente para contrachapados serán comparados

respecto a los valores de la madera de pino.

Según Fuentes (1998) los valores de esfuerzo en el límite de proporcionalidad

registrados para diversas especies del género Pinus varían dentro del rango de 311 a 613

kg/cm2. Los valores medios que se muestran en el Cuadro 19 indican que el ELP que registran

los contrachapados bajo estudio van de 148.63 a 234.36 kg/cm2. Estos son valores menores al

límite inferior del rango especificado por Fuentes (1998) para madera sólida.

Page 52: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

43

Los valores medios del módulo de ruptura para los contrachapados sometidos a prueba

en el presente trabajo fluctúan entre los 576.15 a los 814.41 kg/cm2. Conforme la clasificación

que hace Novelo (1964) para el MOR en madera, estos valores se clasificarían dentro del

nivel bajo de resistencia, es decir, se encuentra dentro del rango de los valores que van de 401

a 900 kg/cm2. Algunos otros valores registrados para esta propiedad en la flexión estática en

el mismo tipo de tableros los presenta la FAO (1983) indicando un rango que va de los

278.32 a los 710.5 kg/cm2 en función de la densidad del tablero.

Los valores medios registrados en el módulo de elasticidad que se presentan en el

cuadro 21 se encuentran dentro del rango de 42,650.63 a 52,133.84 kg/cm2, valores que

clasificarían a los contrachapados dentro del nivel inferior de la clasificación que para el MOE

en madera hace Novelo (1964),es decir, muy bajo, tal nivel abarca el rango de los valores

inferiores a 70,000 kg/cm2. La FAO (1983), en la “Technical Consultation on Wood-based

Panels en New Delhi”, reportó valores que van de los 89,180 a los 156,800 kg/cm2

en

función de la densidad de los contrachapados; los valores que obtuvieron los tableros

evaluados se encuentran abajo del límite inferior del rango reportado por la FAO.

En los Cuadros 22, 23 y 24 se presentan los análisis de varianza para las propiedades

de ELP, MOR y MOE.

Cuadro 22. Análisis de varianza para esfuerzo en el límite de proporcionalidad (ELP).

Fuente de Grados de F Pr > F† Nivel de

Variación libertad calculada Significancia

Región 2 3.98 0.0226 *

Espesor 2 19.95 0.0001 **

Reg*Esp 4 17.62 0.0001 **

Error 78 *,**: Probabilidad al 0.05 y 0.01. (Significativo y altamente significativo respectivamente)

† : Hay diferencias en tratamientos si Pr > F < . = 0.05

Cuadro 23. Análisis de varianza para módulo de ruptura (MOR).

Fuente de Grados de F Pr > F† Nivel de

Variación libertad Calculada Significancia

Región 2 1.69 0.1917 NS

Espesor 2 13.60 0.0001 **

Reg*Esp 4 26.29 0.0001 **

Error 78 **: Significancia al 0.01 de probabilidad (Altamente significativo ) NS: No significativo

† : Hay diferencias en tratamientos si Pr > F < . = 0.05

Page 53: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

44

Cuadro 24. Análisis de varianza para módulo de elasticidad (MOE). Fuente de Grados de F Pr > F† Nivel de

Variación libertad Calculada significancia

Región 2 6.13 0.0034 *

Espesor 2 2.76 0.0696 NS

Reg*Esp 4 25.93 0.0001 **

Error 78 *,**: Probabilidad al 0.05 y 0.01. (Significativo y altamente significativo respectivamente) NS: No significativo

† : Hay diferencias en tratamientos si Pr > F < . = 0.05

El análisis de varianza para las propiedades de ELP y MOR muestra una diferencia

altamente significativa en la fuente de variación espesor puesto que Pr > F < = 0.01, así

mismo en todas las propiedades se muestra una interrelación entre las empresas y sus tableros

producidos.

Los resultados presentados en los Cuadros 19, 20 y 21 muestran valores más altos

conforme el siguiente orden de espesores: 3, 9 y 6 mm. En las propiedades de ELP y MOR de

los valores medios registrados indican cierta relación inversamente proporcional, valores que

aunados a sus correspondientes análisis de varianza muestran una variación significativa en

función al espesor de los tableros y a la calidad y armado de los mismos como se puede

analizar del Anexo 2.

Buscando establecer las diferencias y las similitudes entre los tableros del mismo

espesor, en los cuadros 25, 26 y 27 se presentan las pruebas de t de Student para analizar si

las diferencias y las similitudes entre las medias son estadísticamente significativas con un

= 0.05.

Cuadro 25. Prueba de t para el esfuerzo en el límite de proporcionalidad por espesor.

Empresa de origen Espesor de los tableros*

de los tableros 3mm 6 mm 9mm

Región (N) 182.27 b 152.49 b 130.68 b

Región (C) 223.88 b 66.47 c 204.97 a

Región (S) 296.93 a 226.94 a 194.39 a

Media 234.36 148.63 176.68 (N) Región norte, (C) Región centro, (S) Región sur

*: Medias dela misma columna con la misma literal son iguales al 0.05 de probabilidad.

Page 54: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

45

Cuadro 26. Prueba de t para el módulo de ruptura por espesor.

Empresa de origen Espesor de los tableros*

de los tableros 3mm 6 mm 9mm

Región (N) 549.55 c 627.29 b 497.68 b

Región (C) 766.62 b 313.77 c 828.98 a

Región (S) 1,127.06 a 787.38 a 773.72 a

Media 814.41 576.15 700.13 (N) Región norte, (C) Región centro, (S) Región sur

*: Medias dela misma columna con la misma literal son iguales al 0.05 de probabilidad.

Cuadro 27. Prueba de t para el módulo de elasticidad por espesor.

Empresa de origen Espesor de los tableros*

de los tableros 3mm 6 mm 9mm

Región (N) 33,371.52 c 43,713.14 b 29,226.66 b

Región (C) 49,804.11 b 18,761.50 c 54,303.80 a

Región (S) 73,225.90 a 76,106.86 a 44,421.42 a

Media 52133.84 46193.83 42650.63 (N) Región norte, (C) Región centro, (S) Región sur

*: Medias dela misma columna con la misma literal son iguales al 0.05 de probabilidad.

La variación en todas y cada una de las propiedades de la flexión estática de cada

tablero está en función de la calidad del tablero mismo, es decir, de su densidad, de la solidez

de sus chapas, las condiciones de fabricación (temperatura, tiempo y presión de prensado), de

la calidad del encolado y su aplicación, del contenido de humedad presente en el tablero, de

las especie y aún del porcentaje de madera juvenil y de madera madura.

En general, cualquier tipo de tablero, ya bajo condiciones de uso presenta un

comportamiento en todas sus propiedades relativamente diferente al que teóricamente

registran puesto que las condiciones climáticas (temperaturas promedio en verano e invierno,

comportamiento anual de la humedad ambiental promedio, precipitación media anual) inciden

positiva o negativamente en tales propiedades físico-mecánicas.

Page 55: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

46

Figura 20. Valores medios del esfuerzo en el límite de proporcionalidad por

espesor.

Figura 21. Valores medios del módulo de ruptura por cada espesor.

Page 56: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

47

Figura 22. Valores medios del módulo de elasticidad por espesor.

5.8 Ensayo de tracción paralela a la fibra

En el Cuadro 28 y Figura 23 se presentan los valores promedio obtenidos de la prueba

de tracción paralela a la fibra en los contrachapados evaluados.

Cuadro 28. Valores medios de tracción paralela en los tableros evaluados(kg/cm2).

Espesor Media

Límite Límite Desviación Coef. de var.

(mm) inferior superior estándar (%)

3 11.61 10.907 12.312 2.275 24.681

6 4.311 3.609 5.013 1.145 26.574

9 9.22 8.518 9.923 3.974 34.232

Límites del intervalo de confianza al 95% de probabilidad.

Los valores registrados fluctúan de 4.31 a 11.61 kg/cm2, sin presentar un orden

definido de valores creciente o decreciente con respecto a los espesores evaluados. Vignote y

Jiménez (1996) presentan un valor de 18 kg/cm2 de resistencia a la tracción, similar al de la

madera maciza de pino, valor que rebasa por mucho a los obtenidos por los tableros

evaluados. El análisis de varianza para los valores de tracción paralela se presenta en el

Cuadro 29.

Page 57: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

48

Cuadro 29. Análisis de varianza para tracción paralela.

Fuente de Grados de F Pr > F† Nivel de

variación Libertad calculada significancia

Región 2 16.62 0.0001 **

Espesor 2 111.15 0.0001 **

Reg*Esp 4 14.68 0.0001 **

Error 81 † :

Hay diferencias en tratamientos si Pr > F < . = 0.05

** Significancia al 0.01 de probabilidad (altamente significativo).

El análisis de varianza muestra que las diferencias en la resistencia a la tracción

paralela entre los diferentes espesores así como entre las empresas origen de los tableros

evaluados son altamente significativas ya que Pr > F < = 0.01. Para los valores obtenidos

en esta prueba se establecen las diferencias y las similitudes entre los tableros del mismo

espesor en el cuadro 30 por medio de la comparación de medias empleando la prueba de t de

Student con un = 0.05.

Cuadro 30. Prueba de t para medias de tracción paralela a la fibra por espesor.

Empresa de origen Espesor de los tableros*

de los tableros 3mm 6 mm 9mm

Región (N) 9.276 a 5.353 a 10.510 b

Región (C) 8.368 a 4.129 ab 8.331 c

Región (S) 10.018 a 3.453 b 15.989 a

Media 9.221 4.312 11.610 (N) Región norte, (C) Región centro, (S) Región sur

*: Medias dela misma columna con la misma literal son iguales al 0.05 de probabilidad.

La madera, por su natural constitución, presenta una mayor resistencia a esfuerzos

solicitados en la dirección paralela a sus fibras; los tableros contrachapados presentan un

comportamiento similar al ofrecer una mayor resistencia a esfuerzos paralelos a sus caras,

debido por la madera misma de la que están fabricados, a la calidad de su encolado e incluso

al contenido de humedad presente en el tablero al momento de la solicitud de esfuerzos.

Page 58: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

49

Figura 23. Valores medios de tracción paralela a la fibra por espesor.

5.9 Ensayo de Cizalle

Este ensayo es complementario al de adherencia antes descrito, ya que su principal

objetivo es evaluar la calidad del encolado, solamente que éste se realiza aplicando una carga

de tracción paralela a la fibra de las caras para provocar el cizalle en la línea de unión.

En los Cuadros 31 y 32 y Figuras 24 y 25 respectivamente se presentan los valores

medios obtenidos en esta prueba de cortante para carga máxima y para carga por unidad de

superficie

Cuadro 31. Valores medios de carga máxima en cizalle (kg).

Espesor Media

Límite Límite Desviación Coef. de Var.

(mm) Inferior superior estándar (%)

3 112.429 108.930 115.926 17.354 15.436

6 45.952 42.454 49.916 10.857 23.626

9 83.952 80.228 112.344 20.190 24.050

Límites del intervalo de confianza al 95% de probabilidad.

Page 59: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

50

Cuadro 32. Valores medios de carga por unidad de superficie en prueba de cizalle (kg/cm2).

Espesor Media

Límite Límite Desviación Coef. Var

(mm) inferior superior estándar (%)

3 17.12 16.574 17.668 2.83 16.55

6 7.161 6.614 7.708 1.73 24.21

9 13.09 12.508 13.672 6.78 51.77

Límites del intervalo de confianza al 95% de probabilidad.

Los valores medios de carga máxima, obtenidos conforme a la norma APA PS 1 – 83,

van de los 45.95 a los 112.42 kg, así como los de carga promedio por unidad de superficie van

de los 7.12 a los 13.09 kg/cm

2. La FAO (1983) reporta valores de carga máxima para

contrachapados bajo cizalle que van de los 51.94 a los 77.42 kg/cm2 en función de la densidad

del tablero; respecto de tales registros los valores obtenidos por los tableros evaluados se

muestran inferiores a los reportados por la FAO.En los Cuadros 33 y 34 se presentan el

análisis de varianza correspondiente a cada carga.

Cuadro 33. Análisis de varianza para carga máxima.

Fuente de Grados de F Pr > F† Nivel de

variación Libertad calculada significancia

Región 2 68.40 0.0001 **

Espesor 2 351.85 0.0001 **

Reg*Esp 4 56.07 0.0001 **

Error 296 † :

Hay diferencias en tratamientos si Pr > F < . = 0.05

** Significancia al 0.01 de probabilidad (altamente significativo).

Cuadro 34. Análisis de varianza para carga por unidad de superficie.

Fuente de Grados de F Pr > F† Nivel de

variación Libertad calculada significancia

Región 2 75.55 0.0001 **

Espesor 2 324.89 0.0001 **

Reg*Esp 4 57.30 0.0001 **

Error 296 † :

Hay diferencias en tratamientos si Pr > F < . = 0.05

** Significancia al 0.01 de probabilidad (altamente significativo).

Los respectivos análisis de varianza para cada carga muestran diferencias altamente

significativas en cada fuente de variación, ya que Pr > F < = 0.01, es decir, cada tablero de

cada espesor y de cada empresa registró valores muy particulares y propios de sí mismo. Para

los valores obtenidos se establecen las diferencias y las similitudes entre los tableros del

Page 60: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

51

mismo espesor en el cuadro 35 y 36 por medio de la comparación de medias empleando la

prueba de t de Student con un = 0.05.

Cuadro 35. Prueba de t para medias de carga máxima (kg)

Empresa de origen Espesor de los tableros*

de los tableros 3mm 6mm 9mm

Región (N) 106.285 ab 47.857 a 38.428 b

Región (C) 119.285 a 41.857 a 96 c

Región (S) 111.714 a 48.142 a 117.428 a

Media 112.428 45.952 83.952 (N) Región norte, (C) Región centro, (S) Región sur *: Medias dela misma columna con la misma literal son iguales al 0.05 de probabilidad.

Cuadro 36. Prueba de t para medias de carga por unidad de superficie(kg/cm2).

Empresa de origen Espesor de los tableros*

de los tableros 3mm 6mm 9mm

Región (N) 15.87 b 7.52 a 5.85 c Región (C) 18.17 a 6.60 a 14.87 b

Región (S) 17.32 a 7.36 a 18.55 a

Media 17.12 7.16 13.09 (N) Región norte, (C) Región centro, (S) Región sur

*: Medias dela misma columna con la misma literal son iguales al 0.05 de probabilidad.

Figura 24. Carga máxima promedio en prueba de cizalle por espesor evaluado.

Page 61: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

52

Figura 25. Carga media por unidad de superficie en prueba de cizalle por espesor

evaluado

En el Cuadro 37 se muestra los porcentajes de probetas falladas en cada tablero de un

total de 305, esto según el origen de la falla en cada probeta bajo cizalle.

Cuadro 37. Origen y porcentajes de falla en las probetas bajo cizalle.

Tablero Falla por madera Falla por adhesivo

N° N° probetas % N° probetas %

13 20 57.14 15 42.86

23 28 80.00 7 20.00

33 34 97.14 1 2.86

16 32 91.43 3 8.57

26 35 100.00 0 0.00

36 35 100.00 0 0.00

19 24 68.57 11 31.43

29 24 96.00 1 4.00

39 24 68.57 11 31.43

Total 256 84.0 49 16.0

Tanto la prueba de cizalle como la prueba de adherencia son empleadas con la

finalidad de evaluar la calidad del encolado de los tableros. Se considera como buen

adhesivo aquel que falla a una fuerza aplicada después de que el material que está uniendo ha

fallado antes, es decir para este caso, el adhesivo no debe fallar antes que la madera.

Page 62: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

53

Los tableros evaluados puede decirse que presentaron características favorables a esta

prueba, ya que el 84 % de las fallas tuvieron su origen en la madera y el 16% en la falla del

adhesivo. Estos porcentajes se representan en la Figura 26.

Figura 26. Porcentajes de probetas falladas y no falladas en la prueba de cizalle o cortante.

En el Cuadro 38 se presentan las fichas descriptivas de cada tablero que fue evaluado

dentro de cada espesor, indicando los valores resultantes de cada prueba y, finalmente, con un

objetivo netamente comparativo, en el Cuadro 39 se presentan valores medios de densidad

normal, flexión estática y contenido de humedad de los tableros contrachapados, aglomerados

y de fibra, los dos últimos evaluados en forma similar al presente trabajo; además, como

referencia, también se indican valores reportados en madera sólida de pino para las mismas

propiedades.

Page 63: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

54

Page 64: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

55

Page 65: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

56

6. CONCLUSIONES

1. En la calidad de las chapas se encontró que 8 tableros fueron subvaluados, pues la calidad

de comercialización en su mayoría debía ser de un grado más alto en cuanto a clasificación

de calidad; el tablero 33 fue sobre valorado pues su calidad corresponde a una inferior

respecto de la calidad con la fue comercializado. Respecto al armado de los tableros

tuvieron el alma constituida por más de una chapa los mismos tableros que fueron

subevaluados en su calidad, fluctuando en número de 3 a 10 chapas internas, así mismo el

tablero 33, presentó una única lámina constituyendo su centro

2. Respecto del espesor todos los tableros se encuentran fuera de las especificaciones

establecidas por la norma NMX-C-326-1978, presentándose como promedio 3.64, 5.89 y

8.71 mm respectivamente para los tableros de 3, 6 y 9 mm.

3. En superficie (largo y ancho), el promedio general de los nueve tableros corresponde al

especificado según dimensiones nominales, no así en la escuadría, donde 8 de los 9

tableros evaluados no presentaron la diagonal correspondiente.

4. La adherencia de 7 tableros fue encontrada excelente y para los dos restantes fue

aceptable, es decir, todos los tableros cumplieron con lo establecido en la norma NMX-C-

326-1978. (SECOFI, 1978). Del total de las 135 probetas evaluadas 129 soportaron un

número de ciclos mayor al establecido, las restantes 6 presentaron delaminación en el

último ciclo de prueba. Las probetas falladas correspondieron a los tableros 16 y 36.

Page 66: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

57

5. Los valores promedio de densidad normal para los espesores de 3, 6 y 9 mm se registraron

respectivamente en 625.9, 587.4 y 580 kg/m3, clasificándose dentro de los tableros de

densidad baja a media según la FAO (1983). Todos los tableros de 3 mm se consideraron

estadísticamente diferentes entres sí, dentro de los de 6 mm los tableros 16 y 26 se

evaluaron similares entre sí y diferentes al tablero 36, en los de 9 mm los contrachapados

19 y 29 se registraron como iguales y diferentes del tablero 39. La densidad anhidra se

registró en promedio en 0.59 g/cm3 para los tableros de 3 mm, en 0.54 g/cm

3 para los de

6 mm y 0.52 g/cm3 para los de 9 mm. Estadísticamente solo en el espesor de 3 mm se

presentó variación, los tableros de 13 y 23, siendo similares entre ellos y diferentes del

tablero 33. Entre los tableros de cada espesor no hubo diferencia estadística.

6. Para las propiedades de esfuerzo en el límite de proporcionalidad y módulo de ruptura los

valores más altos correspondieron a los tableros de 3 mm con 234.36 y 814.41 kg/cm2

respectivamente, siguiendo los de 9 mm con 176.68 y 700.13 kg/cm2

y finalmente los de 6

mm con 148.63 y 576.15 kg/cm2. En el módulo de elasticidad los valores más bajos los

presentaron los tableros de 9 mm con 42,650.63 kg/cm2, siguiendo los de 6 mm con

46,193.83 kg/cm2 y finalmente el espesor de 3 mm con 52,133.84 kg/cm

2. Conforme a la

clasificación que Novelo (1964) hace para las propiedades de la flexión estática en la

madera, los valores de esfuerzo en el límite de proporcionalidad se registraron dentro del

nivel bajo de resistencia unitaria a la flexión, los valores del módulo de ruptura dentro del

nivel bajo de resistencia y los valores del módulo de elasticidad en el nivel denominado

como muy bajo.

7. En el ensayo de tracción paralela a la fibra los valores se encontraron dentro del rango de

4.31 a 11.61 kg/cm2 de resistencia a la tracción, valores que son rebasados por el reportado

por Vignote y Jiménez (1996) igual a 18 kg/cm2. Estadísticamente no se presentó variación

en los tableros de 3 mm, en los de 6 mm los tableros 16 y 36 fueron diferentes entre sí y

ambos similares al tablero 26, dentro del espesor de 9 mm todos los contrachapados fueron

estadísticamente diferentes entre sí.

Page 67: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

58

8. En la prueba de cizalle los valores más altos correspondieron con el espesor de 3 mm que

obtuvo como carga máxima promedio 112.43 kg y un valor de carga promedio por unidad

de superficie igual a 17.12 kg/cm2, siguiendo el espesor de 9 mm con los valores promedio

de 83.95 kg y 13.09 kg/cm2 para carga máxima y carga por superficie respectivamente y

finalmente el de 6 mm con los valores más bajos correspondiente a 45.95 kg y 7.16

kg/cm2 para cada carga.

Page 68: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

59

7. RECOMENDACIONES.

1. Realizar trabajos de investigación similares al presente de una forma más amplia e

intensiva, para cada tipo de tablero producido en México, con la finalidad de poder contar

con valores estándares nacionales para cada propiedad física y mecánica de los mismos,

valores que a su vez coadyuven a mejorar la calidad de los productos mexicanos así como

una mejora en la industria de los tableros nacionales

2. Involucrar directamente a las empresas productoras de tableros en general para que

colaboren con trabajos de investigación que a ellos mismos les permita conocer la calidad

de sus productos y obtener un mejor nivel de competitividad creando paralelamente

normas que regulen la producción de los productos del subsector forestal.

Page 69: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

60

8. BIBLIOGRAFÍA CITADA.

ANÓNIMO. 1990. Normas para el control de tableros contrachapados, Serie Técnica s/n.

Facultad de Ciencias Forestales. Universidad Austral de Chile. Valdivia, Chile. P

21.

ASTM. 1992-a. Norma D 2395-83. Methods for Specific Gravity of Wood and Wood-

Base Materials. Annual book of ASTM standards. American Society For Testing

And Material. Vol. 04, Secc. 09. Filadelfia . 384-391 pp.

ASTM. 1992-b. Norma D3500-90. Metods for Structural Panels in Tensión. Annual book

of ASTM standards. American Society For Testing And Material. Vol. 04, Secc.

09. Filadelfia . 469-473 pp.

ASTM. 1992-c. 1992. Norma D 3043-87. Test Methods for Structural Panels in Flexion.

Annual book of ASTM standards. American Society For Testing And Material.

Vol. 04, Secc. 09. Filadelfia 443-453 pp.

ANPMP, 1950. Memoria de la IV Convención Nacional de Productores de Maderas de

Pino. Asociación Nacional de Productores de Maderas de Pino. Durango, Dgo.,

México. 53-55 pp.

CNIF. 1997. Memoria Estadística 1995 – 1997. Cámara Nacional de la Industria Forestal.

México, D. F. s/p

CORRAL M., ALFREDO, 1997. Optimización del uso de la trocería para la producción

de triplay y de madera aserrada. Tesis profesional. División de Ciencias Forestales.

Universidad Autónoma Chapingo. Texcoco, Méx. México.110p.

DEVLIEGER, F. 1990. Tableros contrachapados. Universidad Austral de Chile. Valdivia,

Chile. p 87-97.

Page 70: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

61

DÍAZ G., VÍCTOR. 1960. Método de ensayo para determinar las propiedades físicas y

mecánicas de la madera. Tesis profesional. Unidad de Enseñanza en Bosques.

Escuela Nacional de Agricultura. Chapingo, Texcoco, Méx. México. 119p.

DIAZ-VAZ O., JUAN E. Y CUEVAS D., HECTOR 1986. Mecánica de la madera.

Publicación docente No 23. Facultad de Ciencias Forestales. Universidad Austral

de Chile. Valdivia, Chile. 45 p.

DOBBIN M., J., WELLWOOD W., ROBERT y BACH L., 1990. Relationships between

small-specimen and large panel bending test on structural wood-based panels.

Forest Products Journal, 40( 9): 10-16.

ECHENIQUE M., R. Y PLUMTRE R., A. 1994. Guía para el uso de maderas de Belice y

México. Universidad de Guadalajara, Jal.México. 196 p.

FAO, 1983, Technical Consultation on Wood-based Panels, 13-17 January. New Delhi,

India

FAO, 1990. Madera y productos de madera, una proyección al 2010. Roma. pp. 24-26.

FUENTES S., MARIO. 1998. Propiedades Tecnológicas de las Maderas Mexicanas de

Importancia en la Construcción. Revista Chapingo, Serie Ciencias Forestales y del

Ambiente. Vol. IV. Núm. 1-1998.Texcoco, México. Pp 221-229.

INSTITUTO FORESTAL Y CORPORACIÓN DE FOMENTO DE LA PRODUCCIÓN,

1987. Tecnología y perspectivas de tableros de partículas tipo waferboards,

flakeboards y OSB. Informe Técnico Nº 109. Santiago de Chile. 85 p.

MANZANO S., ADELAIDA, 2000. Propiedades físico-mecánicas de tableros

aglomerados de partículas de 12, 16 y 19 mm de una empresa del Estado de

Page 71: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

62

Durango. Tesis Profesional. División de Ciencias Forestales. Universidad

Autónoma Chapingo. Texcoco, México. 65 p.

MUÑOZ G., ROGELIO. 1992. Factores que influyen en la producción de chapa

desenrollada en el Edo. de Campeche. Tesis de licenciatura. Universidad

Autónoma Chapingo. División de Ciencias Forestales. Texcoco, México. 57 p.

PADRÓN O., GABRIELA, 2000. Seis propiedades físico-mecánicas de tableros de fibra

de 2.5, 3.0, 3.2 y 5.5 mm obtenidos por el método Mende Vison de una empresa del

Estado de México. Tesis Profesional. División de Ciencias Forestales. Universidad

Autónoma Chapingo. Texcoco, Méx. México.90 p.

PANSHIN, A. J. et al. 1959. Productos forestales, origen, beneficio y aprovechamiento. 1ª.

ed. en español. Salvat. Barcelona España. 605 p.

POBLETE W., HERNÁN. 1990. Normas APA para el control de tableros contrachapados.

Norma APA PS 1 – 83. Clasificación y calidad de tableros contrachapados. In:

Normas para el control de tableros contrachapados, Serie Técnica s/n. Facultad de

Ciencias Forestales. Universidad Austral de Chile. Valdivia. Chile. pp 30-44 .

RUIZ V., MARCO ANTONIO. 1990. Proceso de Elaboración y coeficiente de

aprovechamiento de tableros contrachapados en la Cía. Enchapados Alfa. Tesis de

licenciatura. División de Ciencias Forestales. Universidad Autónoma Chapingo.

Texcoco,Méx. México. 49 p.

SALINAS H., SARA. 2000. Sistemas de Clasificación de las características, propiedades

y procesos de transformación primaria de las maderas. Tesis profesional. División

de Ciencias Forestales. Universidad Autónoma Chapingo, Texcoco, México. 196 p.

Page 72: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

63

SARH-SFF, 1982. La Industria de los tableros de Madera en México. Subsecretaría

Forestal y de la Fauna. Secretaría de agricultura y Recursos Hidráulicos. México,

D.F. 93 p.

SECOFI. 1978. Norma NMX-C-326-1978. Madera contrachapada de pino. Dirección

General de Normas. Secretaría de Comercio y Fomento Industrial. México, D.F.

18 p.

SECOFI. 1976. Norma NOM-G-18-1976. Tableros contrachapados de maderas finas

(Cedro y Caoba) y duras tropicales. Dirección General de Normas. Secretaría de

Comercio y Fomento Industrial. México, D.F. 8 p.

VIGNOTE P., SANTIAGO y JIMÉNEZ P., FCO. JAVIER. 1996. Tecnología de la

Madera. Ministerio de Agricultura, Pesca y Alimentación. Madrid. 602p.

ZAMUDIO S., EMILIO. 1977. Apuntes de producción de chapa y contrachapado.

Departamento de Bosques. Escuela Nacional de Agricultura Chapingo, Texcoco,

Méx. México. p 98.

ZAVALA Z., DAVID. 1994. Análisis de los Factores que intervienen en el Proceso de

Prensado del Triplay. Ciencia Forestal en México. INIFAP, México. D.F.

19(76):103-132.

ZAVALA Z., DAVID. 1991. Propiedades Tecnológicas de la Madera que Influyen en las

características de la Chapa y en la Calidad del Triplay. Ciencia Forestal en México.

INIFAP, México. D.F. 16(69):77-92.

Page 73: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

64

A N E X O S

Page 74: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

65

ANEXO 1.

ESTIMACIÓN DEL TAMAÑO DE MUESTRA DE LOS ENSAYOS.

La medición de la submuestras realizadas a cada tablero para cada una de las variables

nos permitieron obtener una estimación del error estándar de la forma siguiente:

σ = CME

donde:

σ = error estándar

CME = cuadro medio del error.

El error estándar de la media es estimado como:

σx= σ/ n donde:

n= tamaño de muestra

De esta forma es posible estimar el error estándar de la media para diferentes tamaños

de muestra como se indica en la Tabla 1. Un tamaño de muestra adecuado podría ser aquel en

que un incremento en “n” no disminuye mucho el error estándar de la media, o es

equivalentemente al valor de “n” en el que la curva del gráfico se vuelve asintótica tal como

se muestra en la Figura A.

Prueba Desv. est. Varianza N° muestra N° de muestra N°

muestral muestral estable* aplicado gráfico

Contenido de humedad 0.549 0.301 8 8 1

Espesor 0.475 0.225 15 132 2

Densidad 0.207 0.043 15 30 3

Flexión 3mm 85.838 7368.162 8 20 4

Flexión 6mm 97.847 9574.035 8 15 5

Flexión 9mm 148.976 22193.849 8 10 6

Tracción 2.465 6.075 15 10 7

Cizalle 23.963 574.241 15 35 8

Tabla 1: Número a partir del cual la gráfica se presenta asintótica y número mínimo de

muestra aceptable para cada prueba realizada.

Page 75: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

66

Page 76: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

67

Por otra parte también es posible estimar el tamaño de muestra de acuerdo a la

precisión deseada por el investigador. Se definimos el error relativo como.

dr = | (μ –x ) / μ |x

donde:

dr = Error relativo.

Representa la desviación de la estimación (x) respecto a la media (μ).

El tamaño de muestra para un error relativo dr y nivel de α preespecificado se estima

como sigue:

n> (t(α/2),(n-1) )* (c.v./dr)2/ (1+((t(α/2),(n-1))*(c.v./ dr)) / ni )

donde:

t(α/2),(n-1) = valor de tablas

c.v. = σ/x

ni = tamaño de muestra preliminar

Por ejemplo, el tamaño de muestra requerido para un error relativo del 5% se muestra

en la Tabla 2.

Page 77: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

68

ANEXO 2. CALIDAD DE CHAPAS Y ARMADO DE TABLEROS.

* Dentro de la evaluación realizada no se registraron los defectos de tipo mecánico.

DEFECTOS*

Por almacenamiento Anatómicos De fabricación N°

Cara Trascara Cara Trascara Cara Trascara Ensambles

Tablero: 13 Proveedor: Ponderosa de Durango Calidad: BD

* Ninguno *2 rajaduras *2 bolsas de *8 huecos de nudo *4 parches *Sin pulir Cara 1

*1 grieta Resina que van de 3.5 a 7 *9 resanes Centro 4

*5 manchas< 8mm cm de diámetro < 4.8 mm Trascara 1

Traslapes 0

Tablero: 23 Proveedor: Varvie de Oaxaca Calidad: BD

* Ninguno * Ninguno * Ninguno *5 nudos de 1 a 7 *9 parches *2 tiras de madera Cara 1

cm de diámetro *1 resane mal incrustadas Centro 3

*2 manchas de *1 marca de *Chapa arrugada Trascara 1

2 y 3.5 cm2 cuchilla y áspera Traslapes 1

Tablero 33 Proveedor: Tachapuesa de México Calidad: BD

* Ninguno *3 rajaduras de * Lanuda *42 nudos < 6 cm *5 Parches Cara 1

entre 70 y 110 cm *Pequeñas bolsas *14 huecos de *1 Resane * Sin pulir Centro 1

*3 rajaduras de de resina nudo de entre 0.5 Trascara 1

entre 20 y 40 cm a 2cm de diámetro. Traslapes 0

Tablero: 16 Proveedor: Ponderosa de Durango Calidad: BC

* 2 Manchas de *2 rajaduras * Chapa lanuda * 19 nudos <5cm * 8 Parches *Sin pulir Cara 1

entre 15 x 75cm *21 hoyos de nudo oblongos Centro 4

de1 a 4 cm de diam. Trascara 1

*Chapa lanuda Traslapes 4

Tablero: 26 Proveedor: Varvie de Oaxaca Calidad: BC

* Ninguno * 1grieta de * 2% del tablero *7 huecos de nudo * Ninguno *Sin pulir Cara 7

5 cm de long. con mancha por <1cm vertical *Marcas de Centro 3

Resina *7 marcas de nudo cuchilla de 3cm Trascara 7

Traslapes 0

Tablero: 36 Proveedor: Tachapuesa de México Calidad: BD

* Ninguno * Manchas de * Ninguno * 4 nudos de 3 a * 3 parches *Sin pulir Cara 1

hongos 5 cm de diámetro *1 tira de 10 cm Centro 3

* 45% del tablero verticalmente incrustada Trascara 1

con picadura de Traslapes 0

polilla

Tablero: 19 Proveedor: Ponderosa de Durango Calidad: BD

*10% del tablero * Ninguno *Manchas de * 50 nudos de 1 a *1 resane * 4 resanes de Cara 4

manchado por resina de 2 a 30cm a 4 cm 15 cm de long. Centro 10

hongo azul * 3 manchas de *Sin pulir Trascara 1

resina Traslapes 0

Tablero: 29 Proveedor: Varvie de Oaxaca Calidad: BD

* Ninguno *2 Rajaduras de 5cm * 10 marcas *11 hoyos de nudo * 1 resane *Sin pulir Cara 1

y 1m. de longitud de resina de 1 a 2.5 cm Centro 5

* 75% del tablero Trascara 5

con marcas de resina Traslapes 3

Tablero: 39 Proveedor: Tachapuesa de México Calidad: BD

*15% cubierto * 1 grieta de *5% de la cara * 2 nudos *2 resanes *11 hoyos de Cara 1

de mancha 10 x0.5 cm cubierta por pica- nudo de 4 a Centro 5

por hongos dura de polilla 12 cm de diámetro. Trascara 1

Traslapes 1

Page 78: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

69

1 No ESPESOR 3mm ESPESOR 6 mm ESPESOR 9 mm

PROBETA TAB 13 TAB 23 TAB 33 TAB 16 TAB 26 TAB 36 TAB 19 TAB 29 TAB 39

1 3.6 4.2 3.2 6.2 5.1 5.9 9.2 8.3 9.5

2 3.8 4.2 3.3 6.2 5.2 5.8 9 8.4 9.5

3 3.5 4.1 3.5 6.05 5.3 5.8 8.9 8.4 9.5

4 3.4 4.2 3.4 6.15 5.3 5.8 8.9 8.4 9.4

5 3.4 4.2 3.35 6.1 5.7 5.9 9.1 8.3 9.5

6 3.4 4.2 3.4 6.05 5.7 5.7 8.8 8.5 9.4

7 3.4 4.2 3.2 6.1 5.6 5.9 9 8.1 9.5

8 3.7 4.2 3.2 6.1 5.5 6.2 8.8 8 9.5

9 4.2 4.4 3.3 6.1 5.6 6.2 8.9 7.8 9.6

10 4 4.3 3.25 6.1 5.4 6.3 9.1 7.6 9.5

11 3.9 4.3 3.2 6.2 5.5 6.2 8.8 7.8 9.5

12 4.1 4.3 3.4 6.1 5.5 6.3 8.8 7.8 9.6

13 3.6 4.2 3.25 6.075 5.2 6.1 9.1 8 9.7

14 3.8 4.1 3.3 6.025 5 6.1 9 8.15 9.5

15 3.64 4.23 3.39 6.04 5.44 6.18 8.7 8 9.6

16 3.54 4.18 3.32 6.06 5.44 6.15 8.9 8.1 9.6

17 3.69 4.07 3.25 6.11 5.43 6.19 8.8 8 9.7

18 3.6 4.26 3.37 6.13 5.42 6.13 8.8 8.1 9.7

19 3.58 4.14 3.25 6.1 5.61 6.22 8.6 8 9.6

20 3.41 4.17 3.3 6.01 5.56 6.13 8.9 8 9.7

21 3.57 4.16 3.42 6.01 5.53 6.23 8.9 8.1 9.6

22 3.56 4.21 3.41 6.14 5.55 6.23 8.9 7.9 9.7

23 3.61 4.18 3.24 6.04 5.49 6.17 8.9 8.2 9.5

24 3.6 4.17 3.31 6.08 5.76 6.3 8.9 8.1 9.5

25 3.58 4.23 3.28 6.1 5.44 6.25 8.8 7.8 9.5

26 3.64 4.13 3.54 6.12 5.53 6.25 8.9 8.1 9.7

27 3.55 4.18 3.26 6.11 5.37 6.26 8.9 7.6 9.7

28 3.39 4.27 3.27 6.04 5.56 6.19 8.8 7.9 9.5

29 3.38 4.18 3.35 6.01 5.5 6.15 8.9 7.8 9.6

30 3.51 4.11 3.22 6.09 5.51 6.17 8.8 8.1 9.7

31 3.44 4.2 3.3 6.13 5.57 6.14 8.9 7.9 9.5

32 3.61 4.12 3.29 6.08 5.48 6.18 8.8 8 9.5

33 3.44 4.15 3.33 6.09 5.52 6.24 8.9 8.1 9.7

34 3.63 4.24 3.24 6.18 5.52 6.27 8.9 7.9 9.7

35 3.6 4.28 3.21 6.12 5.54 6.42 8.9 7.8 9.6

36 3.63 4.23 3.39 6.16 5.53 6.24 8.9 8 9.7

37 3.56 4.06 3.23 6.16 5.66 6.21 8.8 8 9.6

38 3.48 4.18 3.24 6.1 5.53 6.22 8.9 8.02 9.5

39 3.45 4.16 3.28 6.25 5.43 6.16 8.7 8 9.5

40 3.45 4.01 3.26 6.1 5.4 6.23 8.7 7.9 9.6

41 3.63 4.24 3.3 6.1 5.44 6.21 8.9 7.9 9.6

42 3.45 4.23 3.21 6.08 5.43 6.13 8.9 8.01 9.4

43 3.64 4.07 3.32 6.11 5.47 6.34 8.7 7.9 9.6

44 3.44 4.13 3.35 6.12 5.57 6.35 8.9 7.9 9.4

45 3.51 4.07 3.16 6.09 5.46 6.09 8.08 8 9.49

46 3.48 4.06 3.19 5.96 5.46 6.45 8.04 8.02 9.48

47 3.58 4.18 3.2 6.19 5.4 6 8.01 7.68 9.48

48 3.5 4.11 3.17 6.19 5.3 6.14 8.03 7.64 9.5

Page 79: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

70

1 No ESPESOR 3mm ESPESOR 6 mm ESPESOR 9 mm

PROBETA TAB 13 TAB 23 TAB 33 TAB 16 TAB 26 TAB 36 TAB 19 TAB 29 TAB 39

49 3.52 4.15 3.26 6.06 5.34 6.17 8.02 7.78 9.42

50 3.5 4.14 3.18 6.15 5.47 6.25 8.07 7.98 9.45

51 3.38 4.13 3.21 6.03 5.42 6.17 7.92 7.74 9.42

52 3.53 4.08 3.23 6 5.32 6.19 8.02 7.73 9.34

53 3.5 4.05 3.29 6.13 5.37 6.18 7.72 8.07 9.28

54 3.56 4.04 3.17 6.14 5.31 6.01 7.92 7.95 9.38

55 3.57 4.08 3.33 6.21 5.51 6.12 7.68 7.69 9.5

56 3.32 4.05 3.32 6.15 5.3 6.16 7.61 7.7 9.38

57 3.31 4.09 3.17 6.04 5.27 6.03 7.67 7.68 9.4

58 3.5 4.12 3.2 6.21 5.34 6.15 8.03 8.07 9.42

59 3.45 4.2 3.16 6.04 5.22 6.18 8.01 8.063 9.23

60 3.52 4.25 3.32 6.01 5.37 6.06 8.63 7.97 9.55

61 3.56 4.12 3.34 6.08 5.37 6.17 8.71 7.95 9.42

62 3.47 4.11 3.34 6.01 5.26 6.16 8.56 8.04 9.57

63 3.49 4.04 3.42 6.1 5.27 6.4 8.68 7.94 9.46

64 3.37 4.16 3.38 5.95 5.28 6.41 8.57 8.1 9.52

65 3.52 4.13 3.49 5.96 5.33 6.16 8.63 8.08 9.42

66 3.53 4.07 3.44 6.01 5.41 6.26 8.75 8 9.56

67 3.54 4.08 3.38 6.02 5.37 6.17 8.74 7.97 9.56

68 3.4 4.11 3.25 6.55 4.48 6.55 8.48 7.77 9.53

69 3.37 4.03 3.21 6.14 5.56 6.14 8.52 7.67 9.31

70 3.38 4.19 3.22 6.15 5.3 6.15 8.39 7.77 9.56

71 3.41 4.2 3.26 6.19 5.32 6.19 8.49 7.8 9.5

72 3.31 4.07 3.2 6.35 5.38 6.35 8.4 7.61 9.37

73 3.46 4.18 3.23 6.28 5.34 6.28 8.52 7.92 9.44

74 3.35 4.07 3.3 6.23 5.46 6.23 8.54 7.84 9.49

75 3.47 4.2 3.21 6.25 5.25 6.25 8.44 7.49 9.4

76 3.49 4.24 3.14 6.18 5.37 6.18 8.42 7.45 8.87

77 3.46 4.13 3.17 6.11 5.33 6.11 8.47 7.66 9.51

78 3.43 4.23 3.19 6.18 5.34 6.18 8.8 8.2 9.3

79 3.31 4.09 3.22 6.19 5.46 6.19 8.7 8 9.4

80 3.28 4.05 3.24 6.19 5.63 6.19 8.8 8.2 9.6

81 3.39 4.18 3.24 6.37 5.19 6.37 8.7 8.1 9.5

82 3.4 4.23 3.23 6.25 5.43 6.25 8.9 8.2 9.6

83 3.46 4.22 3.22 6.04 5.26 6.14 8.7 8 9.4

84 3.42 4.28 3.21 6.14 5.56 6.21 8.6 8.2 9.4

85 3.53 4.18 3.21 5.97 5.39 6.09 8.8 8.1 9.6

86 3.48 4.25 3.28 6.09 5.29 6.11 8.7 8.1 9.7

87 3.47 4.15 3.22 6.09 5.28 6.07 8.7 8.1 9.7

88 3.38 4.38 3.37 5.95 5.48 6.08 8.6 7.9 9.63

89 3.43 4.12 3.31 6.01 5.34 6.11 8.53 8.35 9.54

90 3.41 3.96 3.24 6.05 5.47 5.22 8.68 8.3 9.57

91 3.45 3.94 3.3 6.03 5.43 6.05 8.68 7.91 9.49

92 3.35 4.56 3.31 5.99 5.44 6.1 8.57 8.42 9.5

93 3.39 3.91 3.26 6.12 5.48 6.23 8.67 8.08 9.52

94 3.35 3.76 3.15 6.13 5.44 6.25 8.83 8.02 9.31

95 3.36 3.98 3.18 6.06 5.42 6.23 8.74 8.03 9.51

96 3.26 3.34 3.18 6.03 5.45 6.21 8.67 8.4 9.61

Page 80: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

71

1 No ESPESOR 3mm ESPESOR 6 mm ESPESOR 9 mm

PROBETA TAB 13 TAB 23 TAB 33 TAB 16 TAB 26 TAB 36 TAB 19 TAB 29 TAB 39

97 3.37 4.09 3.27 6.12 5.5 6.21 8.39 8.26 9.54

98 3.58 4.35 3.23 6.11 5.39 6.15 8.71 8.13 9.54

99 3.54 4.34 3.27 6.1 5.4 6.27 8.76 7.91 9.58

100 3.47 4.07 3.17 6.02 5.49 6.17 8.63 8.1 9.6

101 3.61 4.13 3.27 6.1 5.4 6.22 8.65 8 9.45

102 3.67 4.55 3.24 6.03 5.47 6.16 8.65 8.19 9.5

103 3.52 4.23 3.28 6.01 5.47 6.29 8.71 8.37 9.58

104 3.43 4.2 3.19 5.98 5.55 6.22 8.82 8.36 9.58

105 3.38 4.55 3.26 6.14 5.43 6.14 8.69 8.34 9.46

106 3.49 4.12 3.28 6.02 5.31 6.43 8.7 8.43 9.58

107 3.53 4.19 3.19 6.05 5.5 6.19 8.57 8.4 9.58

108 3.56 4.07 3.23 6.07 5.47 6.25 8.54 8.4 9.61

109 3.62 4.18 3.18 6.04 5.38 6.2 8.49 8.38 9.56

110 3.58 4.15 3.25 6.1 5.45 6.14 8.3 8.03 9.54

111 3.58 4.09 3.31 6.01 5.456 6.38 8.68 8.35 9.51

112 3.58 4.11 3.21 6.1 5.404 6.29 8.74 8.24 9.59

113 3.54 4.23 3.18 6.12 5.4 6.12 8.73 . 9.51

114 3.52 4.23 3.16 6.11 5.36 6.24 8.66 . 9.58

115 3.49 4.17 3.16 6 5.026 6.25 8.77 . 9.57

116 3.55 4.08 3.2 6.07 5.46 6.28 8.77 . 9.53

117 3.47 4.36 3.27 6.16 5.46 6.22 8.7 . 9.4

118 3.44 3.84 3.24 6.09 5.34 6.26 8.68 . 9.54

119 3.6 4.18 3.26 6.13 5.47 6.18 8.67 . 9.48

120 3.57 4.28 3.15 6 5.23 6.19 8.05 . 9.53

121 3.42 4.08 3.31 6.13 5.46 6.23 8.6 . 9.53

122 3.44 4.31 3.21 6.07 5.234 6.52 8.56 . 9.52

123 3.43 4.12 3.28 6.02 5.268 6.17 . . .

124 3.38 4.16 3.33 6.03 5.462 6.24 . . .

125 3.59 4.1 3.25 6.03 5.243 6.35 . . .

126 3.55 4.08 3.19 6.18 5.423 6.26 . . .

127 3.56 4.2 3.2 6.07 5.46 6.22 . . .

128 3.61 4.14 3.33 . . . . . .

129 3.52 4.21 3.22 . . . . . .

130 3.5 4.15 3.25 . . . . . .

131 3.59 4.16 3.27 . . . . . .

132 3.51 4.24 3.33 . . . . . .

Media 3.5132 4.1571 3.2659 6.1005 5.4087 6.1808 8.6308 8.0178 9.5170

Máxima 4.2 4.56 3.54 6.55 5.76 6.55 9.2 8.5 9.7

Mínima 3.26 3.34 3.14 5.95 4.48 5.22 7.61 7.45 8.87

Desv. Est. 0.1391 0.1340 0.0777 0.0868 0.1496 0.1540 0.3207 0.2256 0.1158

Coef. Var. 3.9610 3.2238 2.3801 1.4231 2.7674 2.4928 3.7163 2.8144 1.2172

Media 3.6454 5.8967 8.7416

Máxima 4.56 6.55 9.7

Mínima 3.14 4.48 7.45

Desv. Est. 0.3948 0.3718 0.6570

Coef. Var.(%) 10.830 6.3052 7.5159

Page 81: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

72

Page 82: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

73

Page 83: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

74

ANEXO 6.

DENSIDAD NORMAL (g/cm3).

Probeta 3mm 6mm 9mm

No. TAB 13 TAB 23 TAB 33 TAB 16 TAB 26 TAB 36 TAB 19 TAB 29 TAB 39

1 0.590 0.646 0.728 0.563 0.575 0.558 0.625 0.576 0.548

2 0.578 0.594 0.714 0.560 0.571 0.551 0.583 0.557 0.634

3 0.679 0.648 0.754 0.588 0.521 0.527 0.578 0.557 0.573

4 0.571 0.534 0.628 0.575 0.564 0.633 0.640 0.575 0.548

5 0.591 0.603 0.653 0.571 0.578 0.565 0.670 0.566 0.541

6 0.567 0.644 0.627 0.573 0.554 0.574 0.597 0.533 0.552

7 0.562 0.612 0.681 0.671 0.587 0.611 0.604 0.596 0.564

8 0.582 0.628 0.714 0.603 0.559 0.583 0.644 0.528 0.614

9 0.602 0.610 0.746 0.623 0.580 0.612 0.646 0.584 0.591

10 0.598 0.591 0.737 0.681 0.570 0.574 0.573 0.573 0.577

11 0.571 0.588 0.696 0.630 0.560 0.563 0.572 0.553 0.590

12 0.578 0.604 0.673 0.662 0.608 0.539 0.625 0.595 0.526

13 0.547 0.618 0.668 0.647 0.487 0.568 0.627 0.586 0.562

14 0.572 0.567 0.624 0.675 0.562 0.574 0.610 0.540 0.549

15 0.579 0.607 0.679 0.660 0.619 0.634 0.540 0.523 0.531

16 0.580 0.617 0.604 0.729 0.564 0.567 0.649 0.574 0.552

17 0.628 0.633 0.754 0.660 0.597 0.588 0.622 0.604 0.568

18 0.548 0.608 0.748 0.592 0.554 0.645 0.568 0.557 0.565

19 0.568 0.598 0.765 0.615 0.580 0.560 0.614 0.593 0.557

20 0.603 0.568 0.698 0.640 0.568 0.559 0.646 0.549 0.550

21 0.592 0.607 0.634 0.674 0.581 0.561 0.632 0.535 0.586

22 0.584 0.636 0.699 0.613 0.536 0.587 0.570 0.600 0.568

23 0.570 0.653 0.714 0.620 0.565 0.578 0.634 0.564 0.541

24 0.626 0.652 0.587 0.648 0.586 0.572 0.652 0.575 0.564

25 0.540 0.596 0.688 0.624 0.512 0.552 0.572 0.566 0.557

26 0.538 0.566 0.685 0.601 0.519 0.627 0.571 0.540 0.566

27 0.648 0.619 0.676 0.623 0.576 0.529 0.634 0.534 0.568

28 0.530 0.583 0.717 0.597 0.494 0.598 0.645 0.583 0.572

29 0.588 0.617 0.651 0.585 0.565 0.548 0.571 0.535 0.554

30 0.564 0.570 0.700 0.602 0.591 0.542 0.673 0.520 0.575

Media 0.5823 0.6071 0.6880 0.6235 0.5628 0.5759 0.6129 0.5623 0.5647

Máxima 0.6786 0.6530 0.7647 0.7289 0.6189 0.6452 0.6732 0.6036 0.6336

Mínima 0.5302 0.5341 0.5871 0.5604 0.4870 0.5268 0.5400 0.5200 0.5258

Desv. Est. 0.0319 0.0289 0.0469 0.0409 0.0308 0.0310 0.0354 0.0246 0.0225

Coef. Var. 0.0548 0.0477 0.0682 0.0656 0.0548 0.0539 0.0579 0.0438 0.0398

Media 0.6258 0.5874 0.5800

Máxima 0.7647 0.7289 0.6732

Mínima 0.5302 0.4870 0.5200

Desv. Est. 0.0581 0.0431 0.1318

Coef. Var. 0.0929 0.0733 0.2272

Page 84: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

75

ANEXO 7.

DENSIDAD ANHIDRA (g/cm3).

No Espesor 3mm Espesor 6 mm Espesor 9mm

PROBETA TAB 13 TAB 23 TAB 33 TAB 16 TAB 26 TAB36 TAB 19 TAB 29 TAB 39

1 0.572 0.613 0.725 0.530 0.527 0.534 0.511 0.546 0.511

2 0.553 0.555 0.694 0.001 0.534 0.526 0.528 0.524 0.776

3 0.657 0.621 0.750 0.555 0.491 0.505 0.539 0.521 0.539

4 0.541 0.502 0.601 0.564 0.522 0.555 0.523 0.536 0.523

5 0.552 0.570 0.632 0.001 0.543 0.515 0.514 0.528 0.514

6 0.537 0.582 0.624 0.531 0.522 0.550 0.516 0.508 0.516

7 0.537 0.593 0.650 0.633 0.557 0.581 0.533 0.553 0.534

8 0.550 0.600 0.675 0.580 0.519 0.556 0.584 0.512 0.584

9 0.564 0.593 0.709 0.572 0.531 0.588 0.552 0.551 0.552

10 0.568 0.559 0.690 0.647 0.530 0.572 0.543 0.545 0.543

11 0.546 0.579 0.675 0.597 0.519 0.536 0.550 0.525 0.550

12 0.553 0.555 0.650 0.652 0.583 0.503 0.499 0.563 0.499

13 0.512 0.591 0.640 0.621 0.458 0.552 0.547 0.538 0.547

14 0.525 0.545 0.618 0.653 0.523 0.545 0.512 0.503 0.512

15 0.537 0.605 0.678 0.605 0.556 0.603 0.491 0.500 0.491

16 0.549 0.576 0.578 0.725 0.544 0.534 0.522 0.532 0.522

17 0.602 0.598 0.750 0.632 0.560 0.557 0.534 0.557 0.534

18 0.515 0.566 0.702 0.562 0.515 0.636 0.531 0.507 0.531

19 0.552 0.570 0.727 0.589 0.539 0.545 0.509 0.555 0.509

20 0.567 0.546 0.687 0.604 0.534 0.534 0.526 0.538 0.526

21 0.562 0.589 0.604 0.643 0.548 0.534 0.553 0.506 0.553

22 0.554 0.604 0.697 0.578 0.507 0.561 0.541 0.563 0.541

23 0.540 0.606 0.688 0.580 0.524 0.547 0.510 0.526 0.510

24 0.609 0.607 0.562 0.604 0.549 0.545 0.529 0.530 0.529

25 0.512 0.562 0.647 0.595 0.471 0.530 0.520 0.525 0.520

26 0.534 0.538 0.641 0.561 0.481 0.606 0.542 0.494 0.542

27 0.612 0.607 0.639 0.587 0.543 0.503 0.539 0.494 0.539

28 0.519 0.551 0.655 0.572 0.464 0.568 0.544 0.545 0.544

29 0.562 0.583 0.628 0.558 0.534 0.528 0.526 0.505 0.526

30 0.541 0.543 0.644 0.560 0.564 0.528 0.542 0.488 0.542

Media 0.554 0.577 0.662 0.556 0.526 0.549 0.530 0.527 0.530

Máxima 0.657 0.621 0.750 0.725 0.583 0.636 0.584 0.563 0.776

Mínima 0.512 0.502 0.562 0.001 0.458 0.503 0.491 0.488 0.491

Desv. Est. 0.031 0.027 0.046 0.154 0.029 0.030 0.018 0.022 0.048

Coef. Var. 0.056 0.047 0.070 0.277 0.055 0.055 0.035 0.041 0.089

Media 0.598 0.544 0.532

Máxima 0.750 0.725 0.776

Mínima 0.502 0.001 0.488

Desv. Est. 0.059 0.093 0.032

Coef. Var. 0.098 0.171 0.061

Page 85: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

76

ANEXO 8.

CONTENIDO DE HUMEDAD DE EQUILIBRIO (%).

No Espesor 3mm Espesor 6 mm Espesor 9mm

2 Probeta TAB 13 TAB 23 TAB 33 TAB 16 TAB 26 TAB36 TAB 19 TAB 29 TAB 39

1 9.631 11.637 9.757 9.042 9.354 8.286 9.868 8.707 9.487

2 9.344 8.965 9.285 9.661 8.950 8.753 9.600 8.803 9.197

3 9.376 11.198 9.891 9.559 10.964 8.646 9.721 8.718 9.235

4 9.355 7.173 9.885 9.126 11.393 8.570 10.093 8.647 9.146

5 9.691 11.555 10.085 9.276 11.552 8.239 9.794 8.584 8.307

6 9.918 7.343 10.194 8.990 13.838 8.335 9.639 8.693 8.402

7 9.386 8.223 9.968 8.740 11.227 8.228 9.705 8.709 9.287

8 10.609 9.158 9.891 8.710 9.909 8.547 9.894 8.571 8.915

Media 9.664 9.407 9.869 9.138 10.898 8.451 9.789 8.679 8.997

Máxima 10.609 11.637 10.194 9.661 13.838 8.753 10.093 8.803 9.487

Mínima 9.344 7.173 9.285 8.710 8.950 8.228 9.600 8.571 8.307

Desv. Est. 0.406 1.721 0.254 0.324 1.440 0.190 0.150 0.071 0.400

Coef. Var. 0.042 0.183 0.026 0.036 0.132 0.022 0.015 0.008 0.044

Media 9.647 9.496 9.155

Máxima 11.637 13.838 10.093

Mínima 7.173 8.710 8.571

Desv. Est. 1.049 0.558 0.039

Coef. Var. 0.109 0.059 0.004

Page 86: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

77

ANEXO 9.

FLEXIÓN ESTÁTICA. ESFUERZO EN EL LIMITE DE PROPORCIONALIDAD

(kg/cm2).

No 3mm 6mm 9mm

PROBETA TAB 13 TAB 23 TAB 33 TAB 16 TAB 26 TAB36 TAB 19 TAB 29 TAB 39

1 139.02 284.48 377.35 193.70 110.69 255.90 129.65 307.05 184.81

2 68.94 193.93 256.80 90.41 67.56 145.96 131.45 199.17 199.76

3 211.85 324.98 273.00 65.86 23.70 356.86 119.97 250.40 211.45

4 251.56 188.74 368.92 75.17 56.96 271.37 128.90 258.51 185.86

5 105.55 253.46 204.01 192.24 57.30 168.50 140.08 157.40 195.11

6 159.16 246.12 372.32 163.91 62.53 233.10 145.79 186.82 197.40

7 198.53 46.04 204.49 175.29 82.15 178.52 118.94 173.14 189.14

8 232.62 195.69 318.48 208.90 71.82 169.69 * 207.40 147.10

9 240.68 263.10 344.27 163.19 61.11 254.04 * 163.29 199.32

10 214.82 242.29 249.60 196.23 70.89 235.39 * 146.57 234.00

Media 182.27 223.88 296.93 152.49 66.47 226.94 130.68 204.97 194.39

Máxima 251.56 324.98 377.35 208.90 110.69 356.86 145.79 307.05 234.00

Mínima 68.94 46.04 204.01 65.86 23.70 145.96 118.94 146.57 147.10

Desv. Est, 61.54 75.79 68.02 54.24 21.85 63.36 9.78 51.79 21.99

Coef. Var. 0.34 0.34 0.23 0.36 0.33 0.28 0.07 0.25 0.11

Media 234.36 148.63 176.68

Máxima 377.35 356.86 307.05

Mínima 46.04 23.70 118.94

Desv. Est, 80.58 80.80 44.85

Coef. Var. 34.38 54.36 25.39

* Probetas mal falladas.

Page 87: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

78

ANEXO 10.

FLEXIÓN ESTÁTICA. MÓDULO DE RUPTURA (kg/cm2).

No 3mm 6mm 9mm

PROBETA TAB 13 TAB 23 TAB 33 TAB 16 TAB 26 TAB36 TAB 19 TAB 29 TAB 39

1 364.11 1,043.08 1,245.27 649.33 311.95 668.19 537.12 928.45 1,049.65

2 179.53 496.96 1,038.54 666.78 289.54 675.75 519.87 911.60 818.69

3 612.38 1,083.27 860.15 406.15 319.10 1,040.85 543.63 644.97 781.29

4 817.57 786.40 1,293.10 483.22 237.33 1,094.75 483.36 988.42 858.80

5 296.86 543.13 890.24 1,014.59 286.51 413.86 449.74 599.63 806.44

6 445.65 839.06 1,375.98 655.62 416.88 699.31 445.47 810.80 710.63

7 761.04 184.15 966.69 547.78 349.13 923.40 504.59 824.32 648.95

8 714.47 782.76 1,393.37 596.87 307.81 820.19 * 929.44 645.96

9 725.58 1,075.15 1,226.71 522.19 305.55 762.11 * 838.69 750.76

10 578.36 832.23 980.57 730.41 313.93 775.41 * 813.47 665.99

Media 549.55 766.62 1,127.06 627.29 313.77 787.38 497.68 828.98 773.72

Máxima 817.57 1,083.27 1,393.37 1,014.59 416.88 1,094.75 543.63 988.42 1,049.65

Mínima 179.53 184.15 860.15 406.15 237.33 413.86 445.47 599.63 645.96

Desv. Est, 217.43 287.52 201.85 167.14 46.18 198.05 39.66 124.45 122.26

Coef. Var. 0.40 0.38 0.18 0.27 0.15 0.25 0.08 0.15 0.16

Media 814.41 576.15 700.13

Máxima 1,393.37 1,094.75 1,049.65

Mínima 179.53 237.33 445.47

Desv. Est, 328.53 243.89 169.61

Coef. Var. 40.34 42.33 24.23

* Probetas mal falladas.

Page 88: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

79

ANEXO 11.

FLEXIÓN ESTÁTICA. MÓDULO DE ELASTICIDAD (kg/cm2)

No 3mm 6mm 9mm

PROBETA TAB 13 TAB 23 TAB 33 TAB 16 TAB 26 TAB36 TAB 19 TAB 29 TAB 39

1 33,619.44 48,142.61 102,517.86 51,051.10 15,621.69 80,260.30 27,139.48 59,682.30 53,579.14

2 7,282.74 33,826.41 45,638.95 33,818.93 17,630.33 58,558.51 31,010.19 55,432.08 49,414.36

3 35,118.17 47,741.22 38,573.08 26,370.32 6,751.09 87,064.05 28,461.07 55,883.51 54,511.81

4 42,519.28 41,666.72 131,540.10 85,513.71 12,166.36 86,706.45 35,398.41 60,626.53 49,289.02

5 21,425.13 54,020.75 43,103.66 43,739.74 21,684.60 69,160.87 23,878.15 47,081.05 51,849.17

6 25,929.18 56,038.13 102,466.33 36,049.35 44,854.54 82,595.45 30,055.57 53,552.11 30,228.03

7 39,492.42 76,575.20 61,721.25 64,569.52 16,416.66 71,971.88 28,643.73 47,807.48 33,509.06

8 38,787.40 39,622.17 99,526.53 30,812.00 19,653.07 78,091.57 * 59,989.17 40,663.97

9 41,921.60 57,515.30 64,160.46 30,513.91 18,739.64 85,769.20 * 53,015.59 36,186.27

10 47,619.82 42,892.59 43,010.75 34,692.83 14,097.03 60,890.32 * 49,968.16 44,983.39

Media 33,371.52 49,804.11 73,225.90 43,713.14 18,761.50 76,106.86 29,226.66 54,303.80 44,421.42

Máxima 47,619.82 76,575.20 131,540.10 85,513.71 44,854.54 87,064.05 35,398.41 60,626.53 54,511.81

Mínima 7,282.74 33,826.41 38,573.08 26,370.32 6,751.09 58,558.51 23,878.15 47,081.05 30,228.03

Desv. Est, 12,057.45 12,077.33 33,001.67 18,605.70 10,090.29 10,508.71 3,555.45 4,948.51 8,770.27

Coef. Var. 36.13 24.25 45.07 42.56 53.78 13.81 12.17 9.11 19.74

Media 52,133.84 46,193.83 42,650.63

Máxima 131,540.10 87,064.05 60,626.53

Mínima 7,282.74 6,751.09 23,878.15

Desv. Est, 26,106.49 26,808.29 11,513.55

Coef. Var. 50.08 58.03 27.00

* Probetas mal falladas.

Page 89: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

80

ANEXO 12.

TRACCIÓN PARALELA A LA FIBRA (kg/cm2).

No Espesor 3mm Espesor 6 mm Espesor 9mm

Probeta TAB 13 TAB 23 TAB 33 TAB 16 TAB26 TAB 36 TAB 19 TAB 29 TAB 39

1 11.373 4.784 9.029 5.749 3.652 3.437 13.949 8.110 20.482

2 8.894 4.852 10.245 4.797 4.212 3.330 14.775 6.996 17.549

3 9.051 5.552 10.664 5.213 4.454 2.897 12.266 9.418 17.802

4 11.320 8.576 8.963 6.873 4.247 2.991 11.379 6.811 13.407

5 11.130 8.720 11.306 5.271 4.089 3.656 8.255 6.633 13.501

6 12.583 10.010 8.200 3.763 4.046 3.032 11.851 10.620 14.355

7 6.112 9.158 9.508 5.045 4.405 3.905 8.786 6.121 15.397

8 5.997 9.975 8.134 7.592 5.869 3.465 9.219 9.865 17.771

9 8.911 13.537 13.344 5.271 2.896 4.255 6.807 8.220 12.934

10 7.396 8.514 10.787 3.952 3.416 3.563 7.809 10.516 16.690

Media 9.276 8.367 10.018 5.352 4.128 3.453 10.509 8.331 15.988

Máxima 12.582 13.536 13.344 7.592 5.869 4.255 14.775 10.62 20.482

Mínima 5.996 4.783 8.133 3.7631 2.896 2.896 6.806 6.121 12.934

Desv. Est, 2.181 2.568 1.516 1.113 0.741 0.402 2.576 1.596 2.34

Coef. Var. 0.235 0.306 0.151 0.2081 0.179 0.1164 0.245 0.19158 0.1463

Media 9.22 4.311 11.609

Máxima 13.536 7.592 20.482

Mínima 4.783 2.896 6.121

Desv. Est, 2.275 1.145 3.974

Coef. Var. 0.2467 0.265 0.342306794

Page 90: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

81

ANEXO 13.

PRUEBA DE CIZALLE. CARGA MÁXIMA (kg).

Probeta 3mm 6mm 9mm

No. 13 23 33 16 26 36 19 29 39

1 95 90 95 65 40 60 40 75 135

2 120 130 95 30 40 35 45 110 120

3 110 110 110 35 30 45 40 135 145

4 105 105 100 30 60 45 40 70 135

5 110 105 85 45 55 45 45 125 105

6 95 155 105 50 40 35 40 85 90

7 100 115 110 45 40 40 35 70 75

8 130 120 100 65 50 45 40 80 125

9 100 120 115 55 40 50 45 100 100

10 90 100 45 30 65 50 40 90 105

11 130 95 110 55 50 45 40 55 110

12 115 110 115 60 40 55 40 105 125

13 115 120 95 40 65 60 45 85 135

14 100 140 140 55 35 40 40 95 105

15 100 110 90 40 45 35 40 85 115

16 100 115 130 50 35 30 40 85 85

17 115 115 100 45 35 45 35 90 120

18 100 125 105 40 25 45 40 110 150

19 95 135 125 60 25 55 35 105 120

20 95 90 115 45 65 50 40 120 120

21 90 125 115 65 40 65 35 100 110

22 95 115 100 35 50 65 40 135 115

23 95 130 150 40 35 40 35 90 230

24 95 120 125 45 40 45 35 125 55

25 115 150 85 50 40 40 30 75 125

26 125 140 120 40 50 30 40 . 170

27 125 110 115 35 35 40 40 . 135

28 100 105 110 50 45 55 35 . 100

29 110 85 120 50 40 50 30 . 70

30 135 115 125 45 55 60 35 . 210

31 125 140 130 60 35 55 40 . 95

32 75 135 115 65 20 60 35 . 70

33 110 140 110 65 35 45 35 . 85

34 110 145 145 55 20 65 35 . 135

35 95 115 160 35 45 60 40 . 85

Media 106.29 119.29 111.71 47.86 41.86 48.14 38.43 96.00 117.43

Max 135 155 160 65 65 65 45 135 230

Min 75 85 45 30 20 30 30 55 55

Desvest 13.68 17.41 20.97 11.00 11.64 9.93 3.79 21.07 35.71

Coef. Var. 12.88 14.60 18.77 22.99 27.80 20.63 9.86 21.94 30.41

Media 112.43 45.95 82.68

Max 160 65 230

Min 45 20 30

Desvest 18.24 11.16 42.49

Coef. Var. 16.22 24.29 51.39

Page 91: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

82

ANEXO 14.

PRUEBA DE CIZALLE. CARGA PROMEDIO POR UNIDAD DE SUPERFICIE

(kg/cm2).

Probeta 3mm 6mm 9mm

No 13 23 33 16 26 36 19 29 39

1 14.07 13.70 14.76 10.05 6.47 9.21 6.04 11.26 21.59

2 18.06 19.83 14.74 4.60 6.32 5.28 6.93 17.12 18.75

3 16.72 16.75 17.17 5.52 4.71 6.85 6.04 21.17 22.71

4 15.57 15.84 15.46 4.71 9.49 6.81 5.72 10.89 21.26

5 16.55 16.00 13.06 7.08 8.49 7.00 6.83 19.45 16.47

6 14.09 23.75 16.29 7.85 6.30 5.35 6.00 13.38 14.33

7 14.99 17.49 16.50 7.02 6.19 6.10 5.27 10.46 11.82

8 19.53 18.33 15.62 10.24 8.20 6.83 6.00 12.35 19.60

9 15.01 18.21 17.91 8.61 6.29 7.46 6.76 15.72 16.12

10 13.51 15.28 6.91 4.72 10.15 7.53 6.06 14.03 16.39

11 19.13 14.59 17.08 8.71 7.63 7.00 6.10 8.72 17.33

12 17.29 16.74 18.12 9.40 6.32 8.42 6.22 15.78 19.62

13 17.27 18.40 14.77 6.27 9.97 9.11 7.07 13.23 20.92

14 15.03 21.33 21.81 8.80 5.63 6.17 6.08 14.73 15.40

15 14.65 16.67 13.98 6.33 7.34 5.33 6.04 13.28 18.09

16 14.85 17.53 19.95 7.81 5.46 4.69 6.01 13.19 13.64

17 17.07 17.57 15.50 7.04 5.40 6.80 5.31 13.40 18.86

18 14.87 19.04 16.32 6.41 3.57 6.77 6.19 17.30 23.39

19 14.06 20.22 19.22 9.45 3.95 8.33 5.39 16.45 19.21

20 14.00 13.68 17.95 7.05 10.28 7.59 6.08 18.64 18.68

21 13.27 19.10 17.84 10.11 6.30 10.02 5.32 15.61 17.70

22 14.17 17.35 15.64 5.46 7.94 9.81 6.12 21.05 18.61

23 14.28 19.77 23.16 6.33 5.37 6.11 5.33 13.93 36.69

24 13.86 18.18 19.68 6.98 6.51 6.96 5.49 19.12 8.72

25 17.69 22.69 13.21 7.79 6.28 6.18 4.56 11.64 20.00

26 18.79 21.34 18.84 6.40 8.30 4.55 6.00 14.88 26.81

27 18.85 16.73 17.94 5.70 5.58 6.08 5.96 21.17 21.53

28 14.95 16.02 17.28 7.81 7.28 8.52 5.52 8.72 15.81

29 16.50 12.93 18.86 7.91 6.33 7.74 4.73 3.31 11.07

30 20.21 17.51 18.84 7.02 8.60 9.29 5.49 . 33.18

31 18.56 21.34 20.18 9.48 5.55 8.39 5.99 . 15.10

32 11.05 20.92 17.89 10.14 3.17 9.11 5.29 . 11.16

33 16.43 21.33 17.31 10.33 5.48 6.87 5.28 . 13.48

34 16.39 22.13 22.52 8.67 3.11 10.02 5.34 . 21.49

35 14.23 17.55 24.04 5.48 7.13 9.28 6.08 . 13.68

Media 15.87 18.17 17.32 7.52 6.60 7.36 5.85 14.88 18.55

Max 20.21 23.75 24.04 10.33 10.28 10.02 7.07 21.17 36.69

Min 11.05 12.93 6.91 4.60 3.11 4.55 4.56 8.72 8.72

Desvest 2.11 2.66 3.21 1.72 1.85 1.52 0.56 3.31 5.66

Coef. Var. 13.27 14.65 18.51 22.89 27.98 20.72 9.66 22.28 30.49

Media 17.12 7.16 12.87

Max 24.04 10.33 36.69

Min 6.91 3.11 3.31

Desvest 2.83 1.73 6.78

Coef. Var. 16.55 24.21 52.63

Page 92: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

54

Cuadro 38. Ficha descriptiva de las propiedades físicas y mecánicas evaluadas en cada tablero estudiado.

Propiedad evaluada Tableros evaluados

1-3mm 2-3mm 3-3mm 1-6mm 2-6mm 3-6mm 1-9mm 2-9mm 3-9mm

Calidad y armado BD BD CD AC AB AD BD AC BD

Espesor (mm) 3.513 4.1571 3.2659 6.1 5.408 6.18 8.63 8.017 9.517

Adherencia Excelente Excelente Excelente Aceptable Excelente Aceptable Excelente Excelente Excelente

Densidad normal (g/cm3) 0.579 0.603 0.687 0.621 0.563 0.573 0.613 0.74 0.562

Densidad anhidra (g/cm3) 0.554 0.577 0.662 0.556 0.526 0.549 0.53 0.527 0.539

Contenido de humedad (%) 9.6 9.4 9.8 9.1 8.4 9.7 8.6 8.6 8.9

Flexión estática. ELP (kg/cm2) 182.27 223.88 296.93 152.49 66.47 226.94 130.68 204.97 194.39

Flexión estática. MOR (kg/cm2) 549.55 766.62 1127.06 627.29 313.77 787.38 497.68 828.98 773.72

Flexión estática. MOE (kg/cm2) 33.371.52 49,804.11 73,225.90 43,713.14 18,761.50 76,106.86 29,226.66 54,303.80 44,421.39

Tracción paralela (kg/cm2) 9.276 8.367 10.018 5.352 4.128 3.453 10.509 8.331 15.988

Cizalle Carga máxima (kg) 106.286 119.286 111.714 47.857 41.857 48.143 38.429 96 117.429

Cizalle Carga por unidad de superficie (kg/cm

2)

15.873 18.167 17.324 7.523 6.603 7.359 5.847 14.876 18.549

Page 93: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

55

Cuadro 39. Tabla comparativa de cuatro propiedades en madera sólida de pino y 3 tipos de tableros a base de madera.

Tipo de tablero Densidad

normal (g/cm3)

Flexión estática

ELP (kg/cm2)

Flexión estática

MOR (kg/cm2)

Flexión estática

MOE (kg/cm2)

Contenido de

humedad (%)

Contrachapados* 0.580-0.625 148.63-234.36 576.15-814.41 42,650.63-52,133.84 9.1 - 9.6

Aglomerados

(Manzano, 2000) 0.748 – 0.797 158.58-195.62 171.61-257.51 39,356.89-60,937-63 7.7 – 8.7

Fibra

(Padrón, 2000) 0.803 – 0.859 349.73-542.94 642.92-894.23 24,471.35-63,638.10 6.9 – 8.4

Madera de Pinus sp.

(Fuentes, 1998) 0.4 - 0.7 311 – 685 496 – 1149 57,000 – 152,000 12

*: Valores obtenidos en el presente estudio.

Page 94: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

72

ANEXO 4.

ESCUADRIA DE LOS TABLEROS

ESPESOR 3 mm 6mm 9mm

TABLERO 13 23 33 16 26 36 19 29 39

EMPRESA PONDEROSA VARVIE TACHAPUESA PONDEROSA VARVIE TACHAPUESA PONDEROSA VARVIE TACHAPUESA

L1 244.10 244.1 243.85 243.8 245.4 244.2 243.9 244.1 244.1

A1 122.00 122 122.13 121.91 122.2 122 122.1 121.95 122

D1 272.60 272.7 272.8 272.5 274.8 272.5 272.8 272.7 272.7

D1' 272.89 272.89 272.72 272.58 274.14 272.98 272.76 272.87 272.89

L2 244.10 244.1 243.87 244 244.8 244.1 244 244 244

A2 122.20 122.1 122.05 121.9 123.3 122.1 122.1 122 122.1

D2 273.00 272.5 272.7 272.45 274 272.9 272.4 272.5 272.7

D2' 272.98 272.93 272.71 272.76 274.10 272.93 272.85 272.80 272.85

Page 95: PROPIEDADES FÍSICO-MECÁNICAS DE NUEVE TABLEROS …files.departamento-de-productos-forest.webnode.es... · 2013-06-06 · UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES

73

ANEXO 5

ADHERENCIA EN LOS TABLEROS

NF: Probeta no fallada

F: Probeta fallada.

No Espesor 3mm Espesor 6 mm Espesor 9mm

Probeta TAB 13 F NF TAB 23 F NF TAB 33 F NF TAB 16 F NF TAB26 F NF TAB 36 F NF TAB 19 F NF TAB 29 F NF TAB 39 F NF

1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

2 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

3 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 F 1 0 NF 0 1 NF 0 1 NF 0 1

4 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

5 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

6 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

7 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

8 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

9 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 F 1 0 NF 0 1 NF 0 1 NF 0 1

10 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 F 1 0 NF 0 1 NF 0 1 NF 0 1

11 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 F 1 0 NF 0 1 NF 0 1 NF 0 1

12 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

13 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

14 NF 0 1 NF 0 1 NF 0 1 F 1 0 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1

15 NF 0 1 NF 0 1 NF 0 1 NF 0 1 NF 0 1 F 1 0 NF 0 1 NF 0 1 NF 0 1

Total 0 15 0 15 0 15 1 14 0 15 5 10 0 15 0 15 0 15

Total (%) 0 100 0 100 0 100 7 93 0 100 33 67 0 100 0 100 0 100