q913 re1 w3 lec 10

46
Reservoir Engineering 1 Course ( 1 st Ed.)

Upload: hossein-alaminia

Post on 13-Jan-2015

205 views

Category:

Education


4 download

DESCRIPTION

 

TRANSCRIPT

Page 2: Q913 re1 w3 lec 10

1. Diffusivity EquationA. Solutions of Diffusivity Equation

a. Ei-Function Solution

b. pD Solution

c. Analytical Solution

Page 3: Q913 re1 w3 lec 10

1. USS(LT) Regime for Radial flow of SC Fluids: Finite-Radial Reservoir

2. Relation between pD and Ei

3. USS Regime for Radial Flow of C Fluids A. (Exact Method)

B. (P2 Approximation Method)

C. (P Approximation Method)

4. PSS regime Flow Constant

Page 4: Q913 re1 w3 lec 10
Page 5: Q913 re1 w3 lec 10

Finite-Radial Reservoir

The arrival of the pressure disturbance at the well drainage boundary marks the end of the transient flow period and the beginning of the semi (pseudo)-steady state. During this flow state, the reservoir boundaries and the

shape of the drainage area influence the wellbore pressure response as well as the behavior of the pressure distribution throughout the reservoir.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant5

Page 6: Q913 re1 w3 lec 10

Late-Transient State

Intuitively, one should not expect the change from the transient to the semi-steady state in this bounded (finite) system to occur instantaneously. There is a short period of time that separates the

transient state from the semi-steady state that is called late-transient state.

Due to its complexity and short duration, the late transient flow is not used in practical well test analysis.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant6

Page 7: Q913 re1 w3 lec 10

pD for a Finite Radial System

For a finite radial system, the pD-function is a function of both the dimensionless time and radius, or:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant7

Page 8: Q913 re1 w3 lec 10

pD vs. tD for Finite Radial System

Table presents pD as a function of tD for 1.5 < reD < 10.

It should be pointed out that Van Everdingen and Hurst principally applied the pD function solution to model the performance of water influx into oil reservoirs. Thus, the authors’ wellbore

radius rw was in this case the external radius of the reservoir and the re was essentially the external boundary radius of the aquifer.

Therefore, the range of the reD values in Table is practical for this application.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant8

Page 9: Q913 re1 w3 lec 10

pD Calculation

Chatas (1953) proposed the following mathematical expression for calculating pD:

A special case of above Equation arises when (reD) ^2>> 1, then:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant9

Page 10: Q913 re1 w3 lec 10

Using the pD-Function in Pwf DeterminationThe computational procedure of using the pD-function

in determining the bottom-hole flowing pressure changing the transient flow period is summarized in the following steps:Step 1. Calculate the dimensionless time tD

Step 2. Calculate the dimensionless radius reD

Step 3. Using the calculated values of tD and reD, determine the corresponding pressure function pD from the appropriate table or equation.Step 4. Solve for the pressure at the desired radius, i.e.,

rw

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant10

Page 11: Q913 re1 w3 lec 10
Page 12: Q913 re1 w3 lec 10

pD-Function vs. Ei-Function Technique

The solution as given by the pD-function technique is identical to that of the Ei-function approach.

The main difference between the two formulations is that the pD-function can be used only to calculate the pressure at radius r when the flow rate Q is constant and known.

In that case, the pD-function application is essentially restricted to the wellbore radius because the rate is usually known.

On the other hand, the Ei-function approach can be used to calculate the pressure at any radius in the reservoir by using the well flow rate Q.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant12

Page 13: Q913 re1 w3 lec 10

pD Application

In transient flow testing, we normally record the bottom-hole flowing pressure as a function of time. Therefore, the dimensionless pressure drop technique

can be used to determine one or more of the reservoir properties, e.g., k or kh.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant13

Page 14: Q913 re1 w3 lec 10

Relation between pD & Ei for Td>100

It should be pointed out that, for an infinite-acting reservoir with tD > 100,

the pD-function is related to the Ei-function by the following relation:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant14

Page 15: Q913 re1 w3 lec 10
Page 16: Q913 re1 w3 lec 10

Diffusivity Equation

Gas viscosity and density vary significantly with pressure and therefore the assumptions of diffusivity equation are not

satisfied for gas systems, i.e., compressible fluids.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant16

Page 17: Q913 re1 w3 lec 10

Diffusivity Equation Calculation: USS Regime for Radial flow of C Fluids In order to develop the proper mathematical

function for describing the flow of compressible fluids in the reservoir:

Combining the above two basic gas equations with the other equation gives:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant17

Page 18: Q913 re1 w3 lec 10

Using M (P) for Radial Equation for Compressible FluidsAl-Hussainy, Ramey, and Crawford (1966) linearize

the above basic flow equation by introducing the real gas potential m (p).

Combining above equation with below yields the radial equation for compressible fluids:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant18

Page 19: Q913 re1 w3 lec 10

Exact Solution of the Equation for Compressible FluidsThe radial diffusivity equation for compressible

fluids relates the real gas pseudopressure (real gas potential) to the time t and the radius r.

Al-Hussainy, Ramey, and Crawford (1966) pointed out that in gas well testing analysis, the constant-rate solution has more practical applications than that provided by the constant pressure solution. The authors provided the exact solution to the Equation

that is commonly referred to as the m (p)-solution method.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant19

Page 20: Q913 re1 w3 lec 10

Solution Forms of the Equation for Compressible FluidsThere are also two other solutions that

approximate the exact solution.

In general, there are three forms of the mathematical solution to the diffusivity equation:The m (p)-Solution Method (Exact Solution)

The Pressure-Squared Method (p2-Approximation Method)

The Pressure Method (p-Approximation Method)

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant20

Page 21: Q913 re1 w3 lec 10

The M (P)-Solution Method (Exact Solution)

Imposing the constant-rate condition as one of the boundary conditions required to solve above Equation, Al-Hussainy, et al. (1966) proposed the following exact solution to the diffusivity equation:

Where pwf = bottom-hole flowing

pressure, psipe = initial reservoir pressureQg = gas flow rate, Mscf/day t = time, hrk = permeability, mdT = reservoir temperaturerw = wellbore radius, fth = thickness, ftμi = gas viscosity at the initial

pressure, cpcti = total compressibility

coefficient at pi, psi−1φ = porosity

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant21

Page 22: Q913 re1 w3 lec 10

The M (P)-Solution Method in Terms of the tDThe m (p)-Solution Equation can be written

equivalently in terms of the dimensionless time tD as:

The dimensionless time is defined previously as:

The parameter γ is called Euler’s constant and given by:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant22

Page 23: Q913 re1 w3 lec 10
Page 24: Q913 re1 w3 lec 10
Page 25: Q913 re1 w3 lec 10

Dimensionless Real Gas Pseudopressure DropThe solution to the diffusivity equation as given by

(p)-Solution Method expresses the bottom-hole real gas pseudopressure as a function of the transient flow time t.

The solution as expressed in terms of m (p) is recommended mathematical expression for performing gas-well pressure analysis due to its applicability in all pressure ranges.

The radial gas diffusivity equation can be expressed in a dimensionless form in terms of the dimensionless real gas pseudopressure drop ψD.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant25

Page 26: Q913 re1 w3 lec 10

Solution of Dimensionless Equation

The solution to the dimensionless equation is given by:

The dimensionless pseudopressure drop ψD can be determined as a function of tD by using the appropriate expressions.

When tD > 100, the ψD can be calculated by:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant26

Page 27: Q913 re1 w3 lec 10

The Pressure-Squared Method (P2-Approximation Method)The first approximation to the exact solution is to

remove the pressure- dependent term (μz) outside the integral that defines m (pwf) and m (pi) to give:

The bars over μ and z represent the values of the gas viscosity and deviation factor as evaluated at the average pressure p–. This average pressure is given by:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant27

Page 28: Q913 re1 w3 lec 10

Converting M (P)-Solution Method to P2-ApproximationCombining Equations:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant28

Page 29: Q913 re1 w3 lec 10

P2-Approximation Assumptions

The Pressure-Squared Method solution forms indicate that the product (μz) is assumed constant at the average pressure p–. This effectively limits the applicability of the p2-method

to reservoir pressures < 2000.

It should be pointed out that when the p2-method is used to determine pwf it is perhaps sufficient to set μ–z– = μi z.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant29

Page 30: Q913 re1 w3 lec 10
Page 31: Q913 re1 w3 lec 10

The Pressure Method (P-Approximation Method)The second method of approximation to the exact

solution of the radial flow of gases is to treat the gas as a pseudoliquid.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant31

Page 32: Q913 re1 w3 lec 10

The Pressure Method Equation

Fetkovich (1973) suggested that at high pressures (p > 3000), 1/μBg is nearly constant as shown schematically in Figure. Imposing Fetkovich’s condition gives:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant32

Page 33: Q913 re1 w3 lec 10

Converting M (P)-Solution Method to P-ApproximationCombining Equations:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant33

Page 34: Q913 re1 w3 lec 10

Average Pressure in P-Approximation MethodIt should be noted that the gas properties, i.e., μ,

Bg, and ct, are evaluated at pressure p– as defined below:

Again, this method is only limited to applications above 3000 psi. When solving for pwf, it might be sufficient to evaluate

the gas properties at pi.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant34

Page 35: Q913 re1 w3 lec 10
Page 36: Q913 re1 w3 lec 10

Flash Back: USS

In the unsteady-state flow cases discussed previously, it was assumed that a well is located in a very large reservoir and producing at a constant flow rate. This rate creates a pressure disturbance in the reservoir

that travels throughout this infinite-size reservoir.

During this transient flow period, reservoir boundaries have no effect on the pressure behavior of the well.

Obviously, the time period where this assumption can be imposed is often very short in length.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant36

Page 37: Q913 re1 w3 lec 10

Pseudosteady (Semisteady)-State Flow RegimeAs soon as the pressure disturbance reaches all

drainage boundaries, it ends the transient (unsteady-state) flow regime.

A different flow regime begins that is called pseudosteady (semisteady)-state flow.

It is necessary at this point to impose different boundary conditions on the diffusivity equation and derive an appropriate solution to this flow regime.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant37

Page 38: Q913 re1 w3 lec 10

Semisteady-State Flow Regime

Figure shows a well in radial system that is producing at a constant rate for a long enough period that eventually affects the entire drainage area.

During this semisteady-state flow, the change in pressure with time becomes the same throughout the drainage area.

Section B shows that the pressure distributions become paralleled at successive time periods.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant38

Page 39: Q913 re1 w3 lec 10

PSS Constant

The important PSS condition can be expressed as:

The constant referred to in the above equation can be obtained from a simple material balance using the definition of the compressibility, thus:

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant39

Page 40: Q913 re1 w3 lec 10

Pressure Decline Rate

Expressing the pressure decline rate dp/dt in the above relation in psi/hr gives:

Where q = flow rate, bbl/day

Qo = flow rate, STB/day

dp/dt = pressure decline rate, psi/hr

V = pore volume, bbl

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant40

Page 41: Q913 re1 w3 lec 10

Pressure Decline Rate for Radial Drainage SystemFor a radial drainage system, the pore volume is

given by:

Where A = drainage area, ft2

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant41

Page 42: Q913 re1 w3 lec 10

Characteristics of the Pressure Behavior during PSSExamination reveals the following important

characteristics of the behavior of the pressure decline rate dp/dt during the semisteady-state flow:The reservoir pressure declines at a higher rate with an

increase in the fluids production rate

The reservoir pressure declines at a slower rate for reservoirs with higher total compressibility coefficients

The reservoir pressure declines at a lower rate for reservoirs with larger pore volumes

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant42

Page 43: Q913 re1 w3 lec 10

Semisteady-State Condition

Matthews, Brons, and Hazebroek (1954) pointed out that once the reservoir is producing under the semisteady-state condition, Each well will drain from within its own no-flow

boundary independently of the other wells.

For this condition to prevail: The pressure decline rate dp/dt must be approximately

constant throughout the entire reservoir,

Otherwise, flow would occur across the boundaries causing a readjustment in their positions.

2013 H. AlamiNiaReservoir Engineering 1 Course: USS Regime for Radial Flow of SC & C fluids and PSS

Constant43

Page 44: Q913 re1 w3 lec 10

1. Ahmed, T. (2006). Reservoir engineering handbook (Gulf Professional Publishing). Ch6

Page 45: Q913 re1 w3 lec 10

1. PSSA. Average Reservoir Pressure

B. PSS regime for Radial Flow of SC Fluids

C. Effect of Well Location within the Drainage Area

D. PSS Regime for Radial Flow of C Fluids

2. Skin Concept

3. Using S for Radial Flow in Flow Equations

Page 46: Q913 re1 w3 lec 10