propriedades dos supercondutores

18
“Magnetic and structural characterization of inkjet-printed TFA YBa 2 Cu 3 O 7-X / MOD CZO/ ABAD YSZ/SS coated conductors” Student : Maycon Rotta Advisor : Prof. Dr. Rafael Zadorosny 1

Upload: maycon-rotta

Post on 22-Dec-2015

213 views

Category:

Documents


0 download

DESCRIPTION

Apresentação sobre as propriedades básicas dos supercondutores

TRANSCRIPT

“Magnetic and structural characterization

of inkjet-printed TFAYBa2Cu3O7-X

/MODCZO/ABADYSZ/SS

coated conductors”

Student : Maycon RottaAdvisor : Prof. Dr. Rafael Zadorosny

1

Superconductors and your Properties

2

Magnetic Levitation Electric Conductors

MAGLEV TRAINMagnetic Resonance

SOME PROPERTIES OF SUPERCONDUCTORS

3

Cv

Tc

T

MODELDebye

EXPONENTIAL DECAY

4

SOME PROPERTIES OF SUPERCONDUCTORS

NORMALMEISSNER EFFECT

TYPE - I AND II SUPERCONDUCTORS

5

Orthorhombic YBCO

(Perovskite structure)

The Substrate

6

SSYSZ

4mm

1mm

CZOBuffer layer – 20 – 30nm

2D XRD diffraction Pattern

Superconducting Layer

SSYSZ

4mm

1mm

CZO

Spin-coating

YBCO – 0,25 µm

SSYSZ

4mm

1mm

CZO

Inkjet printing

YBCO – 0,9 µm

2D XRD diffraction Pattern and SEM micrograph images

7

Scanning Transmission Microscopy - STEM

8

DC Magnetic CharacterizationJC

GB(H) = 3M(H)/R

77 KIcGB 0,9 = 117 A/cmIcGB 0,25 = 45 A/cm

12%

28%

9

10

DC Magnetic CharacterizationPalau's method

32,5%

CONCLUSIONS

• A ceria buffer as thin as 20 nm, grown epitaxially by MOD,

was sufficient to achieve a high degree of flatness and high

quality of the subsequent YBCO layers;

• The inkjet printing has been validated as a useful deposition

technique for the TFAYBCO film, achieving a thickness of 0,9

µm after a three-cycle multideposition process with

intermediate pyrolysis steps.

11

12

CONCLUSIONS

• Highly homogeneous YBCO films obtained by inkjet printing,

exhibit a percolative critical current density of JcGB = 1,3 MA/

cm2 at 77 K and self-field, i.e. Ic = 117 A/cm-width.

• Further progress is expected by increasing the thickness of

the superconductor layer by multilayer inkjet printing

deposition, while adjusting the processing parameters

during growth, in order to push the Ic and intragrain JcG;

Acknowledgments

• Post-Graduate Program in Materials Science –

Campus Ilha Solteira UNESP;

• Special thanks to Prof. Rafael Zadorosny;

• Thank you for the patience and attention;

13

14

1 - OSTERMANN, F; PUREUR, P. Temas Atuais de Física: Supercondutividade. 1ª edição. São Paulo:

Editora Livraria da Física: SBF, 2005

2 - POOLE, C. P.; FARACH, H. A.; CRESWICK, R. J. Supercondutivity. San Diego: Academic Press, 2007.

3 - CHU, C. W. et al. Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at

ambient pressure. Phys. Rev. Lett. v. 58(9), p. 908, 1987.

4 - DEIMLING, C. V. Propriedades inter e intragranulares de amostras mesoscópicas de YBCO

preparadas por síntese química. 2010. Tese (Doutorado em Física). Universidade Federal de São Carlos,

2010.

5 - DA SILVA, S. A., Processamento e caracterização de amostras supercondutoras utilizando o

concentrado de xenotima. 2007. Dissertação (Mestrado em Física). Universidade Estadual de Ponta Grossa,

2007.

6 - CUPRATE Superconductors. Disponivel em: < http://hoffman.physics.harvard.edu> Acesso em: 15 março

de 2014.

7 – FRIEDMANN, T. A. Direct measurement of the anisotropy of the resistivity in the a – b plane of twin-

free, single-crystal, superconducting YBa2Cu3O7-δ. Phys. Rev. B, v. 42, p. 6217, 1990.

8 – TAVARES, Pedro M. M. B. Filmes finos supercondutores do sistema Bi-Sr-Ca-Cu-O obtidos por

deposição química de vapores organometálicos assistida por aerossol. 2000. Tese (Doutorado em

Química). Universidade de Trás-Os-Montes e Auto Douro Vila Real, 2000.

References

15

References09 – USOSKIN, A.; and Kirchhoff L. In-plane texturing of buffer layers by alternating beam assisted

deposition: large area and small area applications. Mater. Res. Soc. Symp. Proc. 1150 117–22, 2009.

10- COLL, M.; Pomar A.; Puig T. and Obradors X. Atomically Flat Surface: The Key Issue for Solution-

Derived Epitaxial Multilayers. Appl. Phys. Express v. 1, n. 12, p. 1701, 2008.

11 - FALTER, M.; Häßler, W.; Schlobach, B.; Holzapfel, B. Preparação of YBCO by TFAMOD. Disponivel em :

<https://www.ifw-dresden.de/de/institute/institute-for-metallicmaterials/research-departments/superconducting-

materials/coated-conductors/preparation-ofybco-by-tfa-mod> Acesso em : 14 de março de 2014.

12 - FALTER, M.; Häßler, W.; Schlobach, B.; Holzapfel, B. Chemical solution deposition of YBa2Cu3O7-x

films by dip coating. Physica C v. 372-376, p. 46-49, 2002.

13- OBRADORS, X; Puig T.; Ricart S.; Coll, M.; Gazquez, J.; Palau, A. and Granados, X. Growth,

nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate

solutions. Supercond. Sci. Technol. v.25, n. 12, p. 3001, 2012.

14- VILARDELL, M. et al. Ink Jet Printing for Functional Ceramic Coatings. J. Imaging Sci. Technol. v. 55, n.

04, p. 0304, 2011.

15- PALAU, A.; Puig T.; Obradors, X. and Jooss, Ch. Simultaneous determination of grain and grain-

boundary critical currents in YBa2Cu3O7-coated conductors by magnetic measurements. Phys. Rev. B.

v. 75, n. 05, p. 4517, 2007.

16- SKOFRONICK, G. L.; Carim, A. H.; Foltyn, S. R. and Muenchausen R. E. Interfacial reaction products

and film orientation in YBa2Cu3O7−x on zirconia substrates with and without CeO2 buffer layers. J.

Mater. Res. v. 8, n. 11, p. 2785, 1993.

16

References17- WANG, S. S,; Han, Z.; Schmidt, W.; Neumuller, H. W.; Du, P.; Wang, L. and Chen, S. Chemical solution

growth of CeO2 buffer and YBCO layers on IBAD-YSZ/Hastelloy templates. Supercond. Sci. Technol. v. 18,

n. 11, p. 1468, 2005.

18- BOIKOV, Y. A.; Claeson, T.; Erts, D.; Bridges, F. and Kvitky, Z. Compatibility with in superconducting-

film multilayers. Phys. Rev. B v. 56, n. 11, p. 312, 1997.

19- COLL, M,; Gazquez, J.; Huehne, R.; Holzapfel, B.; Morilla, Y.; Garcia-Lopez, J.; Pomar, A.; Sandiumenge,

S.; Puig, T.; Obradors, X. All chemical YBa2Cu3O7 superconducting multilayers: Critical role of CeO2

cap layer flatness. J. Mater. Res. v. 24, n. 4, p.1446, 2009.

20- FELDMANN, D. M.; Holesinger, D. C.; Feenstra, R.; Gapud, A. A.; Specht, E. D. Evidence for Extensive

Grain Boundary Meander and Overgrowth of Substrate Grain Boundaries in High Critical Current

Density ex Situ YBa2Cu3O7−x Coated Conductors. J. Mater. Res. v. 20, n. 8, p. 2012, 2005.

21- PALAU, A.; Puig, T.; Obradors, X.; Pardo, E.; Navau, C.; S´anchez, A.; Usoskin, A.; Freyhardt, H. C.;

Holzapfel, B.; Feenstra, R. Simultaneous inductive determination of grain and intergrain critical current

densities of YBa2Cu3O7−x coated conductors. Appl. Phys. Lett. v. 84, p. 230, 2004.

22- IZUMI, T. et. al. Progress in development of advanced TFA-MOD process for coated conductors.

Physica C. v. 463, p. 510, 2007.

23- PALAU, A.; Puig, T.; Gutierrez, J.; Obradors, X.; de la Cruz, F. Pinning regimes of grain boundary

vortices in YBa2Cu3O7−x coated conductors. Phys. Rev. B. v. 73, p. 132508, 2008.

17

24- SANCHEZ, A.; Navau, C. Magnetic properties of finite superconducting cylinders. I. Uniform applied field.

Phys. Rev. B. v. 64, p. 214506, 2001.

25- VLAD, V. R.; Zalamova, K.; Coll, M.; Pomar, A.; Palau, A.; Gutierrez, J.; Puig, T.; Obradors, X.; Usoskin, A. Growth

of Chemical Solution Deposited TFAYBCO/MOD(Ce,Zr)O2/ABADYSZ/SS Coated Conductors. IEEE Trans. Appl.

Supercond. v. 19, p. 3212, 2009.

26- PUIG, T.; Palau, A.; Obradors, X.; Pardo, E.; Navau, C.; S´anchez, A.; Jooss, Ch.; Guth, K.; Freyhardt, H. C. The

identification of grain boundary networks of distinct critical current density in YBa2Cu3O7−x coated conductors.

Supercond. Sci. Technol. v. 17, n. 11, p. 1283, 2004.

27- KIM, S. I.; Feldmann, D. M.; Verebelyi, D. T.; Thieme, C.; Li, X.; Polyanskii, A. A.; Larbalestier, D. C. Influence of the

grain boundary network on the critical current density of deformation-textured YBa2Cu3O7−x coated conductors

made by metalorganic deposition. Phys. Rev. B. v. 71, p. 104501, 2005.

28- FOLTYN, S. R.; Jia, Q. X.; Arendt, P. N.; Kinder, L.; Fan, Y.; Smith, J. F. Relationship between film thickness and

the critical current of YBa2Cu3O7−δ-coated conductors. Appl. Phys. Lett. v. 75, p. 3692, 1999.

29- HOLESINGER, T. G. et. al. Progress in Nanoengineered Microstructures for Tunable High-Current, High-

Temperature Superconducting Wires. Adv. Mater. v. 20, p. 391, 2008.

30- CLEM, J. R.; S´anchez. A. Hysteretic ac losses and susceptibility of thin superconducting disks. Phys. Rev. B.

v. 50, p. 9355, 1994.

31- BARTOLOM´E E.; Palau, A.; Llordes, A.; Puig, T.; Obradors, X. Vortex oscillations in TFA-grown YBCO thin-films

with BZO nanoparticles. Physica C. v. 470, p. 2033, 2010.

References

18

References

32- BARTOLOM´E E.; Bartolom´e, J.; Arauzo, A.; Eremenko, V. V.; Sirenko, V. A. AC response of 2H–NbSe2 single

crystals with electron-irradiation-induced defects. J. Phys.: Condens. Matter. v. 22, n. 29, p. 295702, 2010.

33- PALAU, A.; Puig, T.; Obradors, X. Grain and grain boundary vortex dynamics in Ba2Cu3O7‐δ coated conductor

by ac susceptibility. J. Appl. Phys. v. 102, p. 073911, 2007.

34- BARTOLOM´E. E.; Palau, A.; Llord´es, A.; Puig, T.; Obradors, X. Vortex dynamics at high ac amplitudes of

trifluoracetate route grown YBa2Cu3O7−x-BaZrO3 nanocomposites. Phys. Rev. B. v. 81, p. 184530, 2010.

35- POLAT O¨.; Sinclair, J. W.; Zuev, Y. L.; Thompson, J. R.; Christen, D. K.; Cook, S. W.; Kumar, D.; Chen, Y.;

Selvamanickam, V. Thickness dependence of magnetic relaxation and E-J characteristics in superconducting (Gd-

Y)-Ba-Cu-O films with strong vortex pinning. Phys. Rev. B. v. 84, p. 024519, 2011.

36 – MATSUSHITA, T.; Masaru, K. M.; Kimura, K.; Miyata, S.; Ibi, A.; Muroga, T.;, Yamada, Y.; Shiohara, Y.

Dependence of critical current properties on the thickness of the superconducting layer in YBCO coated tapes .

Supercond. Sci. Technol. v. 18, n. 12, p. 227, 2005.