pyramid coding and subband coding - stanford university

18
Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 1 JPEG-2000 Joint Photographic Experts Group ISO/IEC JTC1/SC29/WG1 Still image compression standard Features Improved compression efficiency (vs. JPEG) Highly scalable embedded data streams Progressive lossy to lossless compression within a single data stream Arbitrarily crop images in the compressed domain Selectively enhance quality of spatial “regions of interest” Support for very large images JPEG-2000 Part I (minimum compliant decoder) international standard since December 2000.

Upload: others

Post on 12-Sep-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 1

JPEG-2000

Joint Photographic Experts Group ISO/IEC JTC1/SC29/WG1

Still image compression standard

Features

Improved compression efficiency (vs. JPEG)

Highly scalable embedded data streams

Progressive lossy to lossless compression within a single data stream

Arbitrarily crop images in the compressed domain

Selectively enhance quality of spatial “regions of interest”

Support for very large images

JPEG-2000 Part I (minimum compliant decoder) international standard

since December 2000.

Page 2: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 2

JPEG 2000 compression

Optional

tiling DWT

Embedded

deadzone

quantization

Bitplane

coding

R-D optimal

code-block

truncation Image

com-

ponent

bits

Subdivision of

images into

rectangles for

independent

coding

Optional

tiling

Reversible 5/3

or floating-point

9/7 Daubechies

wavelet.

DWT

Uniform scalar

quantization,

adjustable

deadzone

Embedded

deadzone

quantization

Embedded block codingwith optimal truncation

(EBCOT)

Bitplane

coding

R-D optimal

code-block

truncation

Page 3: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 3

Partitioning of image subbands into code-blocks

Embedded

code-block

bitstreams

Embedded

code-block

bitstreams

Page 4: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 4

Optimal bit-stream truncation

Find optimal truncation points zi through Lagrangian formulation

“Equal slope” condition for distortion-rate functions Di(Ri)

Feasible truncation points lie on convex hull

0 1 2

0 1 2

, , ,...

, , ,...blocks blocks

min.i i iz z z z z z

i i i z z zi i

J J D R

Di(Ri)

Ri

Page 5: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 5

Embedded deadzone uniform quantizers

Q0

Q1

Q2

x

8

4

2

x=0

4

2

Supported in JPEG-2000 with general

for quantization of wavelet coefficients.

Page 6: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 6

Bit-plane coding for embedded quantization

Sign bits

Magnitude

bit planes

MSB

LSB

Non-zero magnitude or negative sign bit

Zero magnitude or positive sign bit

-2 11 0 -23 49 3 -10

Page 7: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 7

Conditional coding of bit-planes

Encoding takes already encoded, more significant bit-planes

into account

“Significant” wavelet coefficient: magnitude was outside of

deadzone in a previous encoded bit-plane

Three “primitive” coding operations

Significance coding: coefficient not yet significant. Arithmetic coding with 9 coding contexts, based on significance of neighbors

in same band. Run mode.

Sign coding: coefficient just changed from insignificant to significant. Arithmetic coding with 5 coding contexts.

Magnitude refinement coding: coefficient is already significant.

Arithmetic coding with 3 coding contexts.

Adaptive coding: must maintain 18 probability models

Page 8: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 8

Significance/sign/magnitude refinement coding

Sign bits

Magnitude

bit planes

MSB

LSB

Magnitude refinement coding

Significance coding

-2 11 0 -23 49 3 -10

Sign coding

Page 9: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 9

Stripe-oriented scanning pattern

Stripe

Context

window

Page 10: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 10

Fractional bit-planes

Three passes for each bit-plane

Significance Propagation Pass

Magnitude Refinement Pass

Cleanup Pass

Generate additional feasible truncation points for each block

Di(Ri)

Ri

Page 11: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 11

Fractional bit-planes (cont.)

1. Significance Propagation Pass

Only encode coefficients

• that are insignificant

• possess significant neighbors (within 8-neighborhood, including those

just became significant in this pass)

2. Magnitude Refinement Pass

Encode all coefficient that were already significant in the previous

bit-plane

3. Cleanup Pass

Encode all remaining (insignificant) coefficients

Page 12: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 12

JPEG2000 compression results

Original Carol Image (512 x 512 Pixels, 24-Bit RGB, Size 786K)

Page 13: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 13

JPEG2000 compression results

75:1, 10.6 Kbyte

Page 14: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 14

JPEG2000 compression results

150:1, 5.3 Kbyte

Page 15: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 15

JPEG2000 compression results

300:1, 2.6 Kbyte

Page 16: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 16

Comparison JPEG vs. JPEG2000

Lenna, 256x256 RGB

Baseline JPEG: 4572 bytes Lenna, 256x256 RGB

JPEG-2000: 4572 bytes

Page 17: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 17

Comparison JPEG vs. JPEG2000

JPEG with optimized Huffman tables

8268 bytes JPEG2000

8192 bytes

Page 18: Pyramid coding and subband coding - Stanford University

Bernd Girod: EE398A Image and Video Compression JPEG-2000 no. 18

Reading

Taubman, Marcellin, Chapter 8, up to section 8.3.3

M. W. Marcellin, M. J. Gormish, A. Bilgin, M. P. Boliek,

“An Overview of JPEG-2000,” Proc. Data Compression

Conference, pp. 523-541, March 2000.

C. Christopoulos, A. Skodas, T. Ebrahimi, “The JPEG-2000

Still Image Coding System: An Overview,” IEEE Trans.

Consumer Electronics, vol. 46, no. 4, pp. 1103-1127, Nov.

2000.