proteomics: a challenge for technology and information science cbcb seminar, november 21, 2005 tim...

22
Proteomics: A Challenge for Technology and Information Science Seminar, November 21, 2005 riffin Biochemistry, Molecular Biology and Biophysics [email protected]

Post on 21-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Proteomics: A Challenge for Technology and Information Science

CBCB Seminar, November 21, 2005Tim GriffinDept. Biochemistry, Molecular Biology and [email protected]

What is proteomics?

“Proteomics includes not only the identification

and quantification of proteins, but also the

determination of their localization, modifications,

interactions, activities, and, ultimately, their

function.”

-Stan Fields in Science, 2001.

Genomics vs. Proteomics

Similarities: Large datasets, tools needed for annotation and

interpretation of results

Differences: Genomics – generally mature technologies, data processing methods, questions asked usually involve quantitative changes in RNA transcripts (microarrays)

Proteomics – still evolving, complexity of protein biochemical properties: expression changes, modifications, interactions,

activities – many questions to ask and data to interpret, methods changing, different approaches (mass spec, arrays etc.),

Genomics, Proteomics, and Systems Biology

mat

ure

pr

otot

ype

em

ergi

nggenomic

DNAmRNA

sequencingarrays

genomics

proteincataloguing

protein products

functionalprotein

quantitativeprofiling

protein phosphorylation

Protein dynamics

ProteinModifications

sub cellularlocation

catalytic activity

descriptive proteininteraction maps

3D structure

proteomics

measure and defineproperties

system

identifysystem

components

interactionsbetween

components

computational biology

Protein(s)

Digestion

µLCseparation

(50-100 um)

Tandem mass spectrum(thousands in a matter of hours)

“Shotgun” identification of proteins in mixtures by LC-MS/MS

Liquid chromatography coupled to tandem mass spectrometry (MS/MS)

Ionization:MALDI

orElectrospray

Isolation Fragmentation MassAnalysis

peptidefragments

peptides++

+

+

++

+++

+

++

++++ ++

++

+

+

+

++++ +

m/z

200200 400400 600600 800800 10001000 12001200m/zm/z

Rel

ativ

e A

bund

ance

Rel

ativ

e A

bund

ance

Peptide sequence determination from MS/MS spectra

H2N-N--S--G--D--I--V--N--L--G--S--I--A--G--R-COOHb2 b3 b4 b5 b6 b7 b8 b9 b10b11 b12 b13 b14b1

y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1y14

Collision-induced dissociation (CID) creates two prominent ion series:

y-series:

b-series:

HH22NN-NSGDIVNLGSIAGR--NSGDIVNLGSIAGR-COOHCOOH

200200 400400 600600 800800 10001000 12001200m/zm/z

Rel

ativ

e A

bund

ance

Rel

ativ

e A

bund

ance

LGSIAGRLGSIAGR

GSIAGRGSIAGR

SIAGRSIAGR

IAGRIAGR

AGRAGRGRGRRR

NLGSIAGRNLGSIAGRVNLGSIAGRVNLGSIAGRIVNLGSIAGRIVNLGSIAGRDIVNLGSIAGRDIVNLGSIAGRGDIVNLGSIAGRGDIVNLGSIAGR

Peptide sequence identifies the protein

YMR134W, yeast protein involved in iron metabolism

High-throughput protein identification by LC-MS/MS and automated sequence database searching

Protein sequence and/or DNA sequence database search

HH22NN--NSGDIVNLGSIAGRNSGDIVNLGSIAGR--COOHCOOH

200200 400400 600600 800800 10001000 12001200m/zm/z

Rela

tive A

bu

nd

ance

Rela

tive A

bu

nd

ance

LGSIAGRLGSIAGR

GSIAGRGSIAGR

SIAGRSIAGRIAGRIAGR

AGRAGRGRGRRR

NLGSIAGRNLGSIAGRVNLGSIAGRVNLGSIAGRIVNLGSIAGRIVNLGSIAGRDIVNLGSIAGRDIVNLGSIAGRGDIVNLGSIAGRGDIVNLGSIAGR

200200 400400 600600 800800 10001000 12001200m/zm/z

Rela

tive A

bun

dance

Rela

tive A

bun

dance

200200 400400 600600 800800 10001000 12001200m/zm/z

Rela

tive A

bun

dance

Rela

tive A

bun

dance

Raw MS/MS spectrum

Peptide sequence match

Direct identification of 1000+ proteins from complex mixtures

Protein identification

Dealing with the data

1. Data acquisition

2. Peak analysis

3. Knowledge annotation and interpretation

• Experimental information, metadata capture

• Sequence database searching• Quantitative analysis

• Database mining• Assignment of function, pathway, localization etc.• Output for database archiving, publication

Inte

grat

ed w

orkf

low

?

1. Data acquisition: capturing experimental information

Proteomics Experimental Data Repository(PEDRo)

Proposed schema

• Similar to genomic needs, but experimental info a bit different

2. Peak Analysis

ProFound Mascot PepSea MS-Fit MOWSE Peptident Multident Sequest PepFrag MS-Tag

200200 400400 600600 800800 10001000 12001200m/zm/z

Rel

ativ

e A

bund

ance

Rel

ativ

e A

bund

ance

Protein identification

Computational algorithms for searching MS/MS spectra against protein sequence databases, mRNA sequences, DNA sequences

• need cpu horsepower (parallel computing)

2. Peak Analysis: data formats

Format 1 Format 3Format 2

Output 1 Output 2 Output 3

• Lack of flexibility• Slow to evolve• Lack of incorporation of competing products, methods

? ?

2. Peak Analysis: need general, flexible, in-house solutions

Format 1 Format 3Format 2

General tools for analysis of multiple data formats

reverse engineering of data formats

2. Peak Analysis; reverse engineering data formats

http://sashimi.sourceforge.net/software_glossolalia.html

2. Peak analysis: quality control of protein matches

Unfiltered – 105+ matches (lots of noise and junk)

Filtered – thousands of “true” matches

filtering

• Statistical analysis of database results (tools are available)

2. Peak Analysis: Quantitative analysis

combine, proteolyze and isolate labeled peptides

NHHH

combine, proteolyze and isolate labeled peptides

NHHH

NNHHHHHH

combine, proteolyze and isolate labeled peptides

State 1 State 2

N HN = normal isotope label H = heavy isotopic label(e.g. 2H, 13C, 15N)

State 1 State 2

N HN = normal isotope label H = heavy isotopic label(e.g. 2H, 13C, 15N)

State 1 State 2

N HN = normal isotope label H = heavy isotopic label(e.g. 2H, 13C, 15N)

N HN HN = normal isotope label H = heavy isotopic label(e.g. 2H, 13C, 15N)

inte

nsi

ty

mass-to-charge (m/z)

inte

nsi

ty

mass-to-charge (m/z)

analyze peptides by mass spectrometry

N

HHH

inte

nsi

ty

mass-to-charge (m/z)

analyze peptides by mass spectrometry

NN

HHHHHH

relative protein abundance =

[intensity of N-labeled peptide][intensity of H-labeled peptide] in

ten

sity

mass-to-charge (m/z)

analyze peptides by mass spectrometry

N

HHH

inte

nsi

ty

mass-to-charge (m/z)

analyze peptides by mass spectrometry

NN

HHHHHH

relative protein abundance =

[intensity of N-labeled peptide][intensity of H-labeled peptide] m

• Flexibility is key – need tools to handle different quantitative methods

• External chemical labeling• Metabolic labeling (SILAC)• Enzymatic incorporation (O16/O18)

2. Peak Analysis: Quantitative analysis

+TOF MS: 20 MCA scans from mm_sample.wiffa=3.56145059693694800e-004, t0=6.89652636903192620e+001

Max. 274.0 counts.

1914 1916 1918 1920 1922 1924 1926 1928 1930 1932 1934m/z, amu

0

20

40

60

80

100

120

140

160

180

200

220

240

260

274

In

te

ns

ity

, c

ou

nts

1926.0240

1927.0231

1928.0203

1917.9946 1929.03221916.9909

1918.99241930.01761920.0007

1924.98031931.00771921.0165

Sample 1

Sample 2

Relative intensity =

relative protein abundance

Evolving methodologies: iTRAQ

iTRAQ label: +114 +115 +116 +117

Multidimensional separation

114 116115 117m/z

Inte

nsi

ty

Digest to peptides

Digest to peptides

Digest to peptides

Digest to peptides

Diagnostic ions used for quantitative analysis

Peptide fragments used for sequence identification

MS/MS spectrum

Sample: 1 2 3 4

213

4

• 4-way multiplexing: simultaneous comparison of multiple states, replicates

+TOF MS: 20 MCA scans from mm_sample.wiffa=3.56145059693694800e-004, t0=6.89652636903192620e+001

Max. 274.0 counts.

1914 1916 1918 1920 1922 1924 1926 1928 1930 1932 1934m/z, amu

0

20

40

60

80

100

120

140

160

180

200

220

240

260

274

In

te

ns

ity

, c

ou

nts

1926.0240

1927.0231

1928.0203

1917.9946 1929.03221916.9909

1918.99241930.01761920.0007

1924.98031931.00771921.0165

Sample 1

Sample 2

Need for “changeable” tools

116.0972

115.0963117.1025

114.1005

Inte

nsity

1

2 4

3“old”

“new”

Automated analysis tools?

3. Knowledge annotation: making sense of lists of data

3. Knowledge annotation: mining proteomic/genomic databases

3. Knowledge annotation: needs

• Annotation: accession numbers and protein names• Functional assignments (functional degeneracy?)• Pathway assignments• Subcellular localization• Disease implications• Comparison of different proteomic datasets (i.e. expression profiles

compared to modification state profiles, other protein properties)

Automated and streamlined??

• Publication and deposit in databases• Visualization of complex phenomena, interpretation of

biological relevance• Modeling, integration with genomics data – computational

and systems biology