pv 101 basic photovoltaics

232
PV 101 Basic PV Brought to you by:

Upload: phungcong

Post on 14-Feb-2017

242 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: PV 101 Basic Photovoltaics

PV 101 Basic PV

Brought to you by:

Page 2: PV 101 Basic Photovoltaics

In accordance with the Department of Labor and Industry’s statute 326.0981, Subd. 11, “This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying 1.5 hours of credit toward Building Officials and Residential Contractors code/energy continuing education requirements.” For additional continuing education approvals, please see your credit tracking card.

Page 3: PV 101 Basic Photovoltaics

n  Introductions, agenda, goals

n  Resources, definitions

n  PV Basics

n  System types, virtual tour

n  Movement of the sun, solar window, SPF

n  Ohms Law, general math, load profiles

n  Energy efficiency

n  Sizing systems

n  System pricing

Presentation Overview

Page 4: PV 101 Basic Photovoltaics

Resources

Books • Photovoltaics Design and Installation Manual, SEI

• Photovoltaic Systems, American Technical Publishers

• Power from the Sun, Dan Chiras

• The Homeowner’s Guide to Renewable Energy, Dan Chiras

Page 5: PV 101 Basic Photovoltaics

Resources

Periodicals

• Home Power Magazine

• Solar Today

• Solar Pro

• Sun & Wind Energy

Page 6: PV 101 Basic Photovoltaics

Resources Websites • dsireusa.org

• http://www.quickmountpv.com/training/webinars/index.html?cur=0

• renewwisconsin.org

• midwestrenew.org

• http://pvwatts.nrel.gov/

• the-solarfoundation.org

• http://openpv.nrel.gov/index

• http://www.rbisolar.com/solar-calculator/

• http://solar-estimate.org/?page=estimatoroverview

• http://design.unirac.com/tool/project_info/solarmount/

?pitched=true#max-span-help

• http://www.energyperiscope.com/

Page 7: PV 101 Basic Photovoltaics

Definitions

Watt (W) • Watts is a measure of power. • Volts X Amps = Watts • Indicates amount of power a module or PV system can produce or the amount of energy a device will consume

Page 8: PV 101 Basic Photovoltaics

Definitions

kiloWatt (kW) •One thousand Watts (W) of power. • W / 1000 = kiloWatts

Page 9: PV 101 Basic Photovoltaics

Definitions

kilo Watt hour (kWh) • Units in which power is bought and/or sold • kilo Watts X time = kilo Watt hour • 1 kW X 3 hours = 3 kWh

Page 10: PV 101 Basic Photovoltaics

Definitions

Grid/Utility Grid

• Network of wires that run up and down the streets and highways of the US used for electrical distribution • Can be used to store excess electrons generated by a renewable source for future use.

Page 11: PV 101 Basic Photovoltaics

Definitions

Net Metering Investor owned utilities are required by law to credit customer accounts for their over production of RE electricity at retail rates. • Maximum output varies from state to state • Amount of over production is usually based on nameplate output not kilowatt-hours/year

Page 12: PV 101 Basic Photovoltaics

Definitions

Net Metering • WI - 20 kW • IL - 40 kW • NE – 25 kW (credited at avoided cost on next bill)

• OK - 100 kW or 25,000 kWh/yr of production whichever is less • IA - 500 kW • ON - 500 kW • WV – 25 kW residential, 50 kW commercial

Page 13: PV 101 Basic Photovoltaics

Definitions

Net Metering • Maximum allowable system size, based on rated output REI 960 W PV 1,200 W PV 2,000 W PV 2,200 W PV 3600 W Wind

9,960 W rated output

10,040 W to go

Page 14: PV 101 Basic Photovoltaics

Irradiance, Irradiation, and Insolation Solar  irradiance  –  the  power  of  solar  radia3on  per  unit  surface  area.  It  is  expressed  in  W/m2      

Power  (rate)  

Solar  irradia3on  –  the  energy  of  solar  radia3on  over  a  given  period  of  3me.  It  is  expressed  in  kWh/m2  

Energy  (quan3ty)  

Insola3on–  the  measure  of  solar  radia3on  energy  received  on  a  given  surface  area  in  a  given  3me.  It  is  commonly  expressed  as  average  irradiance  in  kilowaE-­‐hours  per  square  meter  per  day,  kWh/m2/day  Peak  Sun  Hours  

Definitions

Page 15: PV 101 Basic Photovoltaics

Definitions

Standard Test Conditions (STC) • Manufactures specification for power output of a PV module. • Predicts output under ideal test conditions.

• 25˚ C (77˚F) • 1000 W/M2

• 1.5 AM (Sea level)

Page 16: PV 101 Basic Photovoltaics

Air Mass

Source:  Dunlop,  Jim.  Photovoltaic  Systems.    

Page 17: PV 101 Basic Photovoltaics

Definitions

Rated Output Maximum amount of power a PV system will produce in full sun • Expressed in watts or kiloWatts • ten 100 W modules wired together would equal a 1000 Watt system

• May also be called Nameplate Rating

Page 18: PV 101 Basic Photovoltaics

Solar Irradiation as a Function of Weather

Source:  Peuser,  Felix  A.,  Remmers,  Karl-­‐Heinz,  and  Schnauss,  Mar3n.    2002.  Solar  Thermal  Systems:  Successful  Planning  and  Construc3on.    Earthscan:    Frieberg,  Germany.  

 

n  This  graph  shows  the  approximate  global  solar  irradia3on  values  on  a  horizontal  plane  as  a  func3on  of  the  weather.  On  clear  days,  there  are  very  high  levels  of  irradiance,  which  can  be  in  the  order  of  800  to  1000  W/m2,  while  on  completely  overcast  days,  only  200  W/m2  or  less  are  obtained.  Seasons  can  also  have  an  effect  on  irradiance  levels.  

Page 19: PV 101 Basic Photovoltaics

Output as a Function of Solar Irradiation

Source:  Solar  Fast  Track.  IV  Curve  Temp.  solarfasErack.com.  

Page 20: PV 101 Basic Photovoltaics

Module Label

Source:  Sterling,  Clay.  KC  Module  Label  Midwest  Renewable  Energy  Associa3on.  

PTC Performance Test Conditions Or PVUSA • 800 W/M2

• Sea level (1.5 AM) • 50°C (122°F)

Page 21: PV 101 Basic Photovoltaics

Photovoltaic Cell

Source:  Photovoltaic  Effect.    Clay  Sterling,  2005.  

Page 22: PV 101 Basic Photovoltaics

Photovoltaic Module

Multicrystal

Amorphous String Ribbon

Monocrystal

Page 23: PV 101 Basic Photovoltaics

Photovoltaic Module

Monocrystal • Single crystal grown • Silicon based • Most expensive process • Most efficient cell (18%) • Solid navy blue color

Page 24: PV 101 Basic Photovoltaics

Photovoltaic Module

Multicrystal • Silicon based • Molten silicon is cast into mold • Cheaper manufacturing process • Cell efficiency up to 14% • More efficient use of surface area

Page 25: PV 101 Basic Photovoltaics

Photovoltaic Module

String Ribbon • Silicon based • least expensive manufacturing process • Cell efficiency up to13%

Page 26: PV 101 Basic Photovoltaics

Photovoltaic Module

Amorphous • Some are silicon based • Can be flexible • Inexpensive • Efficiency up to 9% • Poor track record

Page 27: PV 101 Basic Photovoltaics

Photovoltaic Module

Source:  Uni-­‐Solar.  “Power  shingle.”  uni-­‐solar.com/products/residen3al-­‐products  powershingle-­‐2/.  

•  Building  Integrated  

Page 28: PV 101 Basic Photovoltaics

Photovoltaic Module

Source:  Uni-­‐Solar.  “Field  applied.”  soldonsun.com  

•  Field  applied  

Page 29: PV 101 Basic Photovoltaics

Photovoltaic Module

• Building block of an array • Each cell .47 V • Each cell linked series/parallel • Rated output at STC in Watts

Page 30: PV 101 Basic Photovoltaics

Make Up of a Module •  Frame  •  Glass  •  Cells  •  Backer  •  J  Box  •  Connec3ons  

Page 31: PV 101 Basic Photovoltaics

Module Variations

Curb  Appeal    •   Clear  glass  with  an  uncolored  aluminum  frame  

•   Black  frame  with  3nted  glass  

•   Shapes  vary  

•   Peel-­‐and-­‐s3ck  amorphous  modules  

•   Translucent  modules  for  carport,  walkway  roof,  awning,  etc.  

Page 32: PV 101 Basic Photovoltaics

Module Variations  Module  Choices  •  Clear  backsheet  

Source:  Sharp  Solar.  “Clear  module.”sustainablesolu3onscorpora3on.com.  

Page 33: PV 101 Basic Photovoltaics

Module Variations Module  Choices  •  Black  frame  •  Black  backsheet  

Source:  Sharp  Solar.  “Black  frame  module.”  www.wholesalesolar.com  

Page 34: PV 101 Basic Photovoltaics

Module Variations Module  Choices  •  Roof  3le  

Source:  Sole  Power  Tile,  “Roof  3le.”  solarenergygreenlifestyleforyou.com.    

Page 35: PV 101 Basic Photovoltaics

Module Variations Module  Choices  •  Slate  roof  3le  

Source:  Solar  Slate  Ltd,  “Roof  slate.”  solarslate-­‐ltd.com.    

Page 36: PV 101 Basic Photovoltaics

Module Variations Module  Choices  •  Solar  window  

Source:  Pythagoras  Solar  Windows,  “Solar  window.”  gigaom.com/cleantech/the-­‐vision-­‐for-­‐solar-­‐windows/.  

 

Page 37: PV 101 Basic Photovoltaics

Photovoltaic Array

Page 38: PV 101 Basic Photovoltaics

PV Mounting

Page 39: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  L-­‐foot  mounted  on  

deck  with  lots  of  silicone  

Source:  Sterling,  Clay.  “L-­‐foot.”  Midwest  Renewable  Energy  Associa3on.        

Page 40: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Stanchion  on  roof  

deck  without  protec3on  

Source:  Sterling,  Clay.  “Stanchion.”  Midwest  Renewable  Energy  Associa3on.        

Page 41: PV 101 Basic Photovoltaics

PV Mounting

Page 42: PV 101 Basic Photovoltaics

PV Mounting Rail  

Source:  Sterling,  Clay.  “Rail.”  Midwest  Renewable  Energy  Associa3on.        

Page 43: PV 101 Basic Photovoltaics

PV Mounting Rail  

Source:  Sterling,  Clay.  “Rail.”  Midwest  Renewable  Energy  Associa3on.  

Page 44: PV 101 Basic Photovoltaics

PV Mounting End    Clamp  

Source:  Sterling,  Clay.  “End  Clamp.”  Midwest  Renewable  Energy  Associa3on.  

Page 45: PV 101 Basic Photovoltaics

PV Mounting Mid    Clamp  

Source:  Sterling,  Clay.  “Mid  Clamp.”  Midwest  Renewable  Energy  Associa3on.  

Page 46: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Based  on  many  factors:  

•  Visibility  •  Space  constraints  •  Shading  •  Performance  op3miza3on  •  Security  •  Cost  •  Integrated  architecture  designs  

Page 47: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Quick  mount  

•  Stainless  steel  12”  x  12”  flashing  •  Stainless  steel  hardware  •  2,554  lbs.  av.  pullout  

Source:  Quick  Mount.  “Classic  compost  mount.”  quickmountpv.com.        

Page 48: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Quick  mount  

Source:  Sterling,  Clay.  “Quick  Mount  install.”  Midwest  Renewable  Energy  Associa3on.        

Page 49: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Quick  mount  

Source:  Sterling,  Clay.  “Quick  Mount  install.”  Midwest  Renewable  Energy  Associa3on.        

Page 50: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Quick  mount  

Source:  Sterling,  Clay.  “Quick  Mount  install.”  Midwest  Renewable  Energy  Associa3on.        

Page 51: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Fast  Jack  

•  Single  bolt  •  Proper  

flashing  •  Variable  

height  stanchion  

Source:  Solar  Power  Planet.  “Fast  Jack  install.”  solarpowerplanetearth.com.        

Page 52: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Fast  Jack  

Source:  Sterling,  Clay.  “Fast  Jack  install.”  Midwest  Renewable  Energy  Associa3on.    

Page 53: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Fast  Jack  

Source:  Sterling,  Clay.  “Fast  Jack  install.”  Midwest  Renewable  Energy  Associa3on.    

Page 54: PV 101 Basic Photovoltaics

PV Mounting n Moun3ng  •  Fast  Jack  

Source:  Sterling,  Clay.  “Fast  Jack  install.”  Midwest  Renewable  Energy  Associa3on.    

Page 55: PV 101 Basic Photovoltaics

PV Mounting n Moun3ng  •  Fast  Jack  

Source:  Sterling,  Clay.  “Fast  Jack  install.”  Midwest  Renewable  Energy  Associa3on.    

Page 56: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Fast  Jack  

Source:  Sterling,  Clay.  “Fast  Jack  install.”  Midwest  Renewable  Energy  Associa3on.    

Page 57: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  Fast  Jack  

Source:  Sterling,  Clay.  “Fast  Jack  install.”  Midwest  Renewable  Energy  Associa3on.    

Page 58: PV 101 Basic Photovoltaics

PV Mounting Moun3ng  •  S-­‐5  clamp  •  Standing  

seam  

Source:  S-­‐5.  “S-­‐5-­‐E.”  s-­‐5.com.    

Page 59: PV 101 Basic Photovoltaics

PV Mounting Flush-­‐mount  •  Subtle,  low  cost  •  Requires  adequate  

roof  space  facing  a  southerly  direc3on  and  no  shading  from  adjacent  structures  

Source:  Sterling,  Clay.  “Flush-­‐roof  moun3ng.”  Midwest  Renewable  Energy  Associa3on.  

Page 60: PV 101 Basic Photovoltaics

PV Mounting Pole-­‐mount  •  Good  choice  where  the  

array  size  is  larger  than  available  roof  space  

•  Easy  to  change  3lt  angle  •  Easy  for  snow  removal  •  Requires  trenching  

Source:  Ammond,  Chuck.  “Pole  mount.”  

Page 61: PV 101 Basic Photovoltaics

PV Mounting Ground  Racking  •  Simple  structure  •  Structural  integrity  •  Ease  of  access  •  Simple  founda3on  •  Easy  to  change  the  3lt  angle  for  seasonal  op3miza3on  

Source:  Ammond,  Chuck.  “Ground  racking.”  

Page 62: PV 101 Basic Photovoltaics

PV Mounting Flat  Roof  Racking  •  Able  to  use  ballasted  racks  to  

avoid  roof  penetra3ons  for  moun3ng  

•  Ability  to  remove  snow  or  dirt  easily  

•  Modules  in  a  secure  loca3on  •  Hidden  from  outside  view  •  Only  one  penetra3on  –  

conduit  with  the  wiring  

Source:  Ammond,  Chuck.  “Flat  roof  racking.”  

Page 63: PV 101 Basic Photovoltaics

PV Mounting Integrated  Architecture  Designs  •  Awnings  –  take  advantage  of  

passive  solar  •  Carport  –  used  as  primary  

roof  •  Translucent  –  allow  sunlight  

to  filter  in  

Source:  Ammond,  Chuck.  “Integrated  Architecture,  PV  Awnings.”  

Page 64: PV 101 Basic Photovoltaics

PV Mounting Tracker  •  Single  or  dual  axis  •  Tracks  sun  daily  •  Adjusts  for  seasonal  change  in  sun  

angle  •  25  –  30%  more  produc3on  

Source:  Sterling,  Clay.  “Dual  axis  trackers.”  Midwest  Renewable  Energy  Associa3on.  

Page 65: PV 101 Basic Photovoltaics

PV Mounting Tracker  

Source:  Sterling,  Clay.  “Dual  axis  trackers.”  Midwest  Renewable  Energy  Associa3on.  

Page 66: PV 101 Basic Photovoltaics

Angle of Incidence

Page 67: PV 101 Basic Photovoltaics

System Types

U3lity  Interac3ve  System  AKA:  U3lity  Inter3ed  without  BaEeries  Simplest  System  

Bimodal  System  AKA:  U3lity  Inter3ed  with  BaEeries  Power  all  the  3me  

PV  Direct  System  Power  only  when  needed  

Stand-­‐Alone  System  You  are  your  own  u3lity  

Page 68: PV 101 Basic Photovoltaics

Utility Interaction

Source:  Talbot-­‐Heindl  Chris.  “U3lity  Interac3ve  Systems.”  Midwest  Renewable  Energy  Associa3on

Page 69: PV 101 Basic Photovoltaics

Utility Interactive

Page 70: PV 101 Basic Photovoltaics

Utility Interactive

Source:  “PV  Array  at  The  Center  for  Energy  Educa3on  Laboratory.”  Sinclair  Community  College  Energy  Educa3on  Center.  

Array  •  Collec3on  of  modules  •  Produce  DC  electricity  •  Sized  for  needs  or  goals  •  Generally,  high-­‐voltage  configura3on  

(250  –  400+  VDC)  

Page 71: PV 101 Basic Photovoltaics

Utility Interactive

Source:  Sterling,  Clay.  “Combiner  Box  .”  Midwest  Renewable  Energy  Associa3on.  

Combiner  Box  •  Located  at  the  array  •  Combines  strings  of  sub  

arrays  to  form  one  large  array  

•  Allows  one  set  of  wires  to  go  to  the  balance  of  system  instead  of  mul3ple  sets  of  wires  in  series/parallel  strings  

Page 72: PV 101 Basic Photovoltaics

Utility Interactive

Source:  Sterling,  Clay.  “Combiner  Box  Lid.”  Midwest  Renewable  Energy  Associa3on.  

•  Water3ght  electrical  box  that  contain  touch  safe  fuses  or  breakers  

•  Circuits  are  collected  and  connected  in  parallel  

•  Circuits  exit  at  a  higher  amperage  through  a  single,  larger  conductor  where  it  connects  to  the  BOS  

Page 73: PV 101 Basic Photovoltaics

Utility Interactive

Source:  Sterling,  Clay.  “Inverter  on  a  PV  Training  Lab.”  Midwest  Renewable  Energy  Associa3on.  

Inverter  •  Converts  high-­‐voltage  DC  

electricity  to  u3lity-­‐grade  AC  •  Maximum  power  point  tracking  

of  array  •  Monitor  u3lity  match  the  array  

voltage  and  Hertz  to  u3lity  •  Disconnect  from  u3lity  during  

u3lity  outage  (an3-­‐islanding)  •  Sine  wave  

Page 74: PV 101 Basic Photovoltaics

Utility Interactive

Source:  Sterling,  Clay.  “DC  Disconnect  on  a  PV  Training  Lab.”  Midwest  Renewable  Energy  Associa3on.  

Disconnects  •  Isola3on  of  components  to  safely  

service  of  equipment  •  Provide  overcurrent  protec3on  of  

system  

Page 75: PV 101 Basic Photovoltaics

Utility Interactive

Source:  Sterling,  Clay.  “Lightning  arrestor  on  a  PV  Training  Lab.”  Midwest  Renewable  Energy  Associa3on.  

Lightning  Arrestors  •  Provide  some  protec3on  of  

electronics  of  a  system  from  lightning  

•  Required  by  most  insurance  companies  

•  Cheap  form  of  protec3on,  may  or  may  not  prevent  all  damage  

Page 76: PV 101 Basic Photovoltaics

Utility Interactive

Source:  Sterling,  Clay.  “Load  center  on  a  PV  Training  Lab.”  Midwest  Renewable  Energy  Associa3on.  

Load  Center  •  Conven3onal  breaker  panel  •  Loca3on  where  renewable  energy  

system  will  physically  meet  the  u3lity  

Page 77: PV 101 Basic Photovoltaics

Utility Interactive

Source:  Sterling,  Clay.  “U3lity  meter  on  a  PV  Training  Lab.”  Midwest  Renewable  Energy  Associa3on.  

U3lity  Meter  •  Accountant  of  consump3on  and/or  

produc3on  •  Interconnec3on  Agreement  

 

Page 78: PV 101 Basic Photovoltaics

Utility Interactive – System Cost

Installed  Cost  •  Simple  u3lity  interac3ve,  fixed  mount  -­‐  $4-­‐6/waE  •  Simple  u3lity  interac3ve,  tracking  array  -­‐  $5-­‐7/waE  

Prices  change  as  the  industry  changes  Check  The  Open  PV  Project  for  updated  costs:  hEp://openpv.nrel.gov/  

Page 79: PV 101 Basic Photovoltaics

Utility Interactive – System Cost

Installed  Cost  •  Building  Integrated  simple  u3lity  interac3ve  -­‐  $8-­‐11/waE  •  Simple  u3lity  interac3ve,  fixed  mount  -­‐  $7-­‐10/waE  •  Simple  u3lity  interac3ve,  tracking  array  -­‐  $8-­‐12/waE  

Prices  change  as  the  industry  changes  Check  The  Open  PV  Project  for  updated  costs:  hEp://openpv.nrel.gov/  

Page 80: PV 101 Basic Photovoltaics

Bimodal

Page 81: PV 101 Basic Photovoltaics

Bimodal System - Components

Array  •  Produces  DC  electricity  •  May  be  low-­‐  or  high-­‐voltage  (24  or  48  

VDC  or  greater)  •  Sized  for  the  loads  or  goals  of  the  owner  

Source:  “PV  Array  at  The  Center  for  Energy  Educa3on  Laboratory.”  Sinclair  Community  College  Energy  Educa3on  Center.  

Page 82: PV 101 Basic Photovoltaics

Bimodal System - Components

n  Charge  Controller  •  Regulates  baEery  voltage  during  

charging  process  •  Protects  baEeries  from  

overcharge,  maintains  baEery  at  100%,  can  ini3ate  equalizing  cycle  

•  Can  transform  array  high-­‐voltage  to  baEery  low-­‐voltage  

•  Can  maximum  power  point  tracking  

•  Can  be  simple  to  very  complex  •  Brain  of  a  system  

Source:  Sterling,  Clay.  “Charge  controller.”  Midwest  Renewable  Energy  Associa3on.  

Page 83: PV 101 Basic Photovoltaics

Bimodal System - Components

Source:  RV  Solar.  “PWM  charge  profile.”  Rvsolarnow.com.  

BaEery  Charging  PWM  (pulse  width  modula3on)  

High  speed  connec3on  and  disconnec3on  between  baEeries  and  charging  source  A  series  of  short  charging  pulses  are  sent  to  baEery  depending  on  state  of  charge  Low  baEery  long  pulse,  charged  baEery  short  pulse  Juggling  electrons  

Page 84: PV 101 Basic Photovoltaics

Maximum Power Point Tracking-MPPT

Source:  Ecodirect.  “MPPT  Chart.”  ecodirect.com.  

MPPT  charge  controllers  trick  PV  module,  by  adding  resistance  to  the  circuit,  to  increase  maximum  voltage  output  

Page 85: PV 101 Basic Photovoltaics

Bimodal System - Components

BaEeries  •  Storage  of  electrons  for  

cri3cal  loads  •  Maintained  at  100%  •  Usually  flooded  lead  acid  •  Needs  ven3ng  for  hydrogen  •  Large  footprint,  spill  

containment,  significant  owner  par3cipa3on  

Source:  Sterling,  Clay.  “BaEery  bank.”  Midwest  Renewable  Energy  Associa3on.  

Page 86: PV 101 Basic Photovoltaics

Bimodal System - Components

Inverter  •  More  sophis3cated,  must  

interact  with  u3lity  and  as  stand-­‐alone  during  power  outage  

•  Sine  wave  •  Will  charge  baEeries  off  of  

u3lity  when  solar  resource  not  available  

•  An3-­‐islanding  

Source:  Sterling,  Clay.  “OutBacks.”  Midwest  Renewable  Energy  Associa3on.  

Page 87: PV 101 Basic Photovoltaics

Bimodal System - Components

Load  Center  and  Cri3cal  Load  Center  •  Cri3cal  load  center  •  Loads  you  need  to  run  during  a  typical  power  outage  •  Need  a  transfer  switch  to  manually  disconnect  from  u3lity  

panels  to  cri3cal  loads  panel  

Page 88: PV 101 Basic Photovoltaics

Bimodal System - Components

Other  Components  •  Lightning  arrestors  •  AC  and  DC  Disconnects  •  Combiner  Boxes  •  Interconnec3on  agreement  

Page 89: PV 101 Basic Photovoltaics

Bimodal System - Components

Installed  Cost  •  Bimodal,  fixed  mount  -­‐  $9-­‐12/waE  •  Bimodal  tracking,  -­‐  $10-­‐13/waE  

Prices  change  as  the  industry  changes  Check  The  Open  PV  Project  for  updated  costs:  hEp://openpv.nrel.gov/  

Page 90: PV 101 Basic Photovoltaics

Stand Alone

Page 91: PV 101 Basic Photovoltaics

Stand Alone – Components

Array  Sized  for  needs  of  the  home,  sized  different  than  other  system  types  

Seasonal  3lt  angle  is  cri3cal  

Array  voltage  generally      matches  baEery  voltage,      can  be  high-­‐voltage  

Source:  Sterling,  Clay,  Dawson  Array.  Midwest  Renewable  Energy  Associa3on.  

Page 92: PV 101 Basic Photovoltaics

Stand Alone – Components

Charge  Controller  •  Charges,  regulates,  and  protects  

baEeries  •  Regulates  baEery  voltage  during  

charging  process  •  Can  maximum  power  point  

tracking  •  Can  be  simple  to  very  complex  •  Brain  of  a  system  

Source:  Sterling,  Clay.  “Charge  controller.”  Midwest  Renewable  Energy  Associa3on.  

Page 93: PV 101 Basic Photovoltaics

Stand Alone – Components

BaEeries  •  Sized  for  three-­‐five  days  of  

autonomy  •  Usually  flooded  lead  acid  

baEeries  •  Always  require  back-­‐up  

Source:  Sterling,  Clay.  “BaEery  bank.”  Midwest  Renewable  Energy  Associa3on.  

Page 94: PV 101 Basic Photovoltaics

Stand Alone – Components

BaEeries  Metering  •  Gas  gauge  of  system  •  Real  3me  readings  •  Historic  informa3on  

Source:  Sterling,  Clay.  “Trimetric.”  Midwest  Renewable  Energy  Associa3on.  

Page 95: PV 101 Basic Photovoltaics

Stand Alone – Components

Inverter  •  Can  be  of  lesser  quality  

wave  form  •  Can  have  auto  func3ons  to  

turn  on  generator  or  divert  loads  

•  Sized  for  maximum  loads  and  start-­‐up  

Source:  Sterling,  Clay.  “Inverter.”  Midwest  Renewable  Energy  Associa3on.  

Page 96: PV 101 Basic Photovoltaics

Stand Alone – Components

Back-­‐Up  •  Gas  generator  •  Wind  machine  •  Micro-­‐hydro  

Source:  Talbot-­‐Heindl,  Chris.  “Wind  Turbine  on  Tower.”  Midwest  Renewable  Energy  Associa3on.  

Page 97: PV 101 Basic Photovoltaics

Stand Alone – Components

Other  Components  •  Standard  issue  load  center  •  Lightning  arrestors  •  AC  and  DC  Disconnects  •  Combiner  Boxes  

Page 98: PV 101 Basic Photovoltaics

Stand Alone – System Costs

Installed  Cost  •  Stand-­‐alone,  fixed  array  -­‐  $12-­‐16/waE  

Prices  change  as  the  industry  changes  Check  The  Open  PV  Project  for  updated  costs:  hEp://openpv.nrel.gov/  

Page 99: PV 101 Basic Photovoltaics

PV Direct System

Source:  Talbot-­‐Heindl,  Chris.  “PV  Direct  System.”  Midwest  Renewable  Energy  Associa3on.  

Page 100: PV 101 Basic Photovoltaics

PV Direct System - Components

Array  •  Sized  for  func3on  

Source:  Grid  Be  Gone.  “Aqc  fan.”  gridbegone.com.  

Page 101: PV 101 Basic Photovoltaics

PV Direct System - Components

Device  or  Appliance  •  Fans  •  Lights  •  Circula3on  pumps  

Page 102: PV 101 Basic Photovoltaics

PV Direct - System Cost

Prices  change  as  the  industry  changes  Check  The  Open  PV  Project  for  updated  costs:  hEp://openpv.nrel.gov/  

Page 103: PV 101 Basic Photovoltaics

MREA Carport

10  –  230  W  MAGE  Solar  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Virtual Tour

Page 104: PV 101 Basic Photovoltaics

MREA Carport

10  –  230  W  MAGE  Solar  Rated  output?  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Virtual Tour

Page 105: PV 101 Basic Photovoltaics

MREA Carport

10  –  230  W  MAGE  Solar  10  x  230  =  2,300  W  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Virtual Tour

Page 106: PV 101 Basic Photovoltaics

MREA Carport

10  –  230  W  MAGE  Solar  10  x  230  =  2,300  W  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Virtual Tour

Page 107: PV 101 Basic Photovoltaics

MREA Carport

Solar  Edge  Op3mizer  ¨  DC  to  DC  converter  ¨  Tune  individual  module  

output  to  the  array  ¨  Any  fault  goes  to  1  volt  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Virtual Tour

Page 108: PV 101 Basic Photovoltaics

MREA Carport

Solar  Edge  Inverter  ¨  3,300  W  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Virtual Tour

Page 109: PV 101 Basic Photovoltaics

MREA Carport

Load  Center  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Virtual Tour

Page 110: PV 101 Basic Photovoltaics

MREA Training Roof 10  –  225  W  Kyocera  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Page 111: PV 101 Basic Photovoltaics

MREA Training Roof 10  –  225  W  Kyocera  Rated  output?  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Page 112: PV 101 Basic Photovoltaics

MREA Training Roof 10  –  225  W  Kyocera  10  x  225  =  2,250  WaEs  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Page 113: PV 101 Basic Photovoltaics

MREA Training Roof SolaDeck  

Source:  Sterling,  Clay.  “SolaDeck.”  Midwest  Renewable  Energy  Associa3on.  

Page 114: PV 101 Basic Photovoltaics

MREA Training Roof SolaDeck  

Source:  Sterling,  Clay.  “SolaDeck.”  Midwest  Renewable  Energy  Associa3on.  

Page 115: PV 101 Basic Photovoltaics

MREA Training Roof DC  Disconnect  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Page 116: PV 101 Basic Photovoltaics

MREA Training Roof Inverter  –  Magnatek  (Power  One)  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Page 117: PV 101 Basic Photovoltaics

MREA Training Roof U3lity  Disconnect  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Page 118: PV 101 Basic Photovoltaics

MREA Training Roof Load  Center  

Source:  Sterling,  Clay.  “Car  port  array.”  Midwest  Renewable  Energy  Associa3on.  

Page 119: PV 101 Basic Photovoltaics

13 kW Central Waters Brewery

Page 120: PV 101 Basic Photovoltaics

13 kW Central Waters Brewery

Page 121: PV 101 Basic Photovoltaics

13 kW Central Waters Brewery

Page 122: PV 101 Basic Photovoltaics

NWMC Enphase Install

Page 123: PV 101 Basic Photovoltaics

NWMC Enphase Install

Page 124: PV 101 Basic Photovoltaics

NWMC Enphase Install

Page 125: PV 101 Basic Photovoltaics

NWMC Enphase Install

Page 126: PV 101 Basic Photovoltaics

NWMC Enphase Install

Page 127: PV 101 Basic Photovoltaics

Van Meter Inc Iowa City

Page 128: PV 101 Basic Photovoltaics

Van Meter Inc Iowa City

Page 129: PV 101 Basic Photovoltaics

Van Meter Inc Iowa City

Page 130: PV 101 Basic Photovoltaics

1000 W, 30-32 W Arco modules

Page 131: PV 101 Basic Photovoltaics

Battery Pack

Page 132: PV 101 Basic Photovoltaics

Low Voltage BOS

Page 133: PV 101 Basic Photovoltaics

Load Center

Page 134: PV 101 Basic Photovoltaics

PV Direct

Page 135: PV 101 Basic Photovoltaics

BIPV, Exelon Pavilion, Millennium Park Chicago 459 – 75 W modules, 34.5 kW array est. 16,175 kWh/yr, actual 2,967 kWh 10 months 2009 http://www.illinoissolarschools.org/solar-projects/exelon-pavilions-randolph/

Page 136: PV 101 Basic Photovoltaics

Solar Window

Page 137: PV 101 Basic Photovoltaics

Solar Window Seasonal  Changes  

Source:  The  German  Solar  Energy  Society.  2005.  Planning  and  Installing  Solar  thermal  Systems:  A  Guide  for  Installers,  Architects,  and  Engineers.  Frieburg:  Earthscan.  

Page 138: PV 101 Basic Photovoltaics

Solar Window

Source:  Foreman,  Claudia.  1989  ASHRAE  Fundamentals.  Atlanta:  American  Society  of  Hea3ng,  Refrigera3on  and  Air  Condi3oning  Engineers,  Inc.  1989.  27.21.  

Page 139: PV 101 Basic Photovoltaics

Solar Window

Seasonal Tilt Angles: Summer = Lat – 15 deg, Winter = Lat + 15 deg, Fall/Spring = Lat Ex. Custer WI Latitude = 45 deg N Fall/Spring = 45 deg, Summer = 30 deg, Winter = 60 deg

Page 140: PV 101 Basic Photovoltaics

Solar Window

Seasonal Tilt Angles: Summer = Lat – 15 deg, Winter = Lat + 15 deg, Fall/Spring = Lat Ex. Iowa City, IA Latitude = 41 deg N Fall/Spring = 41 deg, Summer = 26 deg, Winter = 56 deg

Page 141: PV 101 Basic Photovoltaics

Solar Window

Seasonal Tilt Angles: Summer = Lat – 15 deg, Winter = Lat + 15 deg, Fall/Spring = Lat Ex. Traverse City, MI Latitude = 45 deg N Fall/Spring = 45 deg, Summer = 30 deg, Winter = 60 deg

Page 142: PV 101 Basic Photovoltaics

Solar Window

Seasonal Tilt Angles: Summer = Lat – 15 deg, Winter = Lat + 15 deg, Fall/Spring = Lat Ex. Parkersburg, WV Latitude = 39 deg N Fall/Spring = 39 deg, Summer = 24 deg, Winter = 54 deg

Page 143: PV 101 Basic Photovoltaics

Solar Window

Seasonal Tilt Angles: Summer = Lat – 15 deg, Winter = Lat + 15 deg, Fall/Spring = Lat Ex. Decatur, IL Latitude = 40 deg N Fall/Spring = 40 deg, Summer = 25 deg, Winter = 55 deg

Page 144: PV 101 Basic Photovoltaics

Solar Window PV Optimal tilt angle year round fixed mount: Custer, WI Outputs for a 1 kW array at various angles 30 deg = 1127 kWh/year summer angle 31 deg = 1129 kWh/year 32 deg = 1130 kWh/year 33 deg = 1130 kWh/year 34 deg = 1131 kWh/year 35 deg = 1131 kWh/year 36 deg = 1131 kWh/year 37 deg = 1130 kWh/year 38 deg = 1129 kWh/year 39 deg = 1128 kWh/year 40 deg = 1127 kWh/year 45 deg = 1116 kWh/year fall/spring angle 60 deg = 1046 kWh/year winter angle

Page 145: PV 101 Basic Photovoltaics

Solar Window PV

Optimal tilt angle year round fixed mount: Custer, WI Outputs for a 1 kW array at various angles 4.0 SH 30 deg = 1127 kWh/year Lat – 15 deg (summer angle) 37 deg = 1130 kWh/year Lat – 8 deg Optimal year round angle 45 deg = 1117 kWh/year Latitude (fall/spring angle) 60 deg = 1046 kWh/year Lat + 15 (winter angle)

Page 146: PV 101 Basic Photovoltaics

Solar Window PV

Optimal tilt angle year round fixed mount: Traverse City, MI Outputs for a 1 kW array at various angles 4.0 SH 30 deg = 1,137 kWh/year Lat – 15 deg (summer angle) 37 deg = 1,134 kWh/year Lat – 8 deg (Optimal year round angle Custer) 45 deg = 1,116 kWh/year Latitude (fall/spring angle) 60 deg = 1,034 kWh/year Lat + 15 (winter angle)

Page 147: PV 101 Basic Photovoltaics

Solar Window PV

Optimal tilt angle year round fixed mount: Iowa City, IA Outputs for a 1 kW array at various angles 5/12, 22 deg = 1,225 kWh/year flush mount 27 deg = 1,240 kWh/year Lat – 15 (summer angle) 34 deg = 1,247 kWh/year Lat – 8 deg Optimal year round angle 42 deg = 1,237 kWh/year Latitude 57 deg = 1,165 kWh/year Lat + 15 (winter angle)

Page 148: PV 101 Basic Photovoltaics

Solar Window PV

Optimal azimuth angle year round fixed mount: Iowa City, IA Outputs for a 1 kW array at various angles E 90, 5/12, @ 22 deg = 1,015 kWh/year flush mount S 180, @ 22 deg = 1,225 kWh/year W 270, @ 22 deg = 1,030 kWh/year

Page 149: PV 101 Basic Photovoltaics

Solar Window PV

Optimal tilt angle year round fixed mount: Traverse City MI Outputs for a 1 kW array at various angles E 90, 5/12, @ 22 deg = 954 kWh/year flush mount 165, 5/12, @ 22 deg = 1,117 kWh/year S 180, @ 22 deg = 1,124 kWh/year 195, 5/12, @ 22 deg = 1,121 kWh/year W 270, @ 22 deg = 963 kWh/year

Page 150: PV 101 Basic Photovoltaics

Solar Window PV

Optimal tilt angle year round fixed mount: Decatur, IL Outputs for a 1 kW array at various angles 4.8 SH 25 deg = 1262 kWh/year Lat – 15 deg (summer angle) 32 deg = 1271 kWh/year Lat – 8 deg Optimal year round angle 40 deg = 1269 kWh/year Latitude (fall/spring angle) 54 deg = 1193 kWh/year Lat + 15 (winter angle)

Page 151: PV 101 Basic Photovoltaics

Solar Window PV Optimal tilt angle year round fixed mount: Tucson AZ Outputs for a 1 kW array at various angles 17 deg = 1613 kWh/year summer angle 18 deg = 1619 kWh/year 19 deg = 1625 kWh/year 29 deg = 1660 kWh/year 30 deg = 1662 kWh/year 31 deg = 1662 kWh/year 32 deg = 1663 kWh/year fall/spring angle 33 deg = 1663 kWh/year 34 deg = 1662 kWh/year 45 deg = 1626 kWh/year 46 deg = 1620 kWh/year 47 deg = 1614 kWh/year winter angle

Page 152: PV 101 Basic Photovoltaics

Solar Window PV Optimal tilt angle year round fixed mount: Charleston SC Outputs for a 1 kW array at various angles 17 deg = 1304 kWh/year summer angle 18 deg = 1308 kWh/year 19 deg = 1313 kWh/year 28 deg = 1335 kWh/year 29 deg = 1336 kWh/year 30 deg = 1336 kWh/year 31 deg = 1336 kWh/year 32 deg = 1336 kWh/year fall/spring angle 33 deg = 1336 kWh/year 34 deg = 1335 kWh/year 45 deg = 1303 kWh/year 46 deg = 1299 kWh/year 47 deg = 1293 kWh/year winter angle

Page 153: PV 101 Basic Photovoltaics

Solar Window PV Optimal tilt angle year round fixed mount: Charlotte NC Outputs for a 1 kW array at various angles 20 deg = 1293 kWh/year summer angle 21 deg = 1297 kWh/year 22 deg = 1301 kWh/year 30 deg = 1318 kWh/year 31 deg = 1319 kWh/year 32 deg = 1319 kWh/year 33 deg = 1319 kWh/year 34 deg = 1319 kWh/year 35 deg = 1318 kWh/year fall/spring angle 36 deg = 1317 kWh/year 48 deg = 1280 kWh/year 49 deg = 1275 kWh/year 50 deg = 1269 kWh/year winter angle

Page 154: PV 101 Basic Photovoltaics

Solar Window

Seasonal Tilt Angles: Summer = Lat – 15 deg, Winter = Lat + 15 deg, Fall/Spring = Lat Ex. Lac du Flambeau WI Latitude = 46 deg N Fall/Spring = 46 deg, Summer = 35 deg, Winter = 61 deg

Page 155: PV 101 Basic Photovoltaics

Solar Window

Seasonal Tilt Angles: Summer = Lat – 15 deg, Winter = Lat + 15 deg, Fall/Spring = Lat Ex. Charlotte NC Latitude = 35 deg N Fall/Spring = 35 deg, Summer = 20 deg, Winter = 50 deg

Page 156: PV 101 Basic Photovoltaics

Solar Window

Seasonal Tilt Angles: Summer = Lat – 15 deg, Winter = Lat + 15 deg, Fall/Spring = Lat Ex. Charleston SC Latitude = 32 deg N Fall/Spring = 32 deg, Summer = 17 deg, Winter = 47 deg

Page 157: PV 101 Basic Photovoltaics

Solar Window

Seasonal Tilt Angles: Summer = Lat – 15 deg, Winter = Lat + 15 deg, Fall/Spring = Lat Ex. Tucson AZ Latitude = 32 deg N Fall/Spring = 32 deg, Summer = 17 deg, Winter = 47 deg

Page 158: PV 101 Basic Photovoltaics

Solar Window

Source:  Foreman,  Claudia.  1989  ASHRAE  Fundamentals.  Atlanta:  American  Society  of  Hea3ng,  Refrigera3on  and  Air  Condi3oning  Engineers,  Inc.  1989.  27.21.  

Page 159: PV 101 Basic Photovoltaics

Solar Window Solar Hot Water Systems Need Sun!

NREL  2010  

Page 160: PV 101 Basic Photovoltaics

Solar Window Sun Hours/Day State City High Low Avg AK Fairbanks 5.87 2.12 3.99 AZ Tucson 7.42 6.01 6.57 CO Boulder 5.72 4.44 4.87 DC Washington 4.69 3.37 4.23 FL Miami 6.26 5.05 5.62 GA Atlanta 5.16 4.09 4.74 IA Ames 4.80 3.73 4.40 IL Chicago 4.08 1.47 3.14 IN Indianapolis 5.02 2.55 4.21 MN St. Cloud 5.43 3.53 4.53 MO St. Louis 4.87 3.24 4.38 NC Greensboro 5.05 4.00 4.71 NE Omaha 5.28 4.26 4.90 NV Las Vegas 7.13 5.84 6.41 NY Schenetady 3.92 2.53 3.55 NY New York City 4.97 3.03 4.08 OH Cleveland 4.79 2.69 3.94 SC Charleston 5.72 4.23 5.06 SD Rapid City 5.91 4.56 5.23 WI Madison 4.82 3.28 4.29 WY Lander 6.81 5.50 6.06 WV Charleston 4.12 2.47 3.65

Page 161: PV 101 Basic Photovoltaics

Site Assessment Tools

Solar Pathfinder ~ $290 Solmetric ~ $2200

Page 162: PV 101 Basic Photovoltaics

Solar Window

Page 163: PV 101 Basic Photovoltaics
Page 164: PV 101 Basic Photovoltaics

WI SPF Chart. Midwest Renewable Energy Association. February 2011

Page 165: PV 101 Basic Photovoltaics

WI SPF Chart. Midwest Renewable Energy Association. February 2011

Page 166: PV 101 Basic Photovoltaics

NC, SC, AZ SPF Chart. Midwest Renewable Energy Association. February 2011

Page 167: PV 101 Basic Photovoltaics

Performing a Site Assessment

Page 168: PV 101 Basic Photovoltaics

Starting Point

Page 169: PV 101 Basic Photovoltaics

20 ft. (from starting point)

Page 170: PV 101 Basic Photovoltaics

40 ft. (from starting point)

Page 171: PV 101 Basic Photovoltaics

60 ft. From starting point

Page 172: PV 101 Basic Photovoltaics

Sighting Considerations

• Neighbors

•  Distance to BOS

•  Future construction

•  Aesthetics

•  Vegetative growth

Page 173: PV 101 Basic Photovoltaics

WI SPF Chart. Midwest Renewable Energy Association. February 2011

Page 174: PV 101 Basic Photovoltaics

SPF Exercise

Page 175: PV 101 Basic Photovoltaics

SPF Exercise

Dec. 2+3+7+3+2= 17% Shade = 100-17=83% Sun

Page 176: PV 101 Basic Photovoltaics

SPF Exercise

Dec. 2+3+7+3+2= 17% Shade = 100-17=83% Sun Jan. 2+3+7+3+2=17% Shade = 100-17= 83% Sun Nov. 1+2+3+7+3+2+1= 19% Shade = 100-19 = 81% Sun Feb. 1+2+3+7+7+3+2+1=25% Shade = 100-25=75% Sun

Page 177: PV 101 Basic Photovoltaics

SPF Exercise

Page 178: PV 101 Basic Photovoltaics

Using PVWatts Online,  free  sotware  from  Na3onal  Renewable  Energy  Lab  (NREL)  •  Calculates  the  output  of  a  PV  array  of  essen3ally  any  

waEage  and  any  eleva3on  angle,  at  any  azimuth  angle  •  Generates  a  report  that  gives  produc3on  numbers  for  every  

month  of  the  year  •  Does  not  account  for  snow  shading  •  Helps  size  an  array  to  meet  the  load  requirements  and  site  

condi3ons  

Page 179: PV 101 Basic Photovoltaics

Using PVWatts

Page 180: PV 101 Basic Photovoltaics

Using PVWatts

Page 181: PV 101 Basic Photovoltaics

Using PVWatts

Page 182: PV 101 Basic Photovoltaics

Using PVWatts

Page 183: PV 101 Basic Photovoltaics

Using PVWatts

Page 184: PV 101 Basic Photovoltaics

Using PVWatts

Page 185: PV 101 Basic Photovoltaics

Using PVWatts

Page 186: PV 101 Basic Photovoltaics

Using PVWatts

Dec = 83% Sun

.83 x 40 = 33.2 kWh

Page 187: PV 101 Basic Photovoltaics

Using PVWatts

.81 x 51 = 41.3

.83 x 40 = 33.2

.83 x 57 = 47.3

.75 x 81 = 60.8

Page 188: PV 101 Basic Photovoltaics

Using PVWatts

.81 x 51 = 41.3

.83 x 40 = 33.2

.83 x 57 = 47.3

.75 x 81 = 60.8

1,070.6

Page 189: PV 101 Basic Photovoltaics

General Math

General Math Problems   24 V (E) X 15 A (I) = _____________ Watts   ________ Watts X 12 hours/day run time = _________ Watt hours/day   _________ Watt hours/day X 7 days/week = __________ Watt hours/week   __________ Watt hours/week X 4 weeks/month = Watt hours/month   ___________ Watt/hours/Mo / 1000 = ___________ kWh/month   kWh/Mo. X $0.16 = $__________ to operate device/ month

360 360 4320

4320 30,240 30,240 120,960 120.96

19.35

Page 190: PV 101 Basic Photovoltaics

General Math 1. 115 V (E) 5 A (I) 2.5 hours/day run time. Find:   __________ W __________Wh/d     2. 75 W 115 V (E) Find:   __________ A (I)     3. 110 V (E) 15 A (I) 12 hours run time Find:   __________ Watts __________ Watt hours/day __________ Watt hours/month     4. 120 Wh/d 2 A (I) 3 hrs/day Find:   __________ W __________ V (E)     5. 2 – 60 watt incandescent lights run 5 hours per day. Find:   __________ Wh/day __________ Wh/week

575 1437.5

.65

1,650 19,800 594,000

40 20

600 4200

Page 191: PV 101 Basic Photovoltaics

General Math 1. 115 V (E) 5 (I) 2.5 hours/day run time. Find:   __________ W __________Wh/d     2. 75 W 115 V (E) Find:   __________ A (I)     3. 110 V (E) 15 A (I) 12 hours run time Find:   __________ Watts __________ Watt hours/day __________ Watt hours/month     4. 120 Wh/d 2 A (I) 3 hrs/day Find:   __________ W __________ V (E)     5. 2 – 60 watt incandescent lights run 5 hours per day. Find:   __________ Wh/day __________ Wh/week

Page 192: PV 101 Basic Photovoltaics

General Math

6. 4 – 40 watt incandescent lights run 3 hours per day. Find:   __________ Wh/day __________ Wh/week     7. 3 – 75 watt incandescent lights run 3 hours per day. Find:   __________ Wh/day __________ Wh/week     8. A pop machine has a label that says: 115 V 12 A. We know that the machine operates 12 hours per day. Calculate:   __________ Watts __________ Watt hours/day __________ kWh/d   $ __________ /day to operate @ $0.16/kWh

480 3,360

675 4,725

1,380 16,560 16.6

2.65

Page 193: PV 101 Basic Photovoltaics

General Math

6. 4 – 40 watt incandescent lights run 3 hours per day. Find:   __________ Wh/day __________ Wh/week     7. 3 – 75 watt incandescent lights run 3 hours per day. Find:   __________ Wh/day __________ Wh/week     8. A pop machine has a label that says: 115 V 12 A. We know that the machine operates 12 hours per day. Calculate:   __________ Watts __________ Watt hours/day __________ kWh/d   $ __________ /day to operate @ $0.12/kWh

Page 194: PV 101 Basic Photovoltaics

General Math

9. A swimming pool has a pump that operates 24 hours/day during the summer months. The nameplate on the motor says: 220 V 16 A. Calculate:   __________ Watts __________ Watt hours/day __________ kWh/d   __________ kWh/month $__________ /month to operate @ $0.12/kWh     10. A refrigerator nameplate says: 115 V 6 A. We know that the refrigerator runs time is 10 hours each day. Calculate:   __________ Watts __________ Watt hours/day __________ kWh/d   $__________ /day to operate @ $0.12/kWh     11. A 40 gallon electric water heater data sheet indicates that it consumes 4828 kWh per year and operates on a 220 V circuit. Calculate:   __________ kWh/day consumption __________ Wh/day consumption

3,520 84,480 84.48 2,534.4 405.50

2,534.4 x 2 = 5,068.8 kWh/month

690 6900 6.9 1.10

13.2 13,200

Page 195: PV 101 Basic Photovoltaics

General Math

9. A swimming pool has a pump that operates 24 hours/day during the summer months. The nameplate on the motor says: 220 V 16 A. Calculate:   __________ Watts __________ Watt hours/day __________ kWh/d   __________ kWh/month $__________ /month to operate @ $0.12/kWh     10. A refrigerator nameplate says: 115 V 6 A. We know that the refrigerator runs time is 10 hours each day. Calculate:   __________ Watts __________ Watt hours/day __________ kWh/d   $__________ /day to operate @ $0.12/kWh     11. A 40 gallon electric water heater data sheet indicates that it consumes 4828 kWh per year and operates on a 220 V circuit. Calculate:   __________ kWh/day consumption __________ Wh/day consumption

Page 196: PV 101 Basic Photovoltaics

General Math

12. A 80 gallon electric water heater data sheet indicates that is consumes 5047 kWh per year and operates on a 220 V circuit. Calculate:   __________ kWh/day consumption __________ Wh/day consumption     13. An 840 Watt wash machine does 6 loads per week .5 hours per load. Calculate:   __________ Wh/load __________ Wh/load     14. Average the following monthly kWh consumption and find the following:   __________ Average kWh/month __________ kWh/day   __________ Wh/day   Jun 410 kWh May 420 kWh Aug 620 kWh Jul 340 kWh Sep 490 kWh Oct 350 kWh Nov 400 kWh Dec 350 kWh Feb 440 kWh Jan 500 kWh Apr 370 kWh Mar 460 kWh

13.8 13,800

420 2,520

429.2 14.1 14,100

Page 197: PV 101 Basic Photovoltaics

General Math

12. A 80 gallon electric water heater data sheet indicates that is consumes 5047 kWh per year and operates on a 220 V circuit. Calculate:   __________ kWh/day consumption __________ Wh/day consumption     13. An 840 Watt wash machine does 6 loads per week .5 hours per load. Calculate:   __________ Wh/load __________ Wh/load     14. Average the following monthly kWh consumption and find the following:   __________ Average kWh/month __________ kWh/day   __________ Wh/day   Jun 410 kWh May 420 kWh Aug 620 kWh Jul 340 kWh Sep 490 kWh Oct 350 kWh Nov 400 kWh Dec 350 kWh Feb 440 kWh Jan 500 kWh Apr 370 kWh Mar 460 kWh

Page 198: PV 101 Basic Photovoltaics

General Math

  15. Average the following monthly kWh consumption and find the following:   __________ Average kWh/month __________ kWh/day   __________ Wh/day     Jan 353 kWh Feb 428 kWh Mar 550 kWh Apr 431 kWh May 431 kWh Jun 444 kWh Jul 475 kWh Aug 311 kWh Sep 484 kWh Oct 518 kWh Nov 335 kWh Dec 651 kWh

450.9 14.8 14,800

Page 199: PV 101 Basic Photovoltaics

General Math

  15. Average the following monthly kWh consumption and find the following:   __________ Average kWh/month __________ kWh/day   __________ Wh/day     Jan 353 kWh Feb 428 kWh Mar 550 kWh Apr 431 kWh May 431 kWh Jun 444 kWh Jul 475 kWh Aug 311 kWh Sep 484 kWh Oct 518 kWh Nov 335 kWh Dec 651 kWh

Page 200: PV 101 Basic Photovoltaics

Load Profiles 6-60 W ___________ W X 3hrs/d ___________ X 7 days = _______________ Wh/wk     1 -25 W __________ W X 1 hrs/d __________ X 7 days = _______________ Wh/wk     2 – 65 W __________ W X 15 min/d __________ X 7 days = _______________ Wh/wk     5 – 60 W __________ W X 1 hrs/d __________ X 7 days = _______________ Wh/wk     1 – 100 W __________ W X 6 hrs/d __________ X 7 days = _______________ Wh/wk     1 – 100 W __________ W X 6 hrs/d __________ X 7 days = _______________ Wh/wk     4 – 60 W __________ W X 1 hrs/d __________ X 7 days = _______________ Wh/wk     4 – 60 W __________ W X 6 hrs/week = _______________ Wh/wk     4 – 60 W __________ W X 2 hrs/d __________ X 7 days = _______________ Wh/wk     1 – 100 W __________ w X 6 hrs/d __________ X 7 days = _______________ Wh/wk  

=__________ _______________ total Wh/week

360 1080 7560 25 25 175 130 32.5 227.5 300 300 2100 100 600 4200 100 600 4200 240 240 1680

240 240 1440

480 3360 100 600 4200

29,142.5

Page 201: PV 101 Basic Photovoltaics

Load Profiles 6-60 W ___________ W X 3hrs/d ___________ X 7 days = _______________ Wh/wk     1 -25 W __________ W X 1 hrs/d __________ X 7 days = _______________ Wh/wk     2 – 65 W __________ W X 15 min/d __________ X 7 days = _______________ Wh/wk     5 – 60 W __________ W X 1 hrs/d __________ X 7 days = _______________ Wh/wk     1 – 100 W __________ W X 6 hrs/d __________ X 7 days = _______________ Wh/wk     1 – 100 W __________ W X 6 hrs/d __________ X 7 days = _______________ Wh/wk     4 – 60 W __________ W X 1 hrs/d __________ X 7 days = _______________ Wh/wk     4 – 60 W __________ W X 6 hrs/week = _______________ Wh/wk     4 – 60 W __________ W X 2 hrs/d __________ X 7 days = _______________ Wh/wk     1 – 100 W __________ w X 6 hrs/d __________ X 7 days = _______________ Wh/wk  

= _______________ total Wh/week

Page 202: PV 101 Basic Photovoltaics

System Sizing Basics

• Add 12 months electrical bills = kWh/year • Divide by 365 days = kWh/day • kWh/day divided by solar resource for location = system size in kW • Divide system size by .80 (derate factor) = system size corrected

for inefficiencies

Page 203: PV 101 Basic Photovoltaics

Load Profiles

= ______________________ total Wh/week   _________________________ Wh/week

7 days = _________________________ Wh/d     ________________________ Wh/d

4 Sun Hours = _________________________ W system     _________________________W System /.80 (derating factor 20%)  

= _________________________ W system size

29,142.5

4163

4163

1040.7

1041 1301.3

29,142.5

Page 204: PV 101 Basic Photovoltaics

Load Profiles

= _______________ total Wh/week   _________________________ Wh/week

7 days = _________________________ Wh/d     ________________________ Wh/d

4 Sun Hours = _________________________ W system     _________________________W System /.80 (derating factor 20%)  

= _________________________ W system size

Page 205: PV 101 Basic Photovoltaics

Load Profiles

Phantom Load Profile     Cell phone charger 10 watts 24 hrs/day X 7 days = __________ Wh/wk   Cordless phone transformer 5 Watts 24 hrs/day X 7 days = __________ Wh/wk   Answering machine 10 Watts 24 hrs/day X 7 days = __________ Wh/wk   Radio battery charger 6 Watts 24 hrs/day X 7 days = __________ Wh/wk   Fax transformer 6 Watts 24 hrs/day X 7 days = __________ Wh/wk   Cable box 5 Watts 24 hrs/day X 7 days = __________ Wh/wk   Wall clock 4 Watts 24 hrs/day X 7 days = __________ Wh/wk   Wall clock 4 Watts 24 hrs/day X 7 days = __________ Wh/wk   Alarm clock 4 Watts 24 hrs/day X 7 days = __________ Wh/wk    

= _______________ total Wh/wk

1680 840 1680 1008 1008 840 672 672 672

9072

Page 206: PV 101 Basic Photovoltaics

Load Profiles

Phantom Load Profile     Cell phone charger 10 watts 24 hrs/day X 7 days = __________ Wh/wk   Cordless phone transformer 5 Watts 24 hrs/day X 7 days = __________ Wh/wk   Answering machine 10 Watts 24 hrs/day X 7 days = __________ Wh/wk   Radio battery charger 6 Watts 24 hrs/day X 7 days = __________ Wh/wk   Fax transformer 6 Watts 24 hrs/day X 7 days = __________ Wh/wk   Cable box 5 Watts 24 hrs/day X 7 days = __________ Wh/wk   Wall clock 4 Watts 24 hrs/day X 7 days = __________ Wh/wk   Wall clock 4 Watts 24 hrs/day X 7 days = __________ Wh/wk   Alarm clock 4 Watts 24 hrs/day X 7 days = __________ Wh/wk    

= _______________ total Wh/wk

Page 207: PV 101 Basic Photovoltaics

Load Profiles

Phantom Load Profile  

= _______________ total Wh/wk   _______________ Wh/wk 7 days = _______________ Wh/d   _______________ Wh/d 4 Sun Hours = ________________ W system     _______________ W system /.80 (derate factor 20%)  

= _______________ W system size         Energy Efficiency recommendations:

9,072 9,072 1,296

1,296 324

324 405

Page 208: PV 101 Basic Photovoltaics

Load Profiles

Phantom Load Profile  

= _______________ total Wh/wk   _______________ Wh/wk

7 days = _______________ Wh/d   _______________ Wh/d 4 Sun Hours = ________________ W system     _______________ W system /.80 (derate factor 20%)  

= _______________ W system size         Energy Efficiency recommendations:

Page 209: PV 101 Basic Photovoltaics

Energy Efficiency

Energy Efficiency =

Doing the same work …

with less energy

Page 210: PV 101 Basic Photovoltaics

Energy Efficiency Cost-Effectiveness of Efficiency

(4) 25 Watt PV panels (1) 100 Watt

Incandescent bulb

Page 211: PV 101 Basic Photovoltaics

Energy Efficiency

Cost-Effectiveness of Efficiency

(1) 25 Watt PV Panel

(1) 25 Watt CFL (100 W Equivalent)

Page 212: PV 101 Basic Photovoltaics

Energy Efficiency

Cost-Effectiveness of Efficiency

EQUAL LUMENS (light output)

100 Watt Incandescent 25 Watt CFL

4 - 25 W PV panels 1 - 25 W PV panel 4 X $150 = $600 1 X $150 = $150 1 – 100 W bulb = $0.25 1 CF bulb = $5 Total: $600.25 Total: $155.00

Page 213: PV 101 Basic Photovoltaics

Energy Efficiency

Cost-Effectiveness of Efficiency

(2) Refrigerators - one old, one new Both 18 cubic ft

Old 3.6 kWh/day X $0.11/kWh = $0.40/day X 365 = $146/ year New 1.3 kWh/day X $0.11/kWh = $0.14/day X 365 = $ 51.10/year

Page 214: PV 101 Basic Photovoltaics

Energy Efficiency

Cost-Effectiveness of Efficiency

Refrigerator scenario - PV System Size

Old 3.6 kWh/day X $0.11/kWh = $0.40/day X 365 = $146/ year 3600 Wh/day / 4 SunHrs = 900 W X $10/W = $9000 PV system New 1.3 kWh/day X $0.11/kWh = $0.14/day X 365 = $ 51.10/ year 1300 Wh/day / 4 SunHrs = 325 W X $10/W = $3250 PV system

Page 215: PV 101 Basic Photovoltaics

Energy Efficiency

Cost-Effectiveness of Efficiency

Every $1 spent on energy efficiency

can reduce system cost by $3 - $5!

Page 216: PV 101 Basic Photovoltaics

Energy Efficiency

Cost-Effectiveness of Efficiency

Opportunities for Energy Efficiency

• Water heating - 9% to 50% of load (varies greatly) • Refrigeration - typically 13% of load) • Lighting - 9% of load

Page 217: PV 101 Basic Photovoltaics

Energy Efficiency

Phantom Loads

Appliances that are turned off, but are not really off!

Page 218: PV 101 Basic Photovoltaics

Energy Efficiency

Phantom Loads

Computer TV Stereo DVD player CD player Cell phone chargers

Page 219: PV 101 Basic Photovoltaics

Energy Efficiency

Stereo 3 w DVD player 2 w CD player 2 w TV 3 w Computer 21 w Cell phone charger 1 w

32 w

Phantom Loads

Page 220: PV 101 Basic Photovoltaics

Energy Efficiency

Phantom Loads

32 W x 24 hrs/day = 768 Watt hours/day 0.768 kWh x 365 days = 280 kWh/year

280 kWh/yr x 30 people = 8,400 kWh!

Enough to power one WI home for 8 months

… free!

Page 221: PV 101 Basic Photovoltaics

Energy Efficiency

Fuel Switching

Running an appliance with a cheaper fuel source

Page 222: PV 101 Basic Photovoltaics

Energy Efficiency

Fuel Switching • Electric water heater to gas or gas and solar water • Electric stove to gas stove • Electric space heating to gas and/or wood heat • Electric dryer to gas dryer or clothes line

Page 223: PV 101 Basic Photovoltaics

System Sizing Basics

• Add 12 months electrical bills = kWh/year • Divide by 365 days = kWh/day • kWh/day divided by solar resource for location = system size in kW • Divide system size by .80 (derate factor) = system size corrected

for inefficiencies

Page 224: PV 101 Basic Photovoltaics

System Sizing Basics Example

Traverse City, MI sun resource = 4.0 Sun Hours/day Annual load = 5,876 kWh/year 5,876 kWh/year 365  = 16 kWh/day

16 kWh/day 4.0 sun hours/day = 4 kW system 4 kW .80 derate factor = 5.0 kW system

or 5,000 Watt system

Page 225: PV 101 Basic Photovoltaics

System Sizing Basics Example

Custer WI sun resource = 4.5 Sun Hours/day (use 4) Annual load = 5,876 kWh/year 5,876 kWh/year 365  = 16 kWh/day

16 kWh/day 4.0 sun hours/day = 4 kW system 4 kW .80 derate factor = 5.0 kW system

or 5,000 Watt system

Page 226: PV 101 Basic Photovoltaics

Estimated Residential Install Costs

Utility Intertied Battery Free, Fixed Mount $7-10/W Utility Intertied Battery Free, Tracking $8-12/W Utility Intertied with Batteries, Fixed $9-12 Utility Intertied with Batteries, Tracking $10-13/W Stand Alone $12-16/W * Summer 2010, FOE

Page 227: PV 101 Basic Photovoltaics

Estimated Residential Install Costs

Utility Intertied Battery Free, Fixed Mount $7-10/W Utility Intertied Battery Free, Tracking $8-12/W Utility Intertied with Batteries, Fixed $9-12 Utility Intertied with Batteries, Tracking $10-13/W Stand Alone $12-16/W

Page 228: PV 101 Basic Photovoltaics

Estimated Residential Install Costs

Utility Intertied Battery Free, Fixed Mount $4-6/W Utility Intertied Battery Free, Tracking $5-8/W Utility Intertied with Batteries, Fixed $6-10/W Utility Intertied with Batteries, Tracking $7-12/W Stand Alone $8-12/W

Page 229: PV 101 Basic Photovoltaics

System Pricing Basics

System Size = 5,000 W Utility Intertied Battery Free, Fixed Mount $7-10/W Utility Intertied Battery Free, Tracking $8-12/W Utility Intertied with Batteries, Fixed $9-12 Utility Intertied with Batteries, Tracking $10-13/W Stand Alone $12-16/W System size X $/W install cost Ex. 6,000 W X $10/W - $50,000 installed

Page 230: PV 101 Basic Photovoltaics

System Pricing Basics

System Size = 5,000 W Utility Intertied Battery Free, Fixed Mount $4-6/W Utility Intertied Battery Free, Tracking $5-8/W Bimodal, Fixed $6-10/W Bimodal, Tracking $7-12/W Stand Alone $12-16/W System size X $/W install cost Ex. 5,000 W X $5/W - $25,000 installed

Page 231: PV 101 Basic Photovoltaics

PV Sizing - Exercise

Add 12 months of utility bills Jan 720 kWh Feb 550 Mar 540 Apr 327

May 390 Jun 357

Jul 363 Aug 402 Sep 560 Oct 446 Nov 623 Dec 598 Total: ???

Page 232: PV 101 Basic Photovoltaics

PV Sizing - Exercise

Add 12 months of utility bills Jan 720 kWh Feb 550 Mar 540 Apr 327

May 390 Jun 357

Jul 363 Aug 402 Sep 560 Oct 446 Nov 623 Dec 598 Total: 5,876 kWh/year