pulses and decoupling

61
Pulses and Decoupling Scuola nazionale GIDRMCorso Base Torino 25/09/13

Upload: others

Post on 20-Jan-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pulses and Decoupling

Pulses and Decoupling

Scuola nazionale GIDRM‐ Corso BaseTorino 25/09/13

Page 2: Pulses and Decoupling

Mo

z

x

yBo

NMR excitation (detecting NMR)

• An ensemble of spins (of a single type and I = 1/2) generates an average magnetization, Mo, upon interaction with an external magnetic field, Bo:

• This magnetization is proportional to the population difference of spins in the low and high energy levels, and that it is precessing at a frequency o, the Larmor frequency of the particular observed spin at a particular Bo

• So far, nothing happened. We need to do something to the system to observe any kind of signal. What we do is take it away from this condition and observe how it goes back to equilibrium. This means affecting the populations...

y

x

z

Bo

Page 3: Pulses and Decoupling

Mo

z

x

i

B1 = C * cos (ot)

B1

Transmitter coil (y)

yBo

NMR excitation (continued)

• We need the system to absorb energy. The energy source is an oscillating electromagnetic radiation generated by an alternating current:

Page 4: Pulses and Decoupling

NMR excitation (continued)

• How is that something that has a linear variation can be thought as circular field? A linear variation in y is the linear combination of two counter-rotating circular fields:

+=

+=

+=

•Only the one vector that rotates at o(in the same direction

of the precession of Mo) interacts with the bulk magnetization

Page 5: Pulses and Decoupling

= +

RF Coil: Transmitting B1 Field

The effect of the tiny B1 isto cause M to spiral awayfrom the direction of thestatic B0 field

B110–4 Tesla If B1 frequency is not close toresonance, B1 has no effect

Page 6: Pulses and Decoupling

RF pulse

B1 field perpendicular to B0 Mxy

Mz

Classical Description

• Observe NMR Signal Need to perturb system from equilibrium.

B1 field (radio frequency pulse) with Bo/2 frequency Net magnetization (Mo) now precesses about Bo and B1

MX and MY are non-zero Mx and MY rotate at Larmor frequency System absorbs energy with transitions between aligned and unaligned states

Precession about B1stops when B1 is turned off

Page 7: Pulses and Decoupling

z

x y

z

x y

z

x y

PULSED MAGNETIC FIELDS

= 2  B1 z

x y

B1=1/(8

B1=1/(4

Page 8: Pulses and Decoupling

Polarization distribution after a pulse

Transverse magnetization

Polarization distribution at thermal equilibrium

Page 9: Pulses and Decoupling

PULSED MAGNETIC FIELDS

z

x y

90° Pulse

= 2  B1

• Once the pulse is turned off, the spins resume their precessional motion.

• The individual spins precess on their individual cones.• On a macroscopic scale, the bulk magnetization moment also

precesses, rotating in the xy-plane, perpendicular to the main magnetic field.

Page 10: Pulses and Decoupling

z

x y

90° Pulse90° Pulse

The NMR signal

Page 11: Pulses and Decoupling

* =

1

Radiofrequency pulses

FT

Frequencies that are excited by the pulseB1

Page 12: Pulses and Decoupling

Pulse Generator & Receiver Systema) RF pulse width determines band-width of excitation

Null, no effect

Invert signal, 180o pulse

Maximum effect at

1

Page 13: Pulses and Decoupling

1

FT

Frequencies that are excited by the pulse

FT

Page 14: Pulses and Decoupling

SW

B1

Hard Pulse

1H 10s 90o pulse ±100000 Hz ±166.7 ppm at 600 MHz(total SW 12 ppm)

±1/PW Hz

Page 15: Pulses and Decoupling

= +

z

x’ y’

The rotating frame

Page 16: Pulses and Decoupling

z

x y

Larmor precession in the rotating frame

Laboratory frame

Bo

z

x' y'

Rotating frame at 0

=-B=0 B=0!!

0 = -B0

z

x' y'

B1 is the only magnetic field “experienced” by the spin system

Page 17: Pulses and Decoupling

Mxy

Mz

+

Larmor precession in the rotating frame

z

x'

y'

Page 18: Pulses and Decoupling

Larmor precession in the rotating frame

Bo

z

x' y'

Rotating frame at 0

z

x' y'

B1 is the only magnetic field “experienced” by the spin system

=-B=0 B=0!!

This is the key to how the very weak RF field can affect the magnetization in the presence of the much stronger B0 field. In the rotating frame this field along the z axis appears to shrink, and under the right conditions can become small enough that the RF field is dominant.

Page 19: Pulses and Decoupling

A Mechanical Analogy: A Swingset

• A person sitting on a swing at rest is “aligned” with externally imposed force field (gravity)

• To get the person up high, you could simply supply enough force to overcome gravity and lift him (and the swing) up– Analogous to forcing M over by turning on a huge static B1

• The other way is to push back and forth with a tiny force, synchronously with the natural oscillations of the swing– Analogous to using the tiny RF B1 to slowly flip M over

Page 20: Pulses and Decoupling

On‐resonance pulses

Page 21: Pulses and Decoupling

= 2 B1z

x’ y’

=0

z

x’ y’

=/4

z

x’ y’

=/2z

x’ y’

=

z

x’ y’

=3

z

x’ y’

=2

DETERMINING A 90° PULSE

Page 22: Pulses and Decoupling

= tp

DETERMINING A 90° PULSE

In Hz:

Page 23: Pulses and Decoupling

Larmor precession in the rotating frame

z

x' y'

Rotating frame at rf = 0

z

x' y'

=-B=0 B=0!!

Rotating frame at rf ≠ 0

=-B= 0 -rf

0 is in the MHz orderis in the kHz order

Page 24: Pulses and Decoupling

The effective field

z

x' y'

Rotating frame at rf ≠ 0

=-B= 0 -rf

Page 25: Pulses and Decoupling

The effective field in frequency units

Page 26: Pulses and Decoupling

Off‐resonance effects

Page 27: Pulses and Decoupling

Off‐resonance effects

Page 28: Pulses and Decoupling

Laboratory and rotating framesrf rf rf

0 Hz3600 Hz -3600 Hz

1H 10s 90o pulse

cycle in 10 us cycle in 40 us1=1/21/4*10-5=Hz1=*2 rad/sec=3600*2 rad/sec

=arctan(1/°

Page 29: Pulses and Decoupling

The effective field

90°

-80°

80°

1H 10s 90o pulseB1 of 25 kHz

0,988

0,99

0,992

0,994

0,996

0,998

1

-3000 -2000 -1000 0 1000 2000 3000

Mxy/Mz0

Page 30: Pulses and Decoupling

The effective field

13C 12s 90o pulseB1 of 20.8 kHz

Mxy/Mz0

0,8

0,85

0,9

0,95

1

-100 -50 0 50 100

ppm @ 150 MHz

-40

-30

-20

-10

0

10

20

30

40

-100 -50 0 50 100

Page 31: Pulses and Decoupling

PULSED MAGNETIC FIELDS

=

z

x’ y’

z

x’ y’

z

x’ y’

z

x’ y’

Page 32: Pulses and Decoupling

PULSED MAGNETIC FIELDS

= 2 B1z

x’ y’

z

x’ y’

z

x’ y’

z

x’ y’

Page 33: Pulses and Decoupling

Pulses of different phases

Page 34: Pulses and Decoupling

The phase of a pulse

x

y

B1

B1-

B1+

x

y

x'

y'

An x pulse

Page 35: Pulses and Decoupling

The phase of a pulse

x

y

B1

B1-

B1+

x

y

x'

y'

An -y pulse

y

Page 36: Pulses and Decoupling

Maximum affect: width of excitation:±1/(4PW) Hz

The longer the pulseThe more selective it is

Selective pulse

1H 1ms 90o pulse ±250 Hz ±0.4 ppm at 600 MHzUsed for pulses exciting only H2O magnetization

Page 37: Pulses and Decoupling

Shaped RF pulses

Rectangular pulse

Page 38: Pulses and Decoupling

Fourier pairs

Page 39: Pulses and Decoupling

Fourier pairs

To get a perfectly rectangular excitation profile we will need an infinitely long sinc pulse which is, naturally, impractical, so the waveform has to be truncated

Page 40: Pulses and Decoupling

Some commonly used RF shapes

Page 41: Pulses and Decoupling

Excitation bandwidth

Page 42: Pulses and Decoupling
Page 43: Pulses and Decoupling

Decoupling techniques

Page 44: Pulses and Decoupling
Page 45: Pulses and Decoupling
Page 46: Pulses and Decoupling
Page 47: Pulses and Decoupling
Page 48: Pulses and Decoupling

J (Hz)

13C

13C

1H

1H

1H

13C

1H

13C

1H 1H

Proton-decoupled 13C-NMR

B2/2>2JHC

Page 49: Pulses and Decoupling
Page 50: Pulses and Decoupling

Homonuclear decoupling

Main problems:• Selective irradiation is

not always feasible• Bloch-Siegert shift:

Page 51: Pulses and Decoupling

Heteronuclear Decoupling

• The frequency difference 2-1 lies in the MHz range. The second field B2 is produced by a separate transmitter.

• A curly bracket is used to indicate which nucleus is being decoupled during the experiment, e.g. 13C1H indicates a 13C spectrum acquired with 1H decoupling.

Page 52: Pulses and Decoupling
Page 53: Pulses and Decoupling
Page 54: Pulses and Decoupling

Heteronuclear DecouplingBroadband decouplingUsing the spin flip experiment (MLEV, Malcolm Levitt):

x

y

x

y

J / 2

J / 2

x

y

°

J / 2

J / 2

x

y

Page 55: Pulses and Decoupling

Heteronuclear DecouplingA train of pulses will be susceptible to the errors due to pulse length inaccuracy, since they will accumulate. The non-ideal pulse can be replaced with a composite pulse.

Page 56: Pulses and Decoupling
Page 57: Pulses and Decoupling

Heteronuclear Decoupling

Page 58: Pulses and Decoupling
Page 59: Pulses and Decoupling
Page 60: Pulses and Decoupling
Page 61: Pulses and Decoupling