qed- project

43
Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik Compton-scattering of the cosmic background radiation off a ultrarelativsitic cosmic proton and pair production by a (back-scattered) photon Manfred Hanke, August 2005: QED- Project (guided by Prof. A. Schäfe

Upload: winter

Post on 09-Jan-2016

38 views

Category:

Documents


3 download

DESCRIPTION

QED- Project. Manfred Hanke, August 2005:. (guided by Prof. A. Schäfer). Compton- scattering of the cosmic background radiation off a ultrarelativsitic cosmic proton. and pair production by a (back-scattered) photon. Contents of this talk:. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Compton-scatteringof the cosmic background radiation off a ultrarelativsitic cosmic proton

andpair production

by a (back-scattered) photon

Manfred Hanke, August 2005:QED-Project (guided by Prof. A. Schäfer)

Page 2: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

0. Introduction- Cosmic background radiation- Cosmic rays- Compton-scattering

1. Energy-loss of a cosmic proton due to Compton-scattering- Cross-section- Kinematics- Differential probabilities- Mean energy-loss- Result

2. Mean free path of a back-scattered photon- Cross-section- Differential probabilities and mean free path- Result

3. Summary

Contents of this talk:

Page 3: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Cosmic background radiation

- predicted by G. Gamow and R. Alpher in the 1940s

- discovered by A. Penzias and R. W. Wilson in 1964 (Nobelprize in 1978)

- follows Planck‘s formula for black-body-radiation with T = 2,725 K:

Page 4: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Cosmic background radiation

- predicted by G. Gamow and R. Alpher in the 1940s

- discovered by A. Penzias and R. W. Wilson in 1964 (Nobelprize in 1978)

- follows Planck‘s formula for black-body-radiation with T = 2,725 K:

Page 5: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Cosmic rays

- high-energy particles (up to 1020 eV)

- mostly (97%) nucleons, especially protons, -particles

- discovered in 1912 by V. Hess (Nobelprize 1936)

Page 6: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Fluxes of Cosmic Rays

(1 particle per m²·s)

Knee(1 particle per m²·year)

(1 particle per km²·year)Ankle

Flux

Energy

Page 7: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Cosmic rays

- high-energy particles (up to 1020 eV)

- mostly (97%) nucleons, especially protons, -particles

- origin: solar eruptions, supernovae, cosmic jets (from black holes / pulsars), ..., ?

- Nucleons with energies higher than 5·1019 eV loose their energy by the GZK-effect: (Greisen-Zatsepin-Kuzmin)

+ p + N + What is the energy-loss through Compton-scattering?

- discovered in 1912 by V. Hess (Nobelprize 1936)

Page 8: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

QED -Compton-scattering

e + e +

(Klein-Nishina)

Easy calculation of the cross-section in the Dirac-theory:

How to calculate Compton-scattering off a proton?

Page 9: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

0. Introduction- Cosmic background radiation- Cosmic rays- Compton-scattering

1. Energy-loss of a cosmic proton due to Compton-scattering- Cross-section- Kinematics- Differential probabilities- Mean energy-loss- Result

2. Mean free path of a back-scattered photon- Cross-section- Differential probabilities and mean free path- Result

3. Summary

Contents of this talk:

Page 10: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

The cross-sectionTo calculate the energy-loss through Compton-scattering,one needs...

for Compton-scattering off a proton

, withone finds:

In Hildebrandt, Griesshammer, Hemmert, Pasquini: “Signatures of Chiral Dynamics in Low Energy Compton Scattering off the Nucleon“ (nucl-th/0307070)

the Ai‘s defined as page-long integrals over two Feynman parameters (!)

Page 11: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

,forexample,is givenby:

A1

Page 12: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Where do these expressions come from? EFT (Chiral Effective Field Theory)

„The Heavy Baryon Chiral Perturbation Theory only involves explicit πN degrees of freedom.“

Page 13: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Where do these expressions come from? EFT (Chiral Effective Field Theory)

„The Heavy Baryon Chiral Perturbation Theory only involves explicit πN degrees of freedom, whereas the Small Scale Expansion formalism includes explicit spin 3/2 nucleon resonance degrees of freedom.“

Page 14: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Where do these expressions come from? EFT (Chiral Effective Field Theory)

„The Heavy Baryon Chiral Perturbation Theory only involves explicit πN degrees of freedom, whereas the Small Scale Expansion formalism includes explicit spin 3/2 nucleon resonance degrees of freedom (and within that – in my opinion – very exotic couplings, like N or N N, for which the parameters have been fitted from experimental cross section data).“

Page 15: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Here, the following abbreviations and constants are used:

for

> 0 - m 130

MeV,the values get imaginarydue to the resonance,and zero-values cause numerical divergenciesby the denominators!

Problem:

Page 16: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

numericalresults

for < 130 MeV

20 nbarn

The cross-section

Page 17: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

- for the energy-loss of the proton:

, z := cos (proton, scattered photon)cm

To calculate the energy-loss through Compton-scattering,one needs...

In the relativistic limit, one gets

- for the photon-energy in the center-of-mass-frame:

Here isk := energy of the cosmic background photon, := cos (proton, photon)lab

Kinematics

Page 18: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Now, one can calculate...

k := energy of the cosmic background photon, := cos (proton, photon)lab , z := cos (proton, scattered photon)c

Differential probabilities

Page 19: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

one can look at the spectrum of interacting photons:

Now, as one has calculated

the differential probability

Page 20: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Do you see any differenceto the Planck-spectrum?

(Ep = 1019 eV)Spectrum of interacting photons

Page 21: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Now, as one has calculated

the differential probability,

one can look at the

For the numerical simulation,the -function is realized by a histogram.

spectrum of energy-loss:

Page 22: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Spectrum of energy-loss(Ep = 1019 eV)

Page 23: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

One can rewrite the -function and perform the integral over z

to get an analytic expression for

that is only an integral over k and , which can more easily be numerically determined.

Spectrum of energy-loss

Page 24: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Spectrum of energy-loss(Ep = 1019 eV)

Page 25: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

The mean energy-loss

5.3 MeV / lyfor proton withEp = 1019 eV

~ Ep2

Page 26: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Result- The low energy-loss is due to the small cross-section for Compton-scattering.

1. Energy-loss of a cosmic proton

- A mean energy-loss of 5.3 MeV / ly for 1019 eV- protons corresponds to a mean free path of 1.9 · 1012 ly. (The mean distance between galaxies is of order 106 ly.)

- Compton-scattering of the cosmic background radiation off such a ultra-high-energy cosmic proton therefore does not lead to a noticeable decceleration of cosmic rays.

The result is, that there is no result.(what concerns the decceleration of cosmic protons)

Page 27: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

But:The proton‘s energy-loss (up to 1018 eV for Ep = 1019 eV)is added to the photon‘s energy. (This is known as Compton-back-scattering / inverse Compton-scattering,which is one way to produce ultra-high-energy cosmic -rays.)

What happens with these high-energetic photons?

e+ / e– - pair production from single photons is not allowed,but they can interact with the cosmic background radiation.

2. Mean free path of a back-scattered photon

Page 28: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

0. Introduction- Cosmic background radiation- Cosmic rays- Compton-scattering

1. Energy-loss of a cosmic proton due to Compton-scattering- Cross-section- Kinematics- Differential probabilities- Mean energy-loss- Result

2. Mean free path of a back-scattered photon- Cross-section- Differential probabilities and mean free path- Result

3. Summary

Contents of this talk:

Page 29: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

The total cross-sectionfor e+ / e– - pair production from two photons

(Breit-Wheeler)

It is .

As a result from kinematics:

,

Page 30: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

The total cross-section

Page 31: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Differential probabilities

k0 = 3.21 · 109 MeV

kmax(CMB) kmax()

maximum

Page 32: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Differential probabilities

k0 = 5 · 107 MeV

kmax(CMB) < kmax()

suppression by the exp-factor

Page 33: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Differential probabilities

k0 = 1011 MeV

kmax() < kmax(CMB)

suppression by the k²-factor

Page 34: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

rapid decrease of probabilityfor k0 < 5 · 108 MeV

Mean free path

dW/dL(k0 = 109 MeV) = 2.52 · 10-5/ly

dW/dL(k0 = 108 MeV) = 2.28 · 10-9/ly

dW/dL(k0 = 107 MeV) = 1.60 · 10-54/ly

Page 35: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Mean free path

(slow) decrease of probabilityfor k0 > 1011 MeVdW/dL(k0 = 1010 MeV) = 3.0 · 10-5/ly

dW/dL(k0 = 1011 MeV) = 9.4 · 10-6/ly

dW/dL(k0 = 1012 MeV) = 2.0 · 10-6/ly

Page 36: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Mean free path

minimal probabilityat k0 = 3.21 · 109 MeVdW/dL = 3.8 · 10-5/ly

maximal mean free path<L> = 26 · 103 ly

Page 37: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Result2. Mean free path of a back-scattered photon

The universe should be almost transparent for very-high-energy -rays with k0 < 1014 eV(at least what concerns e+/e–-pair production)– the mean free paths are billions of lightyears!

Photons with ultra-high energies 2·1014 eV < k0 < 1019 eVshould interact with the cosmic background radiationand create e+/e–-pairs within less than 3 million ly,what is approximately the mean distance of galaxies.There should be no ultra-high-energy extragalactic -rays!(Back-scattered photons with these energies can‘t be observed.)

Page 38: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

0. Introduction- Cosmic background radiation- Cosmic rays- Compton-scattering

1. Energy-loss of a cosmic proton due to Compton-scattering- Cross-section- Kinematics- Differential probabilities- Mean energy-loss- Result

2. Mean free path of a back-scattered photon- Cross-section- Differential probabilities and mean free path- Result

Contents of this talk:

3. Summary

Page 39: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

from EFT: 20 nbarn

Contents of this talk:0. Introduction

- Cosmic background radiation- Cosmic rays- Compton-scattering

1. Energy-loss of a cosmic proton due to Compton-scattering- Cross-section- Kinematics- Differential probabilities- Mean energy-loss- Result

2. Mean free path of a back-scattered photon- Cross-section- Differential probabilities and mean free path- Result

3. Summary

: spectrum of energy-loss

Page 40: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Spectrum of a protons energy-loss due to Compton-scattering

Page 41: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Contents of this talk:0. Introduction

- Cosmic background radiation- Cosmic rays- Compton-scattering

1. Energy-loss of a cosmic proton due to Compton-scattering- Cross-section from EFT: 20 nbarn - Kinematics- Differential probabilities: spectrum of energy-loss- Mean energy-loss

- Result2. Mean free path of a back-scattered photon

- Cross-section- Differential probabilities and mean free path- Result

3. Summary

: ~ Ep2, but only 5.3 MeV / ly for Ep = 1019 eV

Page 42: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Contents of this talk:0. Introduction

- Cosmic background radiation- Cosmic rays- Compton-scattering

1. Energy-loss of a cosmic proton due to Compton-scattering- Cross-section from EFT: 20 nbarn - Kinematics- Differential probabilities: spectrum of energy-loss- Mean energy-loss: ~ Ep

2, but only 5.3 MeV / ly for Ep = 1019 eV - Result2. Mean free path of a back-scattered photon

- Cross-section- Differential probabilities and mean free path- Result

3. Summary

: 26 · 103 ly: no -rays with 2·1014 eV < k0 < 1019 eV (k0,min = 3.2·1015 eV)

Page 43: QED- Project

Manfred Hanke / Prof. Schäfer, Institut für theoretische Kern- und Teilchenphysik

Thank you very muchfor your attention!

That‘s it!