pure.au.dkpure.au.dk/portal/files/53417346/liss_ask_risom_boege…  · web viewdrawing on donna...

34
Fractal actors and infrastructures: the case of DNA surveillance Abstract As we move into an age of ever more cameras and databases, monitoring and identity checks, surveillance theory paradoxically turns away from the totalitarian gazes of Big Brother and the Panopticon, looking for fresh theoretical resources. Scholars have put forth a plethora of interesting approaches and concepts such as social sorting (Lyon ed. 2003) and the surveillant assemblage (Haggerty & Ericson 2000), thus adding encouraging variety to a previously much more homogenous field. In the wake of this development, some have sought to bring the fruits of the successful actor-network-theory (ANT) into surveillance studies (Ball 2002, Adey 2004, Gad & Lauritsen 2009). In this paper, I further explore the potential of this connection by experimenting with Marilyn Strathern’s concept of the fractal (1991), which has been discussed in newer ANT literature (Law 2002; Law 2004; Jensen 2007). I argue that the concept

Upload: hathien

Post on 06-Mar-2018

221 views

Category:

Documents


4 download

TRANSCRIPT

Fractal actors and infrastructures:

the case of DNA surveillance

Abstract

As we move into an age of ever more cameras and databases, monitoring and

identity checks, surveillance theory paradoxically turns away from the totalitarian

gazes of Big Brother and the Panopticon, looking for fresh theoretical resources.

Scholars have put forth a plethora of interesting approaches and concepts such as

social sorting (Lyon ed. 2003) and the surveillant assemblage (Haggerty &

Ericson 2000), thus adding encouraging variety to a previously much more

homogenous field. In the wake of this development, some have sought to bring

the fruits of the successful actor-network-theory (ANT) into surveillance studies

(Ball 2002, Adey 2004, Gad & Lauritsen 2009). In this paper, I further explore the

potential of this connection by experimenting with Marilyn Strathern’s concept of

the fractal (1991), which has been discussed in newer ANT literature (Law 2002;

Law 2004; Jensen 2007). I argue that the concept fits nicely into the ANT-

oriented situated surveillance approach (Gad & Lauritsen 2009), not because it

explains surveillance, but because it brings empirical sensitivity to our efforts to

understanding what comprises a surveillance actor, its network and its relations to

those under surveillance. Based on fieldwork conducted in 2008 and 2011 in

relation to my Master’s thesis and PhD respectively, I illustrate fractal concepts

by describing the acts, actors and infrastructure that make up the ‘DNA

surveillance’ conducted by the Danish police.

Please note that the author considers the paper to be a work-in-progress!

Keywords: Fractal, Situated Surveillance, ANT, DNA

Introduction

Surveillance is increasingly becoming woven into the fabric of ordinary life.

Responding to the fast pace of surveillance societies, surveillance studies has

grown rapidly over the last decade. In the wake of this development, the field has

been enveloped in fruitful theoretical discussions about surveillance and, in

particular, the usefulness of Big Brother and the Panopticon (e.g. Lyon ed. 2006).

Interesting new approaches and concepts have emerged out of this debate, most

notably David Lyons understanding of surveillance as social sorting (Lyon ed.

2003) and the manifold Deleuzian contributions (e.g. Haggerty & Ericson 2000;

Hier 2003; Bogard 2006). In addition to their work, an undergrowth of other

conceptualizations of surveillance has emerged, including attempts to relate ANT

(Ball 2002; Adey 2004) and Marxist analysis (Fuchs 2011) to surveillance studies.

In this paper, I further investigate possible connections between ANT and

surveillance studies, by exploring fractal conceptualizations of objects, actors and

infrastructures. I argue that these concepts are helpful in studying situated

surveillance (Gad & Lauritsen 2009), not because they are able to explain how

surveillance works, but because they add empirical sensitivity through cognitive

dissonance. In contrast to aforementioned surveillance concepts, the fractal is

useless without detailed empirical descriptions, because it leaves all questions of

“who”, “what” and “how” open. This quality makes the fractal fit into the infra-

language of ANT (Latour 2005) and thus the ANT-oriented situated surveillance

approach.

Focusing on concepts that offer empirical sensitivity rather than strong

explanatory theories is relevant because of two related imbalances within

surveillance studies. First and foremost the field continues to “suffer from an

overabundance of speculative theorizing and a dearth of rigorous empirical

research” (Walby 2005: 158). Rarely are we invited through rich ethnographic

descriptions to meet the actors that are doing or are under surveillance. Secondly,

scholars tend to focus on the extraordinary and unjust and neglect the ordinary.

Apart from the normative ethos of surveillance studies, I believe that there are

normal methodological causes for this bracketing of mundane practice. One factor

is the difficulty of getting real access, which is substantially enhanced in

surveillance studies due to polarized politics and privacy concerns. Another

restraining factor is that describing surveillance can be a difficult enterprise

because the acts that make up surveillance (e.g. data collection, analysis and

control) are often spread in time and space amongst actors that are only partially

connected. When this is the case, the empirical realities themselves resist

description because surveillance – no matter where you position yourself – always

seems to be elsewhere. This paper tries to address this problem of doing situated

studies in partially connected surveillance assemblages by presenting the concept

of the fractal, which opens up a different venue for thinking about what we

observe when we are grappling with the difficult and elusive object of situated

surveillance.

In the paper, I illustrate the fractal concepts through observations and interviews

made in connection with my study on ‘DNA surveillance’ as conducted by the

Danish police force. I define DNA surveillance as the collective of police and

forensic actors that collect, analyze and retain DNA profiles from suspects and

crime scenes in order to control a population of suspects. I invite the reader into

the daily work of police detectives, forensic personnel and the administrators of

the police DNA database. First, however, I describe the main attributes of situated

surveillance and the fractal image.

The situated surveillance approach

Situated surveillance is an approach coined by Christopher Gad and Peter

Lauritsen (2009). Aligning themselves with the known critiques of the Panopticon

and Big Brother (Lyon 2006; Haggerty 2006) they distance themselves from the

all-seeing eye as a fruitful metaphor. Drawing on Donna Haraway and Bruno

Latour they argue that vision is instead always embodied, partial and limited and

that surveillance can be multi-directional. They furthermore emphasize that we

cannot assume that surveillance flows freely, but that it must be seen as work that

involves effort, friction and resistance, and that surveillance may be used for both

control and care (see also Lyon 2001). In order to capture these qualities, they

propose Latours notion of the oligopticon (Latour 2005; Latour & Hermant 1998)

and Haraways situated knowledges (1988) as guiding concepts for a situated

approach.

Situated knowledge is Haraway’s suggestion of a feminist understanding of

objectivity, which attacks the idea of science as a privileged practice that through

a neutral and elevated gaze has the ability to formulate objective and disembodied

statements. She sees this as a rhetorical device – a “God trick” – that distorts how

science really works. She claims that science cannot be isolated from their

materiel surroundings, but are bound to their technologies (microscopes,

databases etc.), which both serve as making opportunities and limitations at the

same time. But non-situated vision simply does not exist; there are no views-from-

nowhere. An important point is that neither Gad & Lauritsen nor Haraway are

interested in defining vision generally, but in investigating how vision is produced

and for whom it works.

Gad & Lauritsen relate the understanding of situated knowledge and vision to

Latours concept of the oligopticon, which further underlines the fragility and

limitations of surveillance. Latour understands oligoptica as specific bureaucratic

landscapes that allow detailed but limited observation that is provided by the

available maps, documents, files, screens, databases and computer programs etc.

The resulting vision is very different from the panopticon:

“Oligoptica […] do exactly the opposite of panoptica: they see much

too little to feed the megalomania of the inspector or the paranoia of

the inspected, but what they see they see it well” (Latour 2005: 181)

The technologies are not allowing a complete overview of the observed. Instead

they create inscriptions that translate the observed (e.g. suspects) into something

more workable (e.g. DNA profiles, criminal records, images, lists of phone calls).

It is these inscriptions that the surveilling actor(-network) has access to and not

the observed itself. In other words, what is observed is out of sight and is

performed by the materiality which is in view inside the surveillance system. But

this view is not a static thing. The observers’ vision may quickly be blurred or

undermined: “the tiniest bug can blind oligoptica” (ibid.). It-systems can break

down, cameras can be turned away, files be deleted and DNA profiles can be

contaminated, planted or falsely identified.

Ultimately, this line of thought leads to an interesting and different a priori for the

situated study, namely the assumption that surveillance does not work and that

making it work requires the constant alignment of actors.

Gad & Lauritsen exemplify their approach and concepts through an ethnographic

study done by Gad on the inspection ship Vestkysten (The West Coast), which is

used by the Danish Fishery Inspection to monitor that the fishermen do not exceed

their fishing quotas. The described surveillance is conducted through a database

containing information on vessels, catches, personal details on fishermen and their

licenses, offenders etc. which the inspectors use as a basis for decisions on what

ships to inspect. In order to find the fishing boats, the inspection ship is equipped

with a GPS monitoring system that tracks all the boats over 15 meters in length

which by law are required to broadcast their position through an installed antenna.

Every hour the system automatically updates and receives information on the

position, speed and course of every boat. At the same time, however, the IT

system allows the inspectors to monitor individual boats more closely as needed.

The surveillance of the fishermen is, however, in no way unproblematic. The

satellite system is slow and prone to breakdowns, which often causes the

inspectors to be late to the scene or base their inspections on rumors and

knowledge about fishermen behavior. Bad weather conditions can also cause the

inspectors to stay on shore. In addition to system failures and weather conditions,

the fishermen sometimes resist the surveillance by covering the boats’ antenna so

that their position is not revealed. They also conduct counter-surveillance as a

collective by telling each other about the position of the inspection ship over the

radio, which makes it near impossible for the inspectors to sneak in on suspicious

activities.

Reiterating the primary aspects of a situated approach, surveillance is, as the case

shows, not a static relationship, but one that is formed everyday through the

actions of human and nonhuman actors on both sides. It is subject to resistance in

spite of expensive technological equipment. And vision is never total and may

suddenly be disturbed.

Fractal actors and infrastructures

The concept of fractals originates in mathematics, but has later been adopted into

social anthropology and ANT as a way to relate naively to scales and ontology.

The job description for the fractal in these types of studies is not to function as a

strong theory that explains social phenomena, but rather to work as a resource of

thought, which opens up for an empirical sensitivity to the situated, complex and

ordinary. It is a mechanism that can be employed to confuse simplistic dualisms

such as micro/macro, one/many and self/other and help us towards a better

starting point for description. In this section, I begin with a brief introduction to

the fractal and follow it up with fractal stories about DNA surveillance.

Living in A non-Euclidean universe

“Fractal” stems from the Latin word “fractus”, which means ‘broken’ or

‘shattered’. In 1975 the Polish born mathematician Benoit Mandelbrot used the

concept as a classification for a group of complex geometrical figures that did not

fit into the Euclidean mathematical universe and had thus historically been

considered as pathological curves, unworthy of further study (Abraham 1993).

However, Mandelbrot undermined this critique by showing that natural

phenomena (e.g. coastal line, clouds, lightning, lungs and leafs) often displayed

fractal qualities, thus urging mathematicians to take fractals more seriously

(Peitgen & Richter 1986).

In contrast to classical geometrical figures, fractals have one or more dimensions

that do not follow the Euclidean rules. They are irregular, folded, strange in time

and/or space. The most famous fractal is the image of the Mandelbrot set, which is

depicted below.

Chart 1: Four images of the Mandelbrot set.

The Mandelbrot set is drawn by a computer based on a mathematical formula,

where the result recursively is put back into the equation. As one magnifies an

area of the image, the computer simultaneously calculates and presents the next

layer of details, which at every level reveals a figure, similar to the original image.

Zooming thus results in a sense of disproportion due to this self-similarity. Instead

of coming closer to an object that is magnified or gaining an overview as one

zooms out, the fractal image seems to elude scaling.

In addition it becomes clear as one zooms in that the line that seems to separate

the reoccurring figure from its background is in fact not a line at all, but can more

precisely be described as a ‘fractal region’, where the background is folded into

the figure and vice versa. No matter what is magnified, it reveals both figure and

background. Therefore neither “figure” nor “background” fill the space, but

together they create a complex region where they constitute each other’s existence

(see also Gleick 1988).

The translation of the fractal image from mathematics and into social theory can

be attributed to the British social anthropologist Marilyn Strathern and her book

Partial Connections (1991/2004). In the book she develops a combination of

ontology and methodology based on the fractal image, which has become a

considerable source of inspiration for actor-network-theorists (Law 2002; Law

2004; Mol 2002: 78-82; Jensen 2007). I briefly explain the concepts “fractal

infrastructures”, “fractal actors” and “fractal objects” below and later illustrate

them by telling fractal stories i.e. stories that identify fractal qualities, thus

undermining dualisms such as micro/macro, self/other and one/many.

Fractal infrastructures

In Partial Connections Marilyn Strathern uses the fractal image to demonstrate

some of her thoughts on the field of anthropology. She points out that

anthropologists are caught in a sterile discussion about whether the micro or the

macro perspective is better: ”[A]nthropologists alternate between accusing one

another now of myopia, now of panoptics” (2004: xv). This distinction is

according to Strathern rooted in a misguided Western understanding of

phenomena as consisting of parts and wholes that determine one another. She

argues that neither the micro perspective (e.g. description of rituals), nor the

macro perspective (e.g. description of cultures) are privileged positions. No matter

what we focus on, we are faced with equally complex phenomena and an equal

loss of information (cf. the magnification of the Mandelbrot set above).

”Despite an increase in the magnitude of detail, the quantity of

information an anthropologist derives from what s/he is observing

may remain the same. Observation thus remains a kind of constant

background to the proliferation of forms” (2004: xxi).

We thus never have access to either the axiomatic parts or the totality of a

phenomenon. We are only ever partially connected to the object of our study

through the specific scale or scales on which we study it. In Partial Connections,

Strathern illustrates this point by examining anthropologists’ descriptions of

cultures, cultural artifacts and rituals from societies in Papua New Guinea (PNG).

Among other things she describes how ‘face designs’ (eyes, mouths and noses)

seem to turn up everywhere across PNG societies on effigies, dance shields,

drums etc. and thus seem to hold the cultures together. However upon further

examination, it is discovered that the designs do not denote faces to all peoples.

To the Pasum people they were instead depictions of spirits, whom do not have

mouths (ibid. 70). Through this and many other examples (flutes, canoes etc.), she

shows that on a certain scale the cultural connections between the different

societies are too close to be dismissed, but upon changing scale, we are faced with

both new information and new gaps, which render the connections partial. And

the supposed “parts” of the overarching cultural “whole” turn out to be no mere

parts, but wholes themselves, with their own “parts-wholes”.

If we take Strathern seriously, then what does this mean for the study of

surveillance infrastructures? First and foremost, I would argue that the fractal may

serve as an undermining mechanism for monolithic concepts about surveillance

systems. Concepts such as the Panopticon and Big Brother represent surveillance

systems as machine-like “wholes” with actors that simply work as part of the

machine. The fractal is a way to maintain that surveillance infrastructures are not

simply coherent wholes due to the distribution of activities and actors, but neither

are they fragmented /non-coherent. They are somewhere in-between. They consist

of partial connections between actors lodged in their own realities. The “parts” of

the surveillance organization can thus be studied as “wholes” in their own right

(ibid. xxix).

Fractal actors and objects

” […] we are in a world of fractionality. We are in a world where

bodies, or organizations, or machines are more than one and less

than many. In a world that is more than one and less than many.

Somewhere in between” (Law 2004: 62).

Besides being used as a weapon against a monolithic understanding of

(surveillance) infrastructures, the fractal also offers other types of analysis. As the

above quote shows, some actor-network-theorists have been deeply inspired by

the metaphor and see fractals everywhere (Law 2004; Mol 2002). In this section, I

try to couple fractality with surveillance actors and surveillance objects.

Drawing on Strathern, the anthropologist Roy Wagner discusses using fractal in

analyzing people. He defines a fractal person such:

“A fractal person is never a unit standing in relation to an aggregate,

or an aggregate standing in relation to a unit, but always an entity

with relationship integrally implied” (Wagner 1991: 163, cited in

Jensen 2007: 845).

Rather than understanding people as simply part of a group, Wagners “fractal

person" is someone who has integrated the relationship. This means that people

may be detached from other people in their group, but the detachment is not final

because of the social relationships created through their social relating. As such

people can be said to fractal as they “carry one another” as integrally implied

relations (Strathern 1992: 125).

This way of addressing the social structure is in fact incompatible with ANT

because it prioritizes humans and the social. If, however, we exchange “person”

with ANT’s concept of “actors”, the problem is solved, because actors in fact

carry the same fractal qualities. The actors in ANT are not to be understood as

actors in a network” (read: part of a whole), but actor-networks i.e. something that

acts because it is attributed action by others. As John Law states, the concept

holds a tension “between the centered ‘actor’ on the one hand and the decentered

‘network’ on the other” (1999: 5). It is inescapably fractal - neither one, nor many.

This concept aligns naturally with the concepts of oligoptica and situated

knowledge/vision described earlier. However, when we highlight the fractionality

of actor-networks, we may also be guided towards “integrally implied

relationships” in the sense that what a human or non-human actor does involves

what John Law understands as absent presences (2002) i.e. something “other”

that is also “within”. In Law’s book Aircraft Stories (ibid.) he illustrates this

oxymoron by showing how different materiel and non-materiel conditions, which

are considered to be “other” to an airplane, are nonetheless inscribed into it.

Among many examples, he describes how pilots’ fear and physical reactions are

written into the mathematical formulas used to design the war plane’s gust

response, and how the Russians’ anti-air defenses are inscribed in its supersonic

capabilities at very low altitudes. Both are examples of “the Otherness of

materials that don’t fit in. But do.” (ibid.: 98). This otherness is not reserved

airplanes, but also occurs within surveillance infrastructures as the following

fractal stories about DNA surveillance will show.

Fractals and surveillance studies

What does the fractal have to offer surveillance studies? As described above, the

fractal can be used as a resource of thought to confuse Euclidean understandings

of ontology (one/more; self/other) and perspective (micro-macro) which exist in

anthropology and sociology. Thus, fractals open up for descriptions of situated

objects multiplicity. The ideas that I have proposed in this section align nicely

with the ANT-oriented situated surveillance. There are especially similarities

concerning the “flat” starting point. Furthermore, the perspectives are also similar

concerning their inherent interest in the complex and the “empty” concepts that

are supposed to bring empirical sensitivity and not ready-made explanations to

our efforts. If the fractal has anything to offer, it is primarily in the form of

renewed confusion about surveillance, which is only relevant to situated studies.

In these instances, however, I argue that fractals have a role in opening up for

studying the partial connections of surveillance infrastructure, studying how the

object of surveillance is performed by and folded into the surveillance system, and

studying the role of otherness in surveillance acts, actors and infrastructures.

Fractal stories about DNA Surveillance

In this section, I tell short fractal stories about the daily virtual control of more

than 75.000 people through the apparatus of the national Danish police’s DNA

database. In the section, I bracket the growing body of literature on DNA

surveillance (e.g. Lazer ed. 2004; Lynch et al ed. 2008; Hindmarsh & Prainsack

ed. 2010), as I want to focus on parts of my empirical data in order to illustrate

fractal qualities.

First story: what is a DNA profile?

The political battles over the construction of a national Danish police DNA

database have to a large degree revolved around the very definition of what a

DNA profile was and what to call it. Proponents such as police officials and

changing Ministers of Justice have insisted on calling it a “genetic fingerprint

based on junk DNA”, while opponents have refused this terminology and

emphasized the extraordinary risks in letting the government “read your DNA”.

Uncertain what to believe, I naturally approached both police officers and forensic

personnel during the beginning of my field for my Master’s thesis work in 2008.

At the forensic institute (Retsgenetisk Afdeling) where they make the police’s

DNA profiles, I interviewed among others the vice director (VD), who told me

that besides making the standard DNA profiles, which are based non-coding

genetic areas, they also do paternity tests and research in genetics. However, in

spite of the fact that the standard DNA profile is based on non-coding areas he

dislikes the term “junk DNA”

A: you call it junk DNA, right?

VD: you could also call it ’non-sense DNA’. It is DNA which does

not code for known features … but if you compare these DNA areas,

we know that the distribution of types are different for different

populations. Therefore, if you have a full DNA profile and know the

distribution of the types in different populations, then it is no more

non-sense than the fact that you can get a likelihood on ethnic

inheritance. We don’t do it routinely though because it requires large

and credible databases to compare with

A: But is it something the police ask you to do?

VD: It is something the police ask us to do sometimes, but they

usually don’t care about it … but sometimes it is nice for them to

know if there is a greater possibility whether the suspect is of

Danish/Northern European inheritance or African or Greenlandic

inheritance. As long as they are aware of the statistical margin of

error.

The genetic fingerprint suddenly seems less non-sense, but an additional surprise

waits around the corner. As I am given a tour in the laboratory, I am introduced to

a young man who sits by a computer and looks at images of just made DNA

profiles. He tells me that in some circumstances, it is also possible to read whether

the owner of the DNA profile has Down’s syndrome. “People with Down’s will

most likely have three peaks in this system [points to the screen], because they

have three copies of chromosome 21”

Chart 2: DNA profile at the forensic institute

In sum, the “genetic fingerprint” is not a fingerprint, as it contains information,

but this information is not usually available, especially to the police who do not

have the required knowledge or technical means to “read the DNA profiles”. To

the policeman the numbers of a DNA profile are just that – numbers.

Second story: DNA surveillance as a fractal infrastructure

The first story showed a fractal quality pertaining to the object called DNA

profiles as being both information and meaningless depending on where one is

situated. In this second story, I focus more specifically on what happens at the

DNA section of the police, which administers the DNA database.

The DNA database has been growing exponentially since 2005, where the rules

for inclusion were changed significantly. Before the amendment you had to be

charged or convicted of a crime resulting in 6 years or more in prison. After,

however, all charges for sentences for crimes punished with 18 months or more in

prisonwould trigger registration. As a result of this change, the database has

grown from 6.141 to 40.500 crime scene profiles and from 3.195 to 75.000

suspect’s profiles today (November 2011).

The national police’s DNA section (Rigspolitiets DNA-sektion) is placed a stone’s

throw from the police headquarters in Copenhagen in a small white and yellow

painted apartment. A small mixture of trusted secretaries and police officers work

here. Less than ten people in total. Their main task is to keep the DNA database

updated, inform local police about “hits”, handle international requests and work

as an intermediary between local police and the forensic institute. The DNA

database consists of a paper-based and an electronic archive. The paper-based

archive is located inside the apartment, while the server containing the electronic

database is physically located in a basement under the Copenhagen headquarters.

Most of the work with the electronic profiles is conducted in a small piece of

indispensable software called DNA2005, which consists of few work areas, which

are handled by at least four different people. The five work areas are

1. Pre-registration (secretary 1)

2. Authorize DNA profile (secretary 2)

3. HIT pre-registration (police officer 1)

4. HIT approval (police officer 2)

5. HIT communication (random police officer)

Pre-registration has to do with sorting between profiles that can be adopted into

the database and which cannot. The secretary adheres to a strict legal framework

when it comes to the identified peoples profiles, but switches to practical

reasoning when sorting the crime scene profiles. These are often too damaged or

mixed to be useful for the police. Depending on the severity of crime, the profiles

are adopted or dismissed. In the second work area of DNA2005, a second

secretary double-checks the accepted profiles from the first secretary. The third

area HIT pre-registration is where the police officers evaluate the hits that

DNA2005 finds. This work is likewise checked by another police officer (fourth

work area) before the hit is communicated to the forensic institute for a scientific

evaluation. While the evaluation is underway, the hits are stored in the fifth work

area and only after they are approved are they communicated out to the local

police where the crime was committed.

Every night around 2AM, DNA2005 automatically starts comparing the latest

DNA-profiles with the entire DNA database. Within seconds it has completed its

task and identified up to a hundred hits. Its search is numerically “democratic”. It

knows nothing about skin color or cases or even the difference between peoples’

profiles and the ones from crime scenes. It simply compares everything new to

everything old and reports the resulting hits. But the computer program does not

only present the “perfect hits”. According to the head of the DNA section, the

program is “loosely set up”. It is programmed to present profiles that fall within a

margin of error. The reason this margin of error exists is that DNA analysis at the

forensic institute sometimes is disturbed by chemicals or substances from textiles

or that there is DNA from more than one person’s DNA in the sample. “We need

human eyes on the profiles … if we program DNA2005 too tightly, we end up

missing some hits” (Head of DNA section).

What is apparent in this story is that there is a concern about human bias built into

the infrastructure, which is obvious in the double checks. These checks are

likewise found at the forensic institute where all tests are done by two separate

teams with separate laboratories in order to eliminate the possibility of

contamination. Also interesting is the “otherness” of the risks of erroneous DNA

analysis which is built into the program at the DNA section.

Third story: The fractal actor

The first two stories have shown fractal qualities concerning the DNA profile

being a multiple object and the infrastructure as being folded in on itself where

different scales are partially connected. In the third story, I switch scale again as I

focus on the specific acts of the police officer (third work area) as he handles the

hits.

It is noon and I have arrived for the second time at the DNA section of the Danish

national police. I am greeted by a police officer who today is first in line to

analyze the hits that were produced during the night. He has waited patiently for

my arrival. Usually he would be done with the matches by now. We sit down and

he opens DNA2005 and we begin immediately. 40-something hits appear on a list

in the lower right corner of the screen. The list shows no names or civil

registration numbers. The profiles are simply named with letters and numbers that

seem incomprehensible at first. But they are not. The police officer tells me that

the letters P or S which are at the beginning of each profile indicate whether the

profile stems from a crime scene or an identified person. The numbers on the

other hand are codes that tell him which type of crime the profile relates to. He

clicks on the first match suggested by Hit Finder – the subprogram in DNA 2005

used to search and compare profiles. A new window with two rows of numbers

and two buttons with the words “Accept” and “Deny” pops up. The officer

explains that once a profile has been denied, it will never come back unless one

does a manual search: “it will never show up again. It is important to be secure in

your knowledge about what is a hit and what isn’t”.

Chart 3: re-creation of a hit

“We are dealing with a rape”, he says while also telling me that the crime scene

profile stems from a specific town on Zealand. He recognizes both from a number

attached to the profile. Quickly, he starts vertically comparing and reciting all the

numbers: “14-14, 16-16, 17-17, 18-18, 10-nothing”. He tells me that empty

systems are automatically counted as hits. He continues to the end and declares it

a hit. He opens the next suggested hit and almost immediately dismisses it as he

spots the lack of a number.

After a while with mixed results, we come to a hit where all the numbers match

between the person and the crime scene profile, but the officer is reluctant to press

the accept button because of many empty systems. “The likelihood ratio is very

low, probably below 50.000”. Likelihood ratio (LR) between profiles is calculated

at the forensic institute, when hits are submitted, which serves as a help to the

justice system in interpreting its judicial value. An LR at 50.000 make the hit a

very weak piece of evidence as ratios over 300.000 is usually expected. “It is from

another rape” he says while going back to the main window where he clicks on a

button named “view case”. A window pops up, showing the history of the crime

scene profile. Four other hits, but the case has not yet been solved, as they are all

crime scene to crime scene hits, indicating that the same unknown person has

“been busy”. Aware that pressing the accept button might lead to a waste of police

resources on a weak lead, the officer still hesitates. He then opens another

program and accesses the criminal register in order to get a read on the man’s

“modus”. The officer tells me that the man in question has earlier been convicted

with different accounts of violence, but before it could result in registration, which

is the reason his DNA profile only shows up now. He also lives in the area.

Despite the fact that he has no prior convictions of rape, it is enough for the

officer, who presses “accept” and the hit disappears from his screen. “Normally I

would not accept this hit, but because of the nature of the case …”. I indicate that

I understand and he proceeds to the next hit.

The described actions of the police officer illustrate both the ordinary practice and

the handling of a special case, where the criminal register is invoked to either

strengthen or weaken the hit. What is interesting is that the usual vision that is

established is one where the suspects can only be enacted as numbers that hit or

do not. But in the special cases, the suspect may be enacted as a number, a modus

and a geographically placed individual. The identified fractal qualities both

adhere to the suspect, who suddenly changes “size” and the police officer who can

be identified as a fractal actor who is large in the sense of his socio-technical

connections with different databases and small in the sense that he occupies such

a small part of a surveillance system over which he has no vision and no control.

Conclusion

In this paper, I described and illustrated fractal concepts in relation to the study of

situated surveillance, while drawing on fieldwork on the Danish police’s DNA

database. I argue that the fractal is an interesting concept because it disturbs old

and established sociological/anthropological dualisms between micro/macro,

one/many and self/other. This quality makes it an interesting experiment for

surveillance studies in dealing with the machine-like “wholes” of the Panopticon

and Big Brother. The fractal makes other types of descriptions possible exactly

because it confuses our concepts of scale and being, without replacing them. The

fractal does not give us anything to hold onto. In turn, this opens up for an

interesting empirical sensitivity towards the complexity of situated and mundane

events.

Ask Risom Bøge is a PhD student at Aarhus University, Denmark. Here he

coordinates the Surveillance in Denmark project and is an active participant at the

Centre for STS Studies at the Department for Information and Media Studies. His

work revolves around police surveillance with a current focus on biometrics and

the use of the National Danish DNA Database.

Bibliography

ABRAHAM R., 1993, Human Fractals: The Arabesque in our Mind. Visual

Anthropology Review 9, 1, 52-55.

ADEY P., 2004, Secured and Sorted Mobilities: Examples from the Airport.

Surveillance & Society 1, 4, 500-519.

BALL K., 2002, Elements of Surveillance: A New Framework and Future

Directions, Information, Communication and Society, 5, 4, 573-590.

BOGARD W., 2006, Surveillance assemblages and lines of flight, in LYON D.,

Theorizing Surveillance - The panopticon and beyond,. Devon, Willan Publishing,

97-123

FUCHS C., 2011, Web 2.0, Prosumption, and Surveillance, Surveillance &

Society, 8, 3, 288-309,

GAD C., LAURITSEN P., 2009, Situated Surveillance: An Ethnographic Study of

Fisheries Inspection in Denmark, Surveillance & Society, 7, 1, 49-57

GLEICK J., 1988, Chaos: Making a new science, London, Heinemann

HAGGERTY K.D., 2006, Tear down the walls: on demolishing the panopticon, in

LYON D., Theorizing Surveillance - The panopticon and beyond, Devon, Willan

Publishing. 23-45

HAGGERTY K.D., ERICSON R.V., 2000, The Surveillant Assemblage. British

Journal of Sociology, 51, 4, 605-622.

HARAWAY D., 1988, Situated Knowledges: The Science Question in Feminism

and the Privilege of the Partial Perspective, Feminist Studies, 14, 3. 577-599

HIER S.P., 2003, Probing the Surveillant Assemblage: on the Dialectics of

Surveillance Practices as Processes of Social Control, Surveillance & Society, 1,

3, 399-411

HINDMARSH R., PRAINSACK B., 2010, Genetic Suspects: Global Governance

of Forensic DNA Profiling and Databasing, Cambridge, Cambridge University

Press

JENSEN C.B., 2007, Infrastructural fractals: revisiting the micro-macro

distinction in social theory. Environment and planning: Society and Space 25,

832-850.

LATOUR B., 2005, Reassembling the Social, New York, Oxford University

Press.

LATOUR B., HERMANT E., 2006, Paris: Invisible City. Downloaded from

http://www.brunolatour.fr/livres/viii_paris-city-gb.pdf

LAW J., 1999, After ANT: Complexity, Naming and Topology, in LAW J.

HASSARD J. Actor Network Theory and After, Oxford, Blackwell Publishing, 1-

15.

LAW, J., 2002, Aircraft Stories - Decentering The Object in Technoscience.

London, Duke University Press

LAW J., 2004, After Method - mess in social science research. New York,

Routledge.

LYNCH M., COLE S.A., MCNALLY R., JORDAN K., ed. 2008, Truth Machine

– the contentious history of DNA fingerprinting, Chicago, The University of

Chicago Press

LYON D., 2001, Surveillance Society - Monitoring Everyday Life. Buckingham,

Open University Press.

LYON D., 2003, Surveillance as Social Sorting: Privacy, Risk and Digital

Discrimination, New York, Routledge.

LYON D., 2006, Theorizing Surveillance: The Panopticon and Beyond. Devon,

Willan Publishing

MOL A.M., 2002, The Body Multiple: Ontology in Medical Practice, Oxford,

Blackwell Publishing

PEITGEN H. O., Richter P. H. 1986, The beauty of fractals. Berlin, Springer

Verlag.

STRATHERN M., 1991/2004, Partial Connections, Oxford, Rowman &

Littlefield

STRATHERN M. 1992, Reproducing the Future: anthropology, kinship and the

new reproductive technologies, Glasgow, Bell & Bain

WAGNER R., 1991, The fractal person, in GODELIER M., Big Men and Great

Men: Personifications of Power, Cambridge, Cambridge University Press. 159-

174

WALBY K., 2005, Institutional ethnography and Surveillance Studies - An

Outline for Inquiry, Surveillance & Society 3 (2/3). 158-172