pyroclastic eruptions and their deposits based on power point lectures by wendy bohrson

73
Pyroclastic eruptions Pyroclastic eruptions and their deposits and their deposits Based on power point lectures by Wendy Bohrson

Post on 21-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Pyroclastic eruptions and their Pyroclastic eruptions and their depositsdepositsBased on power point lectures by Wendy Bohrson

Page 2: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Introduction Introduction

Explosive volcanism involves transfer of fragmented volcanic material (+gases and lithics)from depth onto Earth’s surface.

Systems of transport and deposition distinguished for three majors types of pyroclastic deposits: fall, flow, surge.

Transport and deposition function of characteristics: particle trajectory, solids concentration, extent to which concentration fluctuates with time, presence/absence of cohesion.

Page 3: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Review of fragmentationReview of fragmentation

Rising magma can begin to fragment when bubble volume reaches 65-70 volume percent.

Fragmentation can occur because bubbles become over-pressured and burst

Can also occur because melt film between bubbles is so thin that they act as brittle materials. Thin films burst when stress exceeds their strength.

Page 4: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Review of fragmentationReview of fragmentation

When bubbles burst, the material changes from a mixture of bubbles in a continuous stream of melt to droplets of melt in a continuous stream of gas.

Changes drastically the viscosity and density of mixture.

Mixture accelerates up the conduit (can reach supersonic speeds)

Mixture of gas and particles that exits eruption conduit is called an eruption column.

Page 5: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Eruption ColumnEruption Column

Eruption column defined as:

Droplets of melt (molten) and quenched melt (glass particles)

Crystals

Country rock/Wallrock (lithic fragments)

All dispersed in a continuous gas phase

Page 6: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Eruption Column: General OverviewEruption Column: General Overview Mixture erupted out of conduit/vent/crater vertically or laterally

(sub-vertically) at velocities up to several hundred m/s.

Initially, density of mixture is greater than surrounding atmosphere.

As material is thrust upward, incorporates (mixes with) cooler, surrounding air into column.

Atmosphere heats up and the density of mixture becomes lower than surrounding atmosphere.

Eventually, mixture has same density as surrounding atmosphere/air.

Friction at outer boundaries (between air and column causes some gravitational fallout of particles).

Page 7: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Parts of the Eruption ColumnParts of the Eruption Column

Gas thrust region Convective ascent region Umbrella region

Page 8: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Parts of the Eruption Column: More DetailParts of the Eruption Column: More Detail

Gas Thrust/Jet Region Mixture of pyroclasts and gas jetted

102-103 of meters into atmosphere by initial acceleration

Nozzle velocity defined as maximum velocity to which pyroclasts+gas can be accelerated by expansion of magmatic gas.

100 m/s for Strombolian/Hawaiian to >600 m/s for Plinian

Nozzle velocity controlled by mainly by volatile content in magma, which controls explosive pressure ni fragmentation zone.

Jet/Gas thrust phase typically extends up to several km above vent; column width narrow.

Page 9: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Parts of the Eruption Column: More DetailParts of the Eruption Column: More Detail

Because gas thrust region is highly turbulent, cool surrounding air mixed into column.

Air is heated and resulting expansion decreases bulk density of mixture.

Transition occurs when bulk density less than that of surrounding atmosphere.

Forces driving motion dominated by buoyancy and mixture rises (hot air balloon).

Mixture rises as an convective eruption column or plume.

Width of column increases.

Convective Ascent Region

Page 10: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Parts of the Eruption Column: More DetailParts of the Eruption Column: More Detail

Convective Ascent Region

Convective part can rise 10s of km upward.

Vertical velocities of plume vary from 10-100 m/s.

Velocity function of source conditions.

Velocity maxima reached in core of plume.

At edges, particles encounter velocities that are insufficient to keep particles aloft.

Some fall back to surface (more in a minute on this topic).

Page 11: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Parts of the Eruption Column: More DetailParts of the Eruption Column: More Detail

Umbrella Region

Density of atmosphere decrease with height.

Thus convective part of plume will eventually reach a level of neutral buoyancy.

Buoyancy no longer the driving force: plume will start to move laterally at a level Hb.

Excess momentum will carry some particles higher. Top of plume is Ht.

Lateral movement forms the distinctive mushroom or umbrella-shaped region.

Page 12: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Transformation to Tephra FountainTransformation to Tephra Fountain

When jet does not incorporate enough air into the mixture to maintain buoyancy, rising jet will decelerate until height where velocity reaches zero.

Plume density in all (or part of) the column greater than atmosphere, particles will fall back to surface.

Reflects column collapse.

Jet transforms into tephra fountain.

Leads to formation of pyroclastic density currents.

Page 13: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Eruption Columns Eruption Columns and Plumesand Plumes

Page 14: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Rabaul, 1994Rabaul, 1994

On the morning of September 19, 1994, two volcanic cones on the opposite sides of the 3.8 mile (6 km) Rabaul caldera begun erupting with little warning.

This photo shows the large white billowing eruption plume is carried in a westerly direction by the weak prevailing winds.

At the base of the eruption column is a layer of yellow-brown ash being distributed by lower level winds.

Page 15: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Tongariro, 1975Tongariro, 1975

A vulcanian explosion from Ngauruhoe (Tongariro) volcano in New Zealand on February 19, 1975, ejects a dark, ash-laden cloud.

Large, meter-scale ejected blocks trailing streamers of ash can be seen in the eruption column.

Blocks up to 20 m across were projected hundreds of meters above the vent.

Page 16: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Another type of volcanic plumeAnother type of volcanic plume

Another type of volcanic plume forms in association with pyroclastic flows and surges, which are mixtures of hot particles and hot gases that are denser than surrounding atmosphere.

As flows travel away from source, sedimentation of particles from base of flow and heating of entrained air decreases bulk density.

These secondary or co-ignimbrite plumes generated from tops of flows by buoyant rise.

Allows plumes to have much larger areal distribution.

Page 17: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Formation of a co-ignimbrite plumeFormation of a co-ignimbrite plume

1980 Mt. St Helens good example of formation of a co-ignimbrite plume.

Pyroclastic flow moving at 100 m/s covered an area of 600 km2.

When flow decelerated, finer particles became buoyant because of heating of entrained air.

Secondary or co-ignimbrite plume ascended to 25 km above surface of Earth.

Page 18: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Formation of Co-Ignimbrite PlumeFormation of Co-Ignimbrite Plume

Pyroclastic flow heats up entrained air.

In addition, sedimentation occurs. Larger, denser particles deposited at base of flow.

Thus, because of both of these processes, concentration of particles and thus density of material decreases.

Eventually, density less than that of surrounding atmosphere.

Buoyant cloud/plume develops.

Page 19: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Formation of Co-Ignimbrite PlumeFormation of Co-Ignimbrite Plume

Co-ignimbrite plume lacks gas thrust/jet region.

Begins ascent with relatively low velocity.

Second, source area and radius tend to be much larger than those of the primary plume.

Will also develop an umbrella region.

Page 20: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Pyroclastic Flow and Co-Ignimbrite Pyroclastic Flow and Co-Ignimbrite Plume, Pinatubo, 1991Plume, Pinatubo, 1991

Page 21: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Makian, Indonesia, 1988Makian, Indonesia, 1988

A vigorous eruption column rises above Indonesia's Makian volcano in this July 31, 1988, view from neighboring Moti Island.

The six-day eruption began on July 29, producing eruption columns that reached 8-10 km altitude.

Pyroclastic flows on the 30th reached the coast of the island, whose 15,000 residents had been evacuated.

A flat-topped lava dome was extruded in the summit crater at the conclusion of the eruption.

Page 22: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Another type of volcanic plumeAnother type of volcanic plume

Another type of volcanic plume forms in association with pyroclastic flows and surges, which are mixtures of hot particles and hot gases that are denser than surrounding atmosphere.

As flows travel away from source, sedimentation of particles from base of flow and heating of entrained air decreases bulk density.

These secondary or co-ignimbrite plumes generated from tops of flows by buoyant rise.

Allows plumes to have much larger areal distribution.

Page 23: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Transport vs. Transport vs. Depositional SystemsDepositional Systems

Transport system: responsible for movement of the assemblage of fragmented material (including gas)

Depositional system: controls on the way in which the material comes to rest to form a deposit.

Page 24: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Transport SystemsTransport Systems

Two major classes identified in explosive eruptions.

Vertical plumes: dominant trajectory of motion is initially upward. These generate fall deposits via deposition from wind-driven clouds at elevations of several to 10s of km above Earth’s surface.

Laterally moving systems: dominant trajectory of motion is initially sideways. Generate surge and flow deposits from gravity-controlled, ground-hugging density currents (i.e., pyroclastic density currents).

Note that there are complications to this simple division-- For example, secondary/co-ignimbrite plumes.

Page 25: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Transport SystemsTransport Systems

Leads to three types of transport systems

Fall: high buoyant plume carries all but densest(largest) particles up to 10s of km high; particles are sedimented from plume. Dispersal controlled by wind direction.

Surge: ground-hugging relatively dilute density current with gradual downward increase in density. Not influenced by wind, but can gnerate a secondary plume.

Flow: ground-hugging concentrated (relatively dense) density current, often with accompanying secondary cloud.

Page 26: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Pyroclastic Density CurrentsPyroclastic Density Currents

For laterally moving systems, two end-member types of transport systems have been identified:

Dilute: referred to as pyroclastic surge.

Concentrated: referred to as pyroclastic flow.

Note that these represent a spectrum, with gradations between.

Page 27: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson
Page 28: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Gravity currentGravity currentIn fluid dynamics, a gravity current is a primarily horizontal flow in a gravitational field that is driven by a density difference. Typically, the density difference is small enough for the Boussinesq approximation to be valid.Gravity currents are typically of very low aspect ratio (that is, height over typical horizontal lengthscale). The pressure distribution is thus approximately hydrostatic, apart from near the leading edge (this may be seen using dimensional analysis). Thus gravity currents may be simulated by the shallow water equations, with special dispensation for the leading edge which behaves as a discontinuity.The leading edge of a gravity current is a region in which relatively large volumes of ambient fluid are displaced. Mixing is intense and head is lost. According to one paradigm, the leading edge of a gravity current 'controls' the flow behind it: it provides a boundary condition for the flow.The leading edge moves at a Froude number of about unity; estimates of the exact value vary between about 0.7 and 1.4.Gravity currents are capable of transporting material across large horizontal distances. For example, turbidity currents on the seafloor may carry material thousands of kilometres.Gravity currents occur at a variety of scales throughout nature. Examples include oceanic fronts, avalanches, seafloor turbidity currents, lahars, pyroclastic flows, and lava flows.

Page 29: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Pyroclastic flowsPyroclastic flows are a common and devastating result of are a common and devastating result of some some volcanic eruptions. They are fast moving fluidized bodies . They are fast moving fluidized bodies of hot gas, of hot gas, ash and rock (collectively known as and rock (collectively known as tephra) which ) which can travel away from the can travel away from the vent at up to 150 km/h. The gas is at up to 150 km/h. The gas is usually at a temperature of 100-800 degrees Celsius. The flows usually at a temperature of 100-800 degrees Celsius. The flows normally hug the ground and travel downhill under gravity, their normally hug the ground and travel downhill under gravity, their speed depending upon the gradient of the slope and the size of speed depending upon the gradient of the slope and the size of the flow.the flow.

Page 30: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Pyroclastic Flow:Pyroclastic Flow: High-speed avalanches of High-speed avalanches of hot ash, rock fragments, hot ash, rock fragments, and gas move down the and gas move down the sides of a volcano during sides of a volcano during explosive eruptions or explosive eruptions or when the steep edge of a when the steep edge of a dome breaks apart and dome breaks apart and collapses. These collapses. These pyroclastic flowspyroclastic flows, which , which can reach 1500 degrees F can reach 1500 degrees F and move at 100-150 and move at 100-150 miles per hour, are miles per hour, are capable of knocking down capable of knocking down and burning everything in and burning everything in their paths.their paths.

Page 31: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Pyroclastic Density Currents: Pyroclastic Density Currents: Concentrated Currents or FlowsConcentrated Currents or Flows

Has solids in concentrations of 10s of volume percent. Thus are higher density than surges.

Have a free surface, above which solids concentration decreases sharply.

Transport material by fluidization. Most flows considered laminar.

Velocities vary, buy typically 10s of m/s. Can be much faster. Velocities of up to several hundred m/s inferred based on heights of obstacles overcome by flows.

Page 32: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Pyroclastic Surge:Pyroclastic Surge: A more energetic and A more energetic and dilute mixture of searing gas and rock fragments is dilute mixture of searing gas and rock fragments is called a called a pyroclastic surgepyroclastic surge. Surges move easily up . Surges move easily up and over ridges; flows tend to follow valleysand over ridges; flows tend to follow valleys.

Pyroclastic Flow:Pyroclastic Flow: High-speed avalanches of High-speed avalanches of hot ash, rock fragments, and gas move down the hot ash, rock fragments, and gas move down the sides of a volcano during explosive eruptions or sides of a volcano during explosive eruptions or when the steep edge of a dome breaks apart and when the steep edge of a dome breaks apart and collapses. These collapses. These pyroclastic flowspyroclastic flows, which can , which can reach 1500 degrees F and move at 100-150 miles reach 1500 degrees F and move at 100-150 miles per hour, are capable of knocking down and burning per hour, are capable of knocking down and burning everything in their paths.everything in their paths.

Page 33: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Pyroclastic Density Currents: Dilute Pyroclastic Density Currents: Dilute Currents or SurgesCurrents or Surges

Contain less than 0.1-1.0% by volume of solids, even near ground surface. Thus are low density.

Are density-stratified, with highest particle concentration near ground surface.

Transport material primarily by turbulent suspension.

Transport systems modeled as one that loses particles by sedimentation. Depletes the system of mass. Eventually, system may become buoyant, in which case becomes a plume.

Velocities vary, buy typically 10s of m/s. Can be much faster.

Page 34: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

In basal m to 10s of m, surges show increase in density due to sedimentation.

Also show decrease in mean velocity due to increased ground friction (drag).

Deposits generated by sedimentation through basal zone.

Lower solids concentrations than flows.

Structural Differences between Surge and FlowStructural Differences between Surge and Flow

Page 35: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Much higher solids concentration than surge.

Particles concentrated in basal deposit m to 10s of meters.

Highest velocity in this region.

Rapid transition between high velocity, high concentration region and overriding cloud.

Deposition occurs both because of ground friction and also because the flow eventually comes to rest.

Structural Differences between Surge and FlowStructural Differences between Surge and Flow

Page 36: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Depositional SystemsDepositional Systems

Clasts in explosive eruptions have a period of transport, and yet, all particles eventually come to rest.

Deposition system concept that allows investigation of processes operating in final stages of movement; essentially the transition from mobile to immobile particles.

Page 37: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Controls on Depositional CharacteristicsControls on Depositional Characteristics

There are four fundamental controls on how deposition occurs.

Clast trajectory: vertical to horizontal--> controls whether deposit mantles surface, or has evidence of lateral depositional characteristics.

Concentration of particles: from low to high--> determines degree of sorting, scale of bedforms.

Presence/absence of cohesion. Cohesion will result in rapid and irreversible deposition. Increases slope angle of deposition as well.

Presence/absence of fluctuation of particle concentration with time: steady vs. unsteady--> single deposit or succession of deposits.

Page 38: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Particle trajectory: vertical yields mantling of topography; horizontal may lead to bedding

Particle concentration: low concentration can lead to good sorting (fall); high can lead to poor sorting (flow)

Particle cohesion: cohesive particles will preclude slumping, also allow deposit to be placed on steeper slopes.

Fluctuation in particle concentration: sustained yield uniformly graded deposit; non-sustained yield succession beds

Four Major Controls on Depositional ProcessesFour Major Controls on Depositional Processes

Page 39: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Fall: vertical trajectory, low concentration

Surge: lateral (horizontal) trajectory, low concentration (thus leads to lower density than flow)

Flow: lateral (horizontal) trajectory, high concentration (thus leads to higher density than surge)

Effect of Particle Concentration vs. Angle of Effect of Particle Concentration vs. Angle of Trajectory Trajectory

Page 40: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Fall: drape landscape, no cross beds or wave bedforms, well sorted, bedded, evidence for high temperatures (welding) absent

Surge: pinch and swell, basal scouring, cross bedding, (i.e., features that express lateral transport), good to poor sorting, sustained high temperatures rare.

Flow: thicken into or are confined in valleys because flow is gravity driven, show basal scouring but lack internal bedforms, poor sorting. Sustained high temperatures (welding) typical. High T indicative of efficient transport (little mixing with ambient air).

More on Fall vs. Surge vs. FlowMore on Fall vs. Surge vs. Flow

Page 41: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Surge to fall: gradation between the two, depending on wind.

Fall to flow: distinction between these two function of ability of material to trap gas. Falls accumulate too slowly to keep gas trapped.

Gas required to fluidize pyroclastic material. That is, trapped gas (which expands because it is hot) will support the weight of the particles. Behaves like a liquid.

Flows require sedimentation rates of > 1 m/s.

Spectra between Deposition MechanismsSpectra between Deposition Mechanisms

Page 42: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Surge to flow: controls not fully understood, but primary control is particle concentration.

Spectra between Deposition MechanismsSpectra between Deposition Mechanisms

Page 43: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

More on Particle CohesionMore on Particle Cohesion

Important in the low T environment: preferentially affect fines. Clumping inferred to occur in wet conditions (e.g., accretionary lapilli). Causes premature deposition of fines, which in turn causes deposits to be more poorly sorted.

Presence of water in low concentrations also increases cohesion, allowing fall and surge deposits to be deposited on surfaces with angles greater than dry angle of repose.

Water in high concentrations will promote soft-sediment deformation and slumping.

Page 44: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

More on Particle CohesionMore on Particle Cohesion

At high temperatures, near source, cohesion of hot clasts can results in formation of over-steepened features such as spatter cones and ramparts.

At a distance from source in pyroclastic flows, when material coalesces, deposit can retain momentum from transport. If deposited on slope, can flow back downhill under influence of gravity. Produces fountain fed lava flows and rheomorphic flow deposits.

Page 45: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

More on Role of Fluctuation in Particle More on Role of Fluctuation in Particle ConcentrationConcentration

Fluctuations in particle concentration, particularly in fall deposits yield different types of fall deposits (topic for the future).

Differences also evident in surge vs. flow. Surges are modeled to be more variable in transport and deposition systems, whereas flows are interpreted to be more steady-state.

Reflects differences in momentum and length scale of deposition: momentum in flows greater and beds are typically thicker.

Page 46: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Review of Ignimbrites Review of Ignimbrites

Standard ignimbrite flow unit comprises 3 layers:

Layer 1: deposit laid down at flow front during strong interaction with ambient air and ground surface

Layer 2: main deposit

Layer 3: deposit from overriding dilute cloud (co-ignimbrite cloud)

Page 47: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Layer 1Layer 1

Highly variable in character; suggests that this layer strongly influenced by local topography, etc.

Most common type is ground layer or lithic-rich layer, which is a layer enriched in heavy components like lithic fragments.

Interpretation is that lithics sedimented out of head of pyroclastic flow.

Can also sometimes find a basal surge layer. Interpreted to be the result of surge advancing at the head of the flow.

Page 48: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Layer 2Layer 2

Layer 2a: variably developed ash layer interpreted to form because of interaction with ground surface.

Layer 2b: normal grading of density particles, such as lithics. Larger lithics concentrated at bottom.

Reverse-grading at top because pumice are less dense than medium.

Also common are lapilli pipes, which are vertical pipes depleted in fines. They are gas escape structures. Fine particles escape with gas.

Page 49: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Layer 3Layer 3

Layer 3 is ash-cloud layer, which is layer deposited from secondary or co-ignimbrite cloud.

Page 50: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Flow unit vs. Cooling unit Flow unit vs. Cooling unit

Flow unit--individual units that represent distinct depositional events; may follow within minutes, hours, days, or longer

Cooling unit--a package of rock that cooled as a unit.

So an ignimbrite may be composed of a number of flow units, and one or more cooling units.

Page 51: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Welded Ignimbrites Welded Ignimbrites

Because ignimbrites contain lots of gases, and are at high T when deposited, they develop a number of textures/structures.

Include welding, devitrification, vapor-phase alteration.

Collectively called welded ignimbrites.

Page 52: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Welded Ignimbrites Welded Ignimbrites

Welding is cohesion, deformation, eventual coalescence of pyroclasts at high T under load stress.

Degree of welding determined by composition, post-emplacement T, cooling rate, load stresses.

Page 53: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Hand Sample Characteristics: Hand Sample Characteristics: Sintering, Compaction, RheomorphismSintering, Compaction, Rheomorphism

Sintering: cohesion of clasts across points of contact where load stresses are focused.

Compaction: flattening of pyroclasts, which leads to development of fiamme, eutaxitic texture.

Rheomorphism: flow as coherent liquid, post emplacement

Page 54: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Volcanic SinterVolcanic Sinter

Geysers rising from pools bounded by sinter terraces are among the spectacular thermal features of El Tatio in the northern Andes.

Page 55: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Unwelded Ignimbrite in OutcropUnwelded Ignimbrite in Outcrop

Unwelded: Note fluffy (inflated) pumiceUnwelded: Note fluffy (inflated) pumice

Page 56: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Unwelded Ignimbrite in Thin Section Unwelded Ignimbrite in Thin Section

Unwelded: Note cuspate forms are clearly evident; Unwelded: Note cuspate forms are clearly evident; delicate structures preserved delicate structures preserved

Page 57: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Moderately Welded Ignimbrite in Moderately Welded Ignimbrite in Thin SectionThin Section

Moderately welded: Ash (glass particles) appear Moderately welded: Ash (glass particles) appear more collapsed more collapsed

Page 58: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Densely Welded Ignimbrite in Densely Welded Ignimbrite in OutcropOutcrop

Densely welded: Note fiamme. Eutaxitic texture (question in Densely welded: Note fiamme. Eutaxitic texture (question in lab) lab)

Page 59: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Densely Welded Densely Welded in Thin Sectionin Thin Section

Densely welded: Ash Densely welded: Ash (glass particles) (glass particles)

collapsed and stretched collapsed and stretched

Page 60: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Hand Sample Characteristics: Hand Sample Characteristics: DevitrificationDevitrification

Devitrification: occurs when deposits cool slowly; represents process where glassy, amorphous structure replaced by fine to coarser grained minerals.

Results in the crystallization of microlites along the boundaries of the glass shards or within glass mass.

The mineral compositions produced are mainly cristobalite (a high-temperature form of quartz) and alkali feldspar.

Page 61: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

DevitrificationDevitrification

Incipient devitrificationIncipient devitrification Highly devitrifiedHighly devitrified

Page 62: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Hand Sample Characteristics: Hand Sample Characteristics: DevitrificationDevitrification

Devitrification may occur around scattered nuclei to form spherulites.

Spherulites delineated by radiating crystals of acicular cristobalite and feldpar.

These spherical aggregates are common features in both rhyolitic lavas and felsic ignimbrites.

Page 63: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

SpherulitesSpherulites

SpheruliteSpherulite Radial crystals withinRadial crystals within

Page 64: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Hand Sample Characteristics: Vapor-Hand Sample Characteristics: Vapor-

Phase AlterationPhase Alteration Vapor-phase alteration -- post-depositional process;

Crystallization takes place in open spaces, under the influence of a vapor phase.

Hot vapors, derived from magmatic gas-exsolution and from heated groundwater, are generally enriched in H2O, CO2, and SO2. They also have the ability to scavenge numerous additional elements from the volcanic debris, such as Si, Al, Na, and K.

Cooling of these element-rich phases may result in the crystallization of a variety of minerals into open cavities as the gases ascend upward through the flow.

Page 65: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Hand Sample Characteristics: Hand Sample Characteristics: Vapor-Phase AlterationVapor-Phase Alteration

The main phases of vapor-phase crystallization are tridymite, cristobalite, and alkali feldspar.

Lithophysae is a hollow, bubble-like structure composed of concentric shells vapor-phase minerals found within the cavities of pyroclastic flows.

The advanced product of vapor-phase crystallization is sillar, a whitish, well-cemented, coherent rock with little pore space. Sillar zones are often found in association with abundant fumarole pipes in degassed ignimbrites

Page 66: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Outcrop Characteristics: Fumarole PipesOutcrop Characteristics: Fumarole Pipes These dark, lithic-rich pipes are gas

segregation structures that provide direct routes for the degassing of the ignimbrite.

The escaping gases cause fragments of different sizes and densities to jostle apart from one another. The largest fragments in the pipes are ~20 cm in diameter.

Most of the finer material, however, has been blown out of the pipes (elutriated) by the escaping gas.

The ignimbrite was derived from an eruption 4.6 million years ago, associated with the Cerro Galan caldera.

Page 67: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Outcrop Characteristics: Compositional Outcrop Characteristics: Compositional

Zoning at Crater LakeZoning at Crater Lake Mazama ignimbrite: This pyroclastic

flow was generated by the caldera-forming eruption of Mt. Mazama about 6,845 years ago.

The ignimbrite shows magnificent compositional zonation. The pale (felsic) lower part has a rhyodacitic composition and the darker (mafic) upper part is andesitic.

This vertical zonation is inverse of the zonation in the magma chamber before eruption. The upper part of the chamber (which erupted first) was rhyodacitic and the lower part of the chamber (which erupted last) was andesitic.

Page 68: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Outcrop Characteristics: Fumarole Pipes at Outcrop Characteristics: Fumarole Pipes at

Crater LakeCrater Lake

The splendid pinnacles have been described as fossil fumarole pipes that are more resistant to erosion than the rest of the ignimbrite.

Page 69: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Review of Types of Pyroclastic Review of Types of Pyroclastic FlowsFlows

Terminology of pyroclastic flows and pyroclastic flow deposits can be complex and confusing. In general, there are two end-member types of flows:

(1) PUMICE FLOWS -- these contain vesiculated, low-density pumice derived from the collapse of an eruption column; produces unwelded to welded ignimbrite.

(2) NUÉE ARDENTES -- these contain dense lava fragments derived from the collapse of a growing

lava dome or flow; produces a block and ash flow.

Page 70: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Nuee Ardente and Block and Nuee Ardente and Block and Ash FlowAsh Flow

The French geologist Alfred Lacroix attached the name nuée ardente (glowing cloud) to the pyroclastic flow from Mt. Pelée that destroyed the city of St. Pierre in 1902.

The flow was generated from the explosive collapse of a growing lava dome at the summit of the volcano, which then swept down on the city.

Thus, nuée ardente eruptions are often called Peléen eruptions.

Page 71: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Sequence of EventsSequence of Events Mt. Unzen nuée ardentes -- the

sequence of events associated with the 1991-95 nuée ardente eruptions from Mt. Unzen, Japan.

Collapse of a growing lava dome generates the nuée ardente.

Within seconds a faster-moving cloud of smaller ash-sized fragments (the ash-cloud surge) forms above and in front of the nuée ardente.

In some cases, dome collapse is attributed to explosive eruption at the summit crater. Explosive collapse may clear the throat of the volcano, thus generating vertical eruption columns

Eruption can also be initiated by dome collapse (gravitational).

Page 72: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

Nuee Ardente vs. Pumice FlowNuee Ardente vs. Pumice Flow

Nuée ardente deposits are composed of dense, non-vesiculated, blocky fragments derived from the collapsed lava dome.

They therefore differ significantly from the highly vesiculated ignimbrites which are derived from eruption column collapse.

Nuée ardente deposits contain blocks in a fine-grained matrix of ash. The deposits, therefore, are called block-and-ash deposits. They are denser than ignimbrites, and typically are less extensive.

Page 73: Pyroclastic eruptions and their deposits Based on power point lectures by Wendy Bohrson

1902 Mt. Pelee, Martinique1902 Mt. Pelee, Martinique The village of St. Pierre on the island of

Martinique was destroyed by a pyroclastic flow similar to the one shown here.

This photo was taken a few months after the destruction of St. Pierre. Pyroclastic flows had not been previously described by volcanologists.

This type of pyroclastic flow is called a nuée ardente, composed of hot, incandescent solid particles derived from the collapse of a lava dome.

Other types of pyroclastic flows, derived from collapse of the eruptive column, are pumice bearing, and their deposits are called ignimbrites

. Photo by Lacroix, 1902.