=qnjj7 - digital library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee...

104
i I (“( I I 1 i 1, NATIONAL ADVISORY COMMITTEE FORAERONAUTICS TECHNICAL NOTE No.1795 APPLICATIONOF RADIAL-EQUIIJBRJUMCONDITIONTO AXIAL-FLOW COMPRESSOR AND TURBINE DESIGN ByChung-HuaWu andLincoln Wolfenstein LewisFlight Propulsion Laboratory Cleveland, Ohio =qnJj7 , —.. Washington —. .,,. .. . . .. . .$ .,. . . . . . .._, >- ,’; .,, “,. ” I ( /’ [ \ , I I ! 1 t \ I I ( I ( 1 1 I ... .. .. . . ... .,, --- ., ..’ ,,” .

Upload: others

Post on 17-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

i

I

(“(I

I

1

i

1,

NATIONALADVISORYCOMMITTEEFORAERONAUTICS

TECHNICALNOTE

No.1795

APPLICATIONOF RADIAL-EQUIIJBRJUMCONDITIONTO AXIAL-FLOW

COMPRESSOR AND TURBINE DESIGN

By Chung-HuaWu andLincolnWolfenstein

LewisFlightPropulsionLaboratoryCleveland,Ohio

=qnJj7

,

—..

Washington

—. .,,.

.. . — . .. . .$ .,. . . . . . .._, >-,’; .,, “,. ”

I

(

/’

[\,I

I

!

1

t

\

I

I

(

I

(1

1

I

. . . . . .. . . .. ..,, --- ., ..’,,”

.

Page 2: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

TECHLIBRARYKAFB,NM

IIIUUIBIIIJ44733

NATIONALADVISORYc~ FORAERONAUTICS

TECHNICALNOTENo.1795

API?UCATIONOFRADIAL—~ CONDITIONToAxIAL-lmow

ccMeREssoRANDTURBINEm!maq

ByChung-EuaWuandLincolnWol.fenstein

IBastegeneralequationsgoverningthethreedimensionalcompres-

sibleflowofgasthrougha mmpressor.ora turbinearegivenintezmsofvelooitycomponents,totalenthalpy,andentropy.TheseequationsareusedtoMxnmIinetheradial.motionofgasthroughanaxial-flowounpressorora turbineandthecorrespondingeffeotonthe@al variationsofthestateofes betweensuccessivebladerowsintheeaseofsteady,axiallysymmetricalflow.Theaspectratioofthebladerowisfoundtobeanimportantfaotorintheoal-oulstionwhentheeffeetofradialmotionisinoluded.Theusualmethcd,whiohnegleotstheeffectofIMialmotion,isshowntobegoodonlyforthelimitingeaseofzeroblade-rowaspectratio,thatisfortheeasewheretheaxiallengthofthebladerowismuohlargerthantheradiallengthofthebladerow.A sinusoidalradlal-flowpathisfoundtogivetheeffeotofradialmotiononthemdialvariationofgasstatebetwwenbladerowsassrmllaslikelywithoutanydiscontinuityInthecurvatureofthestreamlineandissug-gestedfm useindesigncalculations.

Theequationsareappliedtoinvestigatethemximm oompatlblenumberoftheradialvariationsofthegaspropertiesbetweensuooessivebladerms thata designerisfreetospecify.Thevari-ouswaysoftakingupthesedegreesoffreedcroandthedifferenttypesofdesignobtainedarediscussed.A generalprooedureisgiventooaloulatetheohsmoteristiosofa compressororturbineofanygivent~ ofdesign,taktngintoaooounttheeffectoftiialmotionofgas.Nunwrioaloaloulationsmadefortwot-s ofom-pressorandonetypeofturbineshowthatevenintheeaseofnon-taperedpassage,thereisappwoiableradialmutionandthatthecorrespondingeffeotsareofsignifio.axrtmagnitudeandshouldbeIxMn intoaooountindesign.

----- _____ ..____ .. ---- ..=-. —~.-. ——. .- —~ .. —....- .._ . ___..,- ... .,,

Page 3: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

2 I’iACATNNo.1795

INmmJcmoN .

Thedesignofa compressorora turMnehereinafteroalledaturbcmaohinemaybedividedintotwophases.Thefirstphaseoon-cernsthetypeofdesigntobeusedorthedeterminationofthemostdesirablevariationsofvelooityandthermodynamicpropertiesofthegasinplanesnormltotheaxisofthemaohinebetweensuccessivebladerows.ThesecoxxlphaseconoernsthedesignofbladesthatwillgivethedesiredvariationsofvelooityandotherProPefi~sof@s h tk- P1.aReS.Illthsfirstphase,theuondi.tionofradialequilibrium,thatis,theradialcomponentoftheequationofmotion,mustbeused.Theflowofgasina turbo-machineisCmvilinear;itiSourvednotonlybythewhirlxmotionofgas,btialsobytheraMalmotionofthegas.Theequa-tionofmotionthenspeoif’iestheradial~ssure @ent requiredtoprovidethecentrlpetalforoetomintiinthe~a flow.

b figurel(a),a curvedstreamsurfaoeoverfourstagesofamultistageturbcmwhineisshownandinfiguresl(b)andl(c)areshownitsintersectionswithplanesnomaltoandcontainingtheaxiscd?themaohine,respectively.Theradialpressuregmadientduetothewhirlingmotionofgasisalwayspositive,whereasthatduetothe-1 motianc&gas-y beeitherpositiveornegativedependingonwhethertheourvaturecausedbythemotioniseitherinwardoroutwardfromtheaxisofthemaohineatthepointafoonsidemtion.H thegasl@ngana normalplanebe~en twobladerows,suohasstation1 infigure2(a),isconsidered,theequationcd!motiongives(neglectingsmallterms)

“,

wherep and p arethepressure~ thedensityofthegasparticle,respectively,r and z arethe=al distanoefromandthedistanoealongtheaxisofthegasparticle,respeotlvely,

I ~ Vr> Vg> and Vz aretheradial,tangential,andaxialcomponentsofthevelooityofthegas~rtlcle,respectively.FromthisequationitisseenthattheeffectC@thetwomotionsonthe-1 pressuregradientisquitesimilar.Theeffectsofthetwomotionsarebothproportionaltotheproducofthesquarei& thevelocityandthecurvature(l/rand d2r/dz, respec-tive=)inmlveaoEvenwhentheradialmotioninvolvedissmall,Iftheaxialvelocityishighandtheblade-rowas~ctratiois ,:la~e,theseoondtem k theequationieof

r~ble magnitude

tothefirstandshouldbeticludedinthecalculation.Inthe

——— —...—. .. . . . . _,,— — — -———- ., —-— --.r~— —= . . . . ——— .—. . .. . . ,.. .,.. ,.--, ,:. .’ ..

Page 4: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA~ NO. 1795

past,however,theradialmot@nanditseffectwereusuallyneglected(references1to3).(Suchmethodsofcalculationwillhereinafterberefe-d toasthe“shplified-miial-equil.ibriumapproximation.n) Inraference1,a genemlfom oftheEulerequationispesentedbutisnotusedlateroninthethrough-flowanalysisbecausethesb@dfibd-radial-equilfbtia considemtionmaybeexpectedtoholdsufficientlyfardow.ustr-ofa singlerowafbladeswheretheradialvelocity& thegasbecomessmall.Forthisreason,thisappro-tionisadequatetopredictmostoftheexperhentalresultsavailableontheradialvariationofthegasstatefardownstreamofa singlerowofblades(references1and3). Nosatisfactorydataortheoryexktforthe.genemlcased a bladerowwithina closelySpeedseriesofbladerows,asina multistagecompessororturbinewheretheaffectofradialmotionmaybequitesigdficent.Inthepesent~per,theeffectaftheradialmotionofgasisconsideredinapplyingtheradial-equili.briumoonditiontoturbomaohtiedesign.

h theANALYSIS,thegeneralequationsgoverningtheflowC@gas in axial-flowturbomachinesaredeveloped@marilyforthecaseofsteadyaxiallysymmetricalflow,whichcorrespondstotheklmiting-e ofaninfinitenmberatblades.Thebladesarereplacedinthecalculatimbyanapprop-teforcefield.AmethodofsolutioninvolvingtheuseC&thebasicequationsinfinite-differencefonuisdiscussed.Eqmessionsaredevelopedfortheusetia -e numberofsuccessiveaxialstationsandfortheuseofthreestationsfora stageinwhichanappropriateradial-flowpathisassuned.

Theequationsareappliedtoinvestigatethemaximumnumberof-1 etium ofthevelocitiesandotherpropertiesofthegasthata designerisfreetospecifyinany~rticulardesign.Thevariouswaysofusfngthesedegreesoffreedaandthedifferenttypesofdesignobtainedarediscussed.

InthelastpartC&thisreport,a genemlprocedureofcal-culationforanytypeofdesignisgiven.ItisusedtocalculatetwotypesaPcompressorandme typeofturbinewiththepurposeafinvestigatingtheeffectofmdialmotionondesigncalculations.

Thisinvestigation,conduotedattheNACAClevelandlabo=tory,wascompletedinApril1948.

,

----- .—--—----- -,-== -— — --- —. —--- ———.—-:V— -. -.. .— --- .—-— -— — - -—-——— -

‘..,, .. . ,“’

Page 5: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

4 NAf4TNNo.1795

—-----

A

a

%

CP

Cv

D5%

F

I?r

‘eFz

f

G

g

H

h

K

L

M

m

SIMEUJA5

Thefollowingqmbolsareusedinthisreport:

()rt-rhaspectzatioofblade‘row,~

velocityofsound.

liftcoefficient

specificheat& gasatconstantpressure

specificheatofgasatconstantvolume

differentiationtithrespecttotinefollowQmotionofgas

forceactingongasparticlesbybladesperunitmassofgas

-al C=2-nt ~ ~

axialcmponentof X’

formof&lial-fl&@th

massflowperunitflow&ma perpendiculartoaxisofturbmacti

foxzaofradial-displacementdistribution

()$totalenthalpy~erunitJMMSofgas, h +~

enthalpyperunitmss of&as,()u+~

Pconstant

axdallengthofblaii& (fig.2)

Machnumberofgas

IIElssar gas

d

.4”.

.—-—~.._ .__. . . . . . .,—. ———.— ..— —_ —z ——— .,. ,-..:,“.,.,. .“....-;,: ,. ,.

Page 6: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

I?ACATNNoe 1795..

5

I

,-,

g

n

P

Q

R

r

PO

rt =

s

s.r.e.

T

t

u

6

u

v

7

Vr

‘e

Vz

w

ii

po~~pic eqnx=t & actualeqiw orocmrpressionprooessaPgas

staticpressure

externalheattmnsfemedtogas~icle alongits~th ofmotionperunitmassperunitthe

gasconstant

mdiusmeasuredfmm axisd turbomachine

meanradius& zwlial-flowpath(fig.2(a))

rrt-~

entropyperunitmss d gas

simplified-radial-equilibriumappzxxclmation

absolutestreamtemperatureofgas

the

magnituded Yj

veotorvelocityd rotor

internalenezgyperunitba8etemperature

magnitudeof T

absolutevectorvelocity

radialoomponentof T

tangentialcomponentcf

axdalcomponentof T

magnitudecd?~

bladesatradius

=SS of @S with

ofgas

T

r

0°absoluteas

*

vectorvelocityd gasrelativetorotorblade

—..-——_ ———. —..— .. ..— —- .— —~ -—. —.-. — -——. ———— — — —,,, . ,’.

Page 7: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795

tangentialcmponentof W

maximumradialdisplacementoverbladeheight

distanoealongaxisofturbmnchine

amglebetweenrelativevelooltyofgasenteringrotoranda#s ofturbmachine

anglebetweenabsolutevelocityofgasenteringstatorand=S afturbmachine

ratio& specificheats,(#J

mdialdisplamentaorossrotor,

E241()dimensionlessturning,—r.U._\

small-stageorpolytmpic

angulardistancemeasured

viscosityofgas

(rz - q)

efficiency

fromsomefixed*al llne

kinematic! viscosityofgas, (v/P)

~ m~~t~ aboutz axisperunitmassC&gas,(rVg)

massdensity

bladesolidity

dissipationofenergyduetoviscosityperunitvolumeofgasperunittjme

function

angularvelocityofrotor

Subscripts:

1 infrontofxwtor

2 be= rotorandinfrontofstator

.

ij

.

T.\

.-..,- -~ —— -- .— -— —- . . . . . .. —r–... ------ —-—.——-,. - ,, :’:. ‘..

Page 8: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA!l!NIVo.1795 7

3 behindstatorandinfrontofnmt rotor

-!

.-,

4

0

e

h

1

Jk

L

2

m

n

behindnextrotor

Satisfyingcontinuityequat$on

satisfyingradial-equilibriumand

athub.

anystation

stationshort

anystation in

13niting value

anystationin

distancedownstream

frontaProtor

frontd stator

total-enthalpyequations

ofstationi

usedwith r toindicatemeannadius

usedwith r toindicateradiuswheremaximumradialaisplaoement Oocurs

simplified-radial-equilibria

attip

Thestateofgasin

ANAHsIs

approximateion

BasicEquaticuls.

three-~ensional~otioniscompletelyv, oritsthreeccm-specifiedbyitsabsolutevectorvelocity

pOIl@ltSVrj Vej and Vz ,referredtocyltioal coordinatesr,e, a Z, respectively,andtwothermodynamicpropetiies.Theselasttwopropertiesareusuallyohosenasthestatic~essurepandthestaticdensityP, buthereinitismoreconvenienttousethetotalenthalpyperunitmass H andentropyperunitmass s,whioharedefbaiby “

F’H=h+~ (1)

-— .-.—. - . ..— — ——.——-,,,.- ,,

Page 9: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

8 I?ACATN~Oo 1795

Td.s=du+p @-l (2)

Fortherangeoftemperatureandpressureencounteredincompressorsanaturbines;p, p, and T areaccuatelyrelatedbythefol-lowingequationofstate

P = pRT (3).

TheNavier-Stokesequationofmotionfora realfluidisgiven,invectorform,by

Im=~[ 1

-Avp+g V2Y+*V(V”V)Dt P

Theenergyequationfora realfluidisgivenby (refer-ences4 and5)

or

Thecontinuityequationcanbewrittenas

V“T+& logep ~ o

(4)

(5)

(6)

(6a)

Whentheprecedingequationaarecombined,thefollowingfourgenemlequationsue obtatied(forderivation,seeappendixA):

[VH=~+TVs+?X(VX~)-~ + vV%+ 1*V(V”7) (7)

(8)

(9)

P

v

c

— . . ... . .-—T ——. - ---- —- — . . . . —— —-—-——,,-. .. . . . . . .

.,,. ,.-.

Page 10: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795 9

(lo)

Equation(7)givesthegradientd totalenthalpyintezmsofbladeforce,viscousforoes,velooity,andotherpropertiesofthegas.Thisvectorequationgivesthreesoalarequationsinthreedimen-sions● Equation(8)givestherateal?ohangeoftotalenthalpyaPgasslanga streamlineh termsofrate& beatadtiti~,nte &workdonebybladeandviscousforoes,andsoforth.Equatim(9)givestherateatohangeofentropyalonga streamlineintermsofmte ofexternalheatadditionand@ dissi~tionofenergyduetotiscosity.Equaticm(10)givestheoontlnuityrelationintemnsaPvelocity,tqrature,- entropyofgas. Itshouldbenotedthatofthesixsoalarequationsgivenbyequations(7)to (10)onlyfiveareindependent,becawetheyarederivedfromequa-tions(4)to (6),amongwhichequation(4)yieldsthreesd.arequations,givihga totalaffiveindependentequatims.(Theenergyrebtion.isusedh thederivationafbothequations(8)and.(9).)

steady

Axials~etry,that

Axially Symmetrio

issymmetryabout

Flow

theaxisofrotation,oanbeassumedtoe&t sufficiently-fardownstreamofanyblade-rowandistrueeverywherefortheitiitingcaseofanI&nitenumberofblades.Thisasswnptionisusuallymadetosimplifytheamlysis.Thebladesarethenreplacedbya volumedistribu-tionofforoes,themagnit@eofwhiohisobtainedbymaintainingoonstanttheproduotofthenwnberofbladesandtheresultantforceatanypointonthebladeasthenumberofbladesisticreased.(TheresultantforoeisthedifferencebetweentheforcesonthetwosidesaPtheblade.) Thatis,theresultantforoeactingonthegasbya bladeelementatanyradiusiscon-sideredtobeevenlyd3stributedoverthestreamsheetbetweentwobladesatthatmdius. Reference1 shuwsthatforincompress-ibleandfrictionlessflowthevaluethusobtainedgivesanaver-agevaluewithrespecttothecoordinatee. Beoausethenumberofbladesisusuallylarge,thisassumption’isconsideredreasm-ableforsteadyoperationofturbmaohines,andparticularlyforthisinvestigation.Thusallpartialderivativesofgasprop-ertiestithrespecttothe andangularposition(3willbetakenasequaltozero.Thestate& gasisconsideredasafunctionof r and z only,thatis,theproblaisreducedtoa two-tiensionaltreatment.Withthissimplificationandby

—:. . .. . .-—. — . -..—. . . ..— .”------- -- .,. -— .=— -.. ..— —.—. .

.,.

,,. . . . .

Page 11: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

10 NAOA~ MO.

tmnsfomllngv2T into [v(v*Y)- w (Vx v)], thereamobtainedtheradial,tangential,andtial cmponentaofequa-tion(7):

+V~ a2(rvr)4 a(r~r) ~ a%z

1

a%r—— -— .—.3r ar2 3g7+3a~z+~

1795

(7a)

-1

(7b)

1.

.

& as avr avZ ‘e%= Fz+Tx+vrx--vrs+ve =

[

4 a2(mr)4 a%z a%r a%z+V 3r a~z ‘—- 1 (7C)——+3az2 XZ+~

~ theradialequillbrimequation(7a),therelativeimpor-tanceofthevarioustezmsdeyendsmainlyonthetypeofdesign.Themdialforceexertedbythebladedependsonthetwistandthetaperofthebladeintheradialdirection.5e @al variationofentnpydependsontheradialvariations& externalheatsub-tractionandd dissi~tionofenergydueto”viscouseffect.Inordinarycompressorsandturbines,theamount& heattransferissmallperunitmassofgasflow,anditseffectontheradialvar-iation& entropyisnegligible.Butintwbineswithbladecool-ing,theheattmnsfermaybequiteUmgeanditmaygivea signif-imt mdialvariationofentropy,whichmustbetakenintoconsid-eration.Theincreaseofentropyduetodissipationofenergyby

.

--:,—.., —,—.. ..——.—— ——— . —~...r --,.-.-–- ,...— —— -..—-- —--...“.., .,. ,.--” ,-’..” .,. “.‘.,.,”‘,- ,/

Page 12: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNo.1795 11

,

viscosityissmllandmaybeassumedtobethesameatallmmiiioverthemainportionafgasoutsidetheboundarylayersattherotordrumW theinnerwalloftheoutercasing.Thethirdtermontheright-handsideoftheequationisequaltozeroforfree-vortextne ofdesign,inwhiohrve iSsetco~~t atall~~i~andhasa nonzerovalueinothertypesofdesign.StiilX@Y,thefourthtermmayhavea nonzerovalueM oonstantaxialvelocityatallradiiisnotspectiiedindesign.

Thefifthtem representstheeffectofradialmotiononthezadial-equilibriumcondition.U thegapbetweentwobladerowsitisproportionaltotheproductd thesquareofaxialvelocityandthecurvatureaftheflowpathinthe-al planeandisverystiilartotheeffectofwhirlingmotionrepresentedby Ve2/r.E thecurvaturecausedbymdialmotionispositive,theeffectistodecreasethe-al gradientoftotalenthalpyorpressurecausedbythewhirlingmotionatthegas. E thecurvatureisnega-tive,theeffeotistointens~ythismlialgzadient.Fordesigntithlargebladeheight,shortaxialbladelength,highwhirl,andhighaxialvelocities,itwillbeshownthattheeffect&mdialmotionislargeandshouldbeconsideredinthecalculations.

● TheWst fourternsinthebmcketareusuallyofthesameordercdmagnitudeastheprecedingvelocityderivativesandbecausetheyaremultipliedby u, vhiohismuchsmallerthanothermultipliers(Vz or Ve), thewholeproductismuchsmallerthantheotherte?.msintheequationandmaybeneglected.Thesameargumentappliestosimilartermsinequations(7b)and(70).Henceequations(7a),(i%),and(7c)maybes@lifiedto

Vra(rVe) bveO=Fe-Y~-Vz~

(7d)

(7e)

yJ as ‘r-v~ %az

=Fz+T_+Vr _az az ‘br+veb

(7f)

,..

----- -. —— —--- - –.—- ---- z ..-—— - -,—-------- -,——— —. .-— — v .-—-------—..-.

Page 13: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

Amongthetezmmontleright-handside@ equation(8),otherthanthefirstterm(thetia_rtanceofwhichdeyendsonwhetherthereisbladecooling),V-l?isthepredominatingtexminpassingthroughtherotor.Whereasinpassimgthroughtheatator,alltheteznmontheright-handsideareofthesameorderM magnitude.However,bytheuseoftheequationofmotion,theenergyequationforsteadyflow,andtheassqtionthattheheatgenemtedfromthefrictio~lworkr-ins inthestream,Dl@t cm beexpressedforst~ayaxiallysymmetricalflowina moreusefulforminterms

D(rVg)OfonlyQ, m, ‘r (seea~end.ix

IIE D(rVe)—= Q+Lo—Dt Dt

A):

(8a)

M equation(9),thetwotermsareofccmrpa=blemagnitudesinordinarycompressorsorturbines.Withbladecoollng,thefirsttermispre~te. Fortheaxiallysymmetricalflow,Itreduces

Foraxiallyspnetricalflow,equation(10)reducestothefollowing

(ma)

Amongtheprecedingsixequations,equations7d to (lOa,[1onlyfiveare-pendant,becausebothequations8a and(%1

zwpresenttheenergyrelation.Fornonviscousflow,thereisan

.

-,,

.- .- ---— ..< ---- —-.,,.,..-::. .. .... “ ...-----.:.:.;. ---‘.. , ,..

Page 14: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

InN-Jo1+

#

NACATNNO.1795

additionalrelationinthatthebladefaoeofthebladeandconsequentlyisvelocityofthegas,thatis,

Thenequation(8a)oanbeobtainedbyequationsandequation(11).eitherequation(8a)or(11)additionalrelation,giving,(equations(7d),(7e)y(7f)jForsuohflow,equation(9a)

Forviscousforoeexertedby

13

forceisnomaltothesur-Wrpentiouhrtotherelative

=0 (11)

usingthemotionandenergy(Seea~pti A.) Consequently,‘-oanbeconsidered.asrepresentingthisinall,sixindependentequations(9a),(lCla),andeither(Sa)or(n)).reduoestosimply

Da Q5%=3! (9b)

flow,equation(11)isnolongertruebecausethethebladeisnowinclinedfromthedirectionper-

pendiculartotherelativevelooityofthegasbyanamounttobedeterminedfromtheshearingstressesofthegasadjacenttothebladesurface.Underthepresentoonsidemtionofaxiallysymmetricalflowitisfounddesimbletoretainequation(8a)astheenergyequationandtoobtaintheentropyohangefromH, V,andthepolytropice~nent n oftheaot~lcompressionorexpansionprocess:

P P-n= Oonstant (12)

Thentherateofch@e & entropyalongthestreamlineis(seeappendixA)

(1..3)

Inequation(1.3)n isconsideredasknown.Ina givenmaohine,n maybeobtaineddireotlyfrommeasuredpressureandtemperaturedata, ~ a newdesign,n maybeobtainedfromtheassumedpoly-tropioefficiencyued indesigncalculations:

Fortheoom~essor

.---— -— ——. .—. —. -. -—-T -.-z— -=. . ,,, . . . . . ..— —— . .._ —.,,.. ,.

Page 15: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

14

.

Fortheturbine“

NACA~ NO.1795

.

Becausethechangein s isusuallysmallcompredin Hand V, theprecedingmethodofdetermining

withthechangess seemstobe

adequatetoa~count~orvisc&seffectincalcula%gthepressureanddensitychangealongthestreamlineforthepresentpzmblem.

MethodofSolution

E eqwtions(1),(2),and(3)areconsideredastherelationstoexpressp, p, and T Internsof H and s, thenequa-tions(7d),(7e-),(7f),(8a),(9b),and(lCka)aresixindependentequationsinthecaseofnonviscousflow,andequations(7d),(7e),(7f),(8a),(lOa),and(1.3)aresixindependent’equationsh thecaseofviscousflowbothinvolvingeightvariablesVrY V8$ VZ2

H, S2 Fr, Fe, _ ~z. ‘Inthedirectproblem?inwhichtheshapeofthebladeprofile,theshapeoftheinnerandouterwall& thegaspassage,therotorspeed,thepowerinput,andtheenteringandexitconditionsofthegasaregiven,itistheoret-icallypossibletodeterminethevariationsofthesequantitiesthroughoutthemacklne.Intheinverseproblem,inwhichthedesimblevariationsoftwoofthegaspropertiesarepre-scribed,itisalsotheoretimllypossibletodeteminethevaria-tionsaftheotherpropertiesM thegasandthebladeforcenecessarytoachievetheprescribedvariationatgasconditions.However,itseemsthatnogeneralanalfiicalsolutionoftheseequationsispossibleineitherPoblem.Twonumericalmqthodsofsolutionarethereforesuggested.Inthefirstmethod,thepreviousequationsareexpressedinfinite-differenceformandappliedtosuccessiwaxialstaticmsthatarea shortdistanceapaxt.= thesecondmethod,@y three“stationsareusedfor~ch s~~ h which= approp~tential-flow@h iSas~ed ●

Methodoffinitedifferenceforsuccessiveaxialstations.Ateachstation,If rVe isdenotedby ~,equations(7d),(7e),and(7f)canbewrittenas

—,—. .-.:... ; “.,’”~”-.’.; ,“ ., —,- .-— —--, .,. .

Page 16: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795 15

aHx “.+’%+’4%-3+$%

(7g)

(7h)

(?i)

Between$mytwosuooessivestaticmsi - J thatareashortdistanoeapart(fig.3),theohangeintotalenthalpyis .givenbyequation(8a)

where(r) 3ndioatesthatthegaspropertiesata ~icular sta-tionarea funotionofthemdialpositionofthegasparticleinthatstation:@t shouldbenotedthatduetomdialmotionthe*1 positionata gas~icle atanystationj isdifferentfromits?.wlialpositionatthepreviousstationi.)Inpassingthroughthestator,u =0 andthereisnoohangeofH alongeaohstreamlineexoeptfromheattifeot.

Theentropyohangebetweenthetwostationsisobki.nedfromequation(13)(seeappendixA):

Insteadofbetweenthetwoflowatthetwo

Hi-— ;

integmt~ equaticm(lOa),thecontinuityrelationstationsisreadilyobtainedbyequatingthemassStati(nls.

.

.— —. .--.. . .. . . . .-. z ..—”—-. — ,. ——. . ..-. — .-. . ..__ ——— —— —.-. .,—. _ -.-— ----- -

. . . .. ’., ,-

Page 17: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

16

IByexpressingappenddxA):

EACA~ NO● 1795

Gin H, V,mds, equation(14)becomes(see

1

(m)Equations(7g),(7h),(7i),(8b),(13a),and(14a)arenowsix

independentequatimsrelatingthegaspnpertieeandbladeforcesatthetwostations.b theseequations,theheat-tmnsfertermisnegligibleinordinaryturbomachinesandcanbeestimatedinthecaseofcooledblades;thetaqeratureT isa Icnownfunction@ Hand V; and rj isobtainedfrmri and Vr,l.Hencethereaxeonlyeightudmownsti Hj2 ‘j) ‘r,j$‘e,j>‘z,j)‘r,j~F’ejY ~ ‘z,j (thoseatthefirststationi areconsideredas’known).Fora givenbladeopemtingata givenspeed,twoadditionalrelationsarelmownamongthevelocityccnnponentsfromthetang~tplanetothebladesurfaceatthe@nt (rj,zj)becausetheflow& gashastoconformtotheshapeaPtheblades.Rora newdesign,thedesirablevariationoftwo& theeightvariables@ally oneofthetwois Ve)canbespecifiedandtheremhtngfivedeterminedfrm theprecedingequations.Itistobenoted,however,that,inpmctice,theradialbladeforceisnotessentiallyan-pendent variabletobespec~iedbythedesigner,butisrmin.lydeteminedbytheactualconstructionof“thebladetomeettheaerodynamicaswellasthemechanical-strengthrequirementsatdMferentmdii. Thedesignerhastoseetoit,& course,thattheradialforcetobeobtainedfromthebladeactuallyconstructedisconsistentwiththatusedinorobtainedfmm thedesigncalculations.Theprocedureofcalcula-tionforthisstep-by-stepmethodvarieswiththetypeofdesign,theconditionsgiven,m thetwogaspropertiesprescribed.Thecalculationisquitelaboriousandseemstobejustifiedonlyinthepees ofaotualdesign.

Inordertoobtainanover+llpictureoftheradialmotionina turbomachineanditseffectondesignconsiderations,thefol-lowingmthodofusingonlythreestationsforeachstagewithpre-scribed~-f lowpathmaybeused.

.

.. —.——. . ...- ... _ \—.-. .,- ,T— ---- .—-— — ——. -—-. ,..

------ .. . .-’ .,

Page 18: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795 17

Method& presoribedmdlal-flow~th. - Ina turbomauhine,the~dlalmotionofthegasisoausedbythreefautors:

(1) Tape- afouterwallgivesthewhiohis,ofcourse,taperedmufaoe.

theannularpassageeitherattheinnerorflowa mdialdisplacementaorossthestage,greatestintheimmediateneighbtioodofthe

(2)Evenwithaacmsathestagemaydistributionofspeoificmassflowovertheb-deheight.

=*perea passage,a radialdisplacementbeoalledforbeoauseofa variationinthe

(3)EvenIfthereisnoradial~splammentaaossthestage(thatis,thesamepartioleoooupiesthesameradialpsitionatthefirststatianat’eaohsuccessivestage),therewill,ingeneml,beradialdisplacementofflowwithinthestage.!l?hlaz.twii61flowwillthenbeoscillatoryin=ture,a radialdieplaoe-mentintherotorbeingfolloweabyanequalandoppositezadialdisplaoamntintheatator.Thismdialflowarisesbeoauseofthedifferencebetwemthemdialvariationd thespeotiicmassfluuwithinthestageandthoseattheent-oe andexitstationsofthestage.(Thismiialdisplaoemantoanonlybeemideabyspecifyingzeroorthesameradialvariationofspeoifiomassflowatallstatcbmsofthestageh thedesign.)

Ingeneml,themdial flowofgasthereforeoonsistsofa~a~l, generallymonotone,ml motionduetofactors(1)and(2)withanosoil.latorymotionofperiodequaltothestagelength&uetofactor(3)s~erimposeaonit. Theradialflow~~ed bythesethreefactorswillbe.similartothatshowninfigure1.Theeffect@ the~dlalmotiona theoaloulationsarisesohieflythroughthetemnbVr.z Intheradial-equilibriumequation(7g).Thistezniseqeotedtobesignificantmainlybeoauseoftheoscillatorymotion,whichmy req- si@fimt oqes h Vrwithina singlerowofbides. Theeased osoillatoqmotionwithina stagewithnoover-all-al displacementacrossthestagewillthereforebeconsiiiereilfirst.Thatis,thegaspassageisnontapereaandtheradialMstributionofgas~erties attheentmoe ad eritstationsafthestageisthesame.

Beoaueethereisnobladefo- actingonthegasandthereislittletimeavailableforthegastomix,thegasflowingthroughthegapbetweentwobladesisundera constantpressure~dientandmnsequentlytendstomovewiththesamecurvatureitacquireswhileleavixthefIrstblade.Forstnightpassages,the~andminimumpointsoftheradial-flowpatharelikelytobe

,

—. .–-—-——— —- —————- .—.. --—. —.. . z—.-—— —--y ..- ——- .—. -—— ..— . . ..,, ->>,.:. -, . .,.

Page 19: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

18 IWWA~ HO.1795

mmwherenearthemiddleofthegap. (Theintersectingcurved astreamsurfacewithanaxialplaneishaeinred?emedtoas“themdial-flow@h. “ Becauseofml symmetry,the-1-flowpathisthesameinanyaxialplane.) Thestationsbetueenbladerowsaremostconvenientlychosenatthesepoints.Thestations“infrontoftherotor,betweentherotorendthestator,andbehindthestatoraredenotedbysubscripts1,2,and3,respe~tlvely.(Seefig.2(a).)oftheflowpathtively,thentheiS@Veilby

)X ro-and L ‘repz%s~tthemean~dial&stanceandtheaxiallength& thebladerow,respec-radialdistanceafthegasparticleatpositionz

rz- rlr-ro =-—

2 (L)f~ ‘

atstations1,2,and3

(1.5)

:=0’1’2f(o)=f(2)= 1,f(1)= -1

)(J6)

f’(o)=f’(l)=f’(z)= o )

wheref isa functiongivingthefozzn& thenadial-flowpathandtheprhe indicatesdifferentiationwithrespectto z~. Itfol-10WSthat .

atstation1, 2=0,

Vr,j =o

avr() ‘2- ‘1-— Vz,l> f“(o)m~= 2

(17)

(18)

tismuchas Wz/bz ispmcticallYzeroinPSSQ throughthegap.Similarly,atstation2, z =L,

.. -., ., !:-. --, >,,.,.. . . . ..– ——— —--, r. -.. -. —--—..-,, . .,. ,.. ..-. ... ”:, ,...

Page 20: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA~ NO.1795 19

V*,Z= o

.()&r r2-%vz2=-~ ~ f“(1)2,2~2 (18a)

Becausef“ (z/L)detemines~Vr/& ortheeffeotofradialmotionontheradial-equilibriaoondition,itisdeshablethatitvaryconttiuously;thiscmditiontogetherwiththoseofequa-tion(18)suggests

()f~()

=COSYC3L L

Then

f“(o)=-%,f“(l)=YC2andequations(lS),(18),and(I-8a)become,re~ctively,

r2- rlr-ro =-— 2 cosx~L

()Wr r2- rzxz7E1=n— —L2Vz,l

(19)

(20)

(20a)

M’orthesimsoidalformof”f(z@), theundmumabsolutevalueof f“(z~) occurs“atz = 0,L,and 2L, d isequalto x2. I&vanM f“(z~) isass~edcons-t betweenz = O andz L/2,thusminimizingthemaximumabsolutevalueof f“ inth~interval,theabsolutevalueof f” equals8. ‘Ibisassumption,however,necessitatesa discontinuityin f” at z = L/2.Thevaluesof fi2fortheabsolutevaluesof f“(0)andf”(1)canbethereforeconsideredassmallasislikely.Thesmoothvariationof f“(z/L)and.the_ization oftheabsolutevalueof f“(z~)

—. .- .-—.- . .. -.-—--- -—— —---- .—. ——---—— , ..— — —.. .—— —-—.-. . .-

Page 21: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

20 NAOATNNO.1795

atthestationsarereasaableassumptionsprovidedthatthenxlialforceexerted.bythebladeremainsrelativelysmall.~ suchcase,thesinusoidalcurveisbelievedtorepresentthemajorharmonicdtheactualmdial-flow~th,andthemajoreffectoftheradialmotionmy beobtatiedthroughtheuse& thisshplecurve.

The’radtal-equilibriumequation(7g)maybewritteninteamsof(rz-rl) byuseofequation(20)

(21)

where

i=l,2,3ri

()lhen ri isreplacedbythedimensionlessmriableri’= —rt-~)thedependenceofthisequationontheblade-rowaspectmtio A isseentobe

()% ~i 1 ~i d ~i—= Ti~+— —et f

ri’2rt-~~rt-~

dVz~+~z,i &i’ + (-l)i# (rz’- rl’)X2A%z,i2 (Zla),

Thisformofthemlial-equili.briumequationisseentocontainatermdirectlyproportio=ltotheradialdisplacement,tothe ~squareoftheaxialvelocity,md tothesq-e oftheblade-rowaspectxatio.E theblade-rowaspectratioislargeortheaxialvelocityishigh,theeffectofmdialmotionmaybelargeeventhoughthereisonlya smllamoynt& radialdisplacementaczvssthebladerow.

Thismethodisreadilyextenledtothecasewherethereisanover-all*1 displacementacrossthestageduetotaperingofthepassageorduetovariatiminthedesignfromstagetosbe.Infigure2(b),the-al positionofa gas~icle originally

.

g,

., .,-,- ,,-, .,, ~, -—-—— .—--,+.-c...- ,,...”... . ..-, ,,..— —.

Page 22: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

I?ACA~ NO.1795 21 ‘

at rz instation1 isat r3 instation3. Fortheoscillatorymotionrequiredwithinthestage,r2 isnotgenemllyequalto.$(a+r3)” Forthe-e reasonst@edinthepreviousease,itisdeshbletohavethe~dial-flow~th consistingofa sinusoidalcurvesupe~osed.onthelinepassingthrough(21,~) W(z3,r3); thatiS

r= ‘3-rlz “(

rl+~~+~ r2-+)(, - .Osy) (22,

Them

z[++;(r2 -9):.4 (231Vr=gvz=v

avr

() ( )‘1 + ‘3 Y(2

- =i=(-l)‘.lr2— _

2 — Vz,i~2

~smuoh as ?)Vz.zispmcticallyzeroinpassingthroughthe-p.Withthisvalueof ~r~z, theradial-equilibriumequation(7g)beocmes

‘% % ~i dfi+v dvzi ( )rl.+r3 # 2—— +(-l)i+ q-~— = Ti~ ‘ri2&i&i Z,i art ~ Vz,i

(24)

where .

i=l,2,3

Thisequationissimilartoequation(21).(E r3= rl, itreduoestoequation(21).) A similarequationindimensionlessri’oanalsobeobtainedforthiscasebydivid@ ri by (rt - rh)i.

Atanypoimt(z,r) withinthebladeregion,themgnitude ‘consistentwiththissinusoidalradial-flowpathisobtained

~-%quations(7g)and(23):

-.., -- “-- ‘-’---=-. ..— ——— - -— ——.

.- .

Page 23: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

22

1( )(r1+r3 ~ ~zavz‘lZr2— — 2 ~vz Vz: Cos~ +S%TW )

(25)

Degreesd I&eedomInIk3sign

Beforestartingtoaesigna turbcm!achineitisaeciclehowthevelocityad otherpropertiesofthe

necessaryto@s shouldvary

radiallyatsuccessive-tial stationstogivethebesttypeofaesignfortheparticularapp~mtion.ItiSthereforeneces~ryforthedesignertoknowbeforehandthemaximumofsuchvariationsthatcanbespecified.

_tible number

Inthediscussionentitled“l@thod& finitedHferenceforsuccessive*1 stations”itisseenthattheoretically?atl.alvariationd twogaspropertiescanbespecifiedbytheaesignerateachaxialstaticmwithinthebideregionwiththebladeforcesdetendnedacconiingly.Inthefree~ce betweenblaaerows,thepropertiesd gasremainconstantalongthestreamlineandnoarbitrarychangecanbespecffiea.Incurrentaesignpractice,theusualprocedureistospecifythedesi=blegasconditionsmilyatstationsbetweenbkaeruws(aswellasbeforethefirstandafterthelastblaaeM) andtheneithertoselectsomestandafi ‘bladesectionsortodesignthemonthebasisofpresctibeaveloc-itydistributiontoachievetheaesirdcha.ugeofgasstateacrosstheblaaerow.Ineitherway,onedegreeoffreedomattheseccmdsuchstationistakenupingoingfmm thefirststationtothesecondstation.Theclesigneristhereforefreetospecifyonlyoneconditionateachstationthroughout.themachine,withtheexceptionofonestation,usuallytheentmncestatimtothefirststage.

Ways& specifyingaegreesoffreedom.- ~ thisdiSCUSSiOIlthefollowingtwofundamentalequationstillbeUses:

Inthestationsbetweenbladerows,ifthemdialvariationofentropyisnegligible,theradial-equilibriumequation(7$)reducesto

(26)

—-—-..:.:--.—:—:- . .-.. . .. . ..-. “.-.”...-’

Page 24: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNMO.1795

Equation(8b)isa~liedfortheeasewher6thereentiatedwithrespectto

23

tothreesuccessivestationsof~ stageisnegligibleheattransferandisdMfer-rl

The”followimgwaysoftakingupthedegreesoffreedomatthesestationsbetweensuooessivebladerowsarediscussed.

(1)Constantworkperunitmassofgasflowoverthebladeheight.Thisconditionisusuallyspecifiedinthedesignofaturbomachin.e.Itrelates~ aftertherotortoitsvaluebeforetherotorinthefollowingmanner

(28)

or

Constantworkoverthebladeheightgivesoonstanttotal-enthalpychangeoverthebladeheight.IXthevelocityattheexitofa stageisequaltothatattheentmnce,thisconditionalsogivesconstantstatic-enthalpych@e overthebladeheight.

Undertheconditional?constantwork,equation(27)reducesto

% %*2 %5&3 -~.=~q=~q (27a)

(2)Const&ttotalenthalpyoverthebladeheight:

(29)

.- —.. .—______ ..__ .__— —=___ __ —- -- ——,— —._ .._. ..—. .. ..,,

Page 25: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

24 .N!ACATNNO.1795 “

Thisrenditionholtiforthefirststageofa compressorandwillholdforallsucceedingstagesifconstantworkperunitmassoverthebladeheightisemployed.E a nonzerovalueof dH1/~ isriesired,= initialprepantorystagemustbespeciallydesigndtoobtainthisvalue. Inthelaststage,however,itisusuallydesirablethat~/& benearlyzero.

(3)

or

Free-vortex-typedistributionoftangentialvelocity:

Thisconditionincompressible

isconmmnlyusesinturbines@ compressors.flow,inadditiontothiscondition,constant

(30)

(3m)

Fortotal

enthalpyandcons~taxialvelocityoverthebladeheightcanbespeclfiea.Butforccm~esslblefl&, radialmotione&ts andonlYme ofthetwoadditi-1conditionscanbeobtainedincon-@n~tionwithequation(30).

(4)S~etricalvelocity=r‘1 2=ry thesymmetrical

%,1

or

Cl

(SeeNUMERICALEXAMPLEANDDISCUSSIOII?.)

D3f’ferentiatingwithreqectto r yields:

(31)

(31a)

(31b)

If r1#r2 or VZ,I # vz,2~thesymmetricalvelocityMa@amsmaybedefinedby

tl(rl)+5~ (r2)=ur12 (32)

. . .. .. . . . . . .---— .— — -- ~———. ___ .‘, .,. ..-,

Page 26: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

19AC!ATNN0.1795

Then

~ ve,3=%jl) ~vz,3 =VZ,2=%,1) the

25

(32a)

symmetricalvelocitydia-P gives~eq s~i~r fluws-t-u&therotorandthestator,experiencingthesameturning.Thechangeinstaticpzwsureorenthal~isthesam inpassingthroughtherotororthestatorandthestageisthereforeoftenreferredtoasthe“50-percentreactionstage●“ Reference6 showsthattheblade-mrofile10SSisa mhimun-withthesymmetricalvelocityMagram‘Mthedrag-

ratioisconstant.

(5)constant

Atv=y lowspeed.massflowisalsoisnoradialflow

tial velocityoverthebladeheight:

(33)

d?gasflowwithnochangetidensity,thespecificconstantoverthebladeheight;therefore,thereacrossthebladerowandequation(26)reducesto

(34)

Antih case

&I%F=0

then

Theequivalencecd?equations(33)and(34)breaksdown,however,forcurrentairctitapplications,inwhichcasesthespeedofgasflowiShigh.

Ifequation(34)ismibstitutedintotheradial-equilibriumequation(26),thereisobtained

.—-— ——. ...— —. - . . . . . .. —— ----- ———,. ———.,, ,, . —.“, ,, ..

Page 27: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

26 NAOATIiNO.1795

(34a)

Theleft-handside~ equation(34a)isthetangentialcomponentoffluidrotationV X V; thusequaticm(34)isa conditionforpotentialflowb thefrees~cebetweenbladerows.

E itisdes~d tocorrectfortheet’feetoftheboundarylayersattheinnerandouterwallsofthegaspassage,imsteadofequation(33)anappropriateaxial-velocityvariationclosetotheactualonemaybeprescribedindesign:

(33a)

(6)O* toflow,itUonstantflUW

Constantspecificmassflowoverthebladeheight.Inavoidradialmovementacnssthebladenw inmupmssiblehasbeensuggested(forexample,inreference7)that* velocityberepbcedbymnstantspecifiomass

Radialdisplacamntcanalsobepreventedbytheuseoftwocondi-tionsinstead& three

%%?%F=F=F (36)

FordesignsUS* eitherofthesetwoconditions,thesimplified-radial-equilibriumcalculationIsmorecorrect.Designsemployingnoradialflowhavetheadvantigethatthecalctitiondoesnotinvolveanyradialdisplacementacrossthebladerowandthatthetwo~ensional-cascadedatacanbe-otly applied.lb equa-tionsfortangential-andaxial-velocitydistributionsderivedfrwntheseequations(equations(35)and(36))’,however,amdifficulttosolveandtheconditionsm tnmmpatibl.ewithtapereapassageina multistageturbmachine.

(7)ConstantMachnumberrelativetoblade.Fora ftiedratioofexittoentrancevelocityre~tivetotheblade,thetemperatureorpnssureohengeofgasacrossthebladerowatanyradiusispp~ioti tothesquareoftheetiranceMachnumberofgas .,

,——,— .: .,,. -.-,. .—.– —,.. .——. ----- -.. . . . . . —.. . ..— _. ...,.-. . ,,,

Page 28: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA~cNO.1795 27

relativetothebladeatthatradius.ItmightthereforebedesimbletoreachtheMaoh-numberlimitationatallmdii. Thatis,fortherotor,

%2

where% istheferentiatingwith

VZ,12+koq-Ve,l)z

( vz12+%,12(7-1)H1- ‘ z

)

(37)

limithginletI&ohnumberfortheblade.Dii?-respectto rl gives

(37a)

I’orstator - ,

V22 VZ,22+ ve,22%2=—=a22

((7-1)H2-

Vz22+ Vo22

2 ‘)

Differentiatingyields

(38)

. .

( )l+ql# & @z,22 + VG,22) (38a)

Equations(37a)and(38a)maybecombinedwithequation(26)toelhimte H.

(8)Cons-beatturning.Ifthemaximumworkfora givensizeisdesirable,thelimitingturningvaluemaybereachedatallradii,whichwillgive,aPcourse,a ~dialgratienth totalenthalpysfterthefirstbladerow.Thisgradientmaynotbeseriousinasingle-ortwo-stageunit,butitmy notbedesimbletouseitforallstagesofaneight-ornine-stageunit.Forcompressors,thelimitingturningmaybeeqressedby (reference2)

..-. . ...—.------ _____. . . —.— ~... —. .—. —_,.. .—... —.— — —,., ., ,,-,

Page 29: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

28 NACA‘~ NO.1795

(39)

or

~e,l ‘~(o) ‘z$l‘9,2= (39a)

whereo isthesolidityofthebladeel.mentatradiusr. Dif-ferentbtingyfelds

(9)Inmultistagemachines,shilarvariationgentialvelooity,axialvelocity,orsmcificmassspecifiedatthesimilarstationsofeachstage

or

‘% %5%—-=%5

‘%

Stagesofmultistagemachinesaesi~a forsimilar

- (38b)

ineithertan-flowmaybe

(40)

(41)

(42)

variationsofgas-pro~ertiesfM stagetostagearetermed“typicalstages.”

Typesofdesign.-A largenumberofdifferentt~esofdesignmy beobtainedbydifferentcombinaticmsofthoseconditionsspectiiedinequations(26)to (42).Thesedesignsmaybeconven-ientlydividedintotwoPUPS. = thefirstgroup,theconditionofconstantworkatall=dii isspecifiedh thedesign.Thatis,equatian(28)isspecified,whichgives:

,-:. - -.—....-.. ,..- - . ,. .,,., “...--,’- .-. ,., ,,

Page 30: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA!l!l?NO.1795 29

(43)

Incaseswherethesymmetricalvelocitydiagramisalsospecified,equations(32a)and(43)give

(44)

Inthesecondgroup,thecmditionofconstantworkisnotspectiied.

Thefollowingtablespresenta fewtypestidesignineachofthetwogroups.Thewayinwhichthedegreesd freedamaretaken-upateachstationand.theknowncharacteristicsofeachtypearegiven.Inthetables,subscripti refemtoanystationinthemachine;k referstoanystationinfrontofrotor,thatis,Stationa1,3,5,* . .;and 2 referetoanystationinfrontofstator,thatis,stations2,4,6, . . .. A typicalstagemaybeconsideredascomposedofeitherstations1,2,and3 orstations2,3,and4.

. ..— — ----——. .- . . —— —— ----- —--- - ...——— — .—.- .-, ,.. . .,, . .

Page 31: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

I

-1IFHa- IO-*I- Icmumueml-l

I I

+0

lfJ35

Page 32: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

QKluPIwKmmD

I

1“

I

I

5. cwmt9nt

Val.ooitr

6. CamtadSpeoifiom?nn fl.m

7. tie l-uie-ti.mbqQeOifiomm flwad Oomtatotal

antiml~

Elb

1

2

~.

12

3

1

2

s

‘Ocaotantwork

‘%%—“q‘%

hmmmaaalliticmepw-Ifiatlat cmm S-tatlmh E3ahim

~.o

~

h ume of Inuqremible flm> tbia t~ %rqubw m mdld flawao.mm blademThlar8imWfid-mdlal-q ulUbrim can-dd.ala.tiontbls*W iB ‘e’@Tal.ellbtafirotitm h gonp

Page 33: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

u“N

GRm II

,:

. .

.,I),

1. h raual

~e-mmlt aomaablade ro-ntku’wlgbtiWmMne

z.kastmital ?-el-Ooi+ayadEymwtamlv-elooi~

1

2

3

1

2

3

CoMLtimwapeoifhl attiuw ,9t.s-tliormof q

‘%—.0%

‘%—.0‘2

%—=09

GymetriaslVelooity

onemrecmrl-dition spec-ified at oer-‘dn Statimb ImMhind

~ equ%l to

a ~oribelvalue atoaQone a+atlonIIItheXF@line

UlmmMaietio,q ofany stage

%%%q“q”q”o

Eo md-ialflm aorom all bladee in caseof IunlpparfnlpEeF@Rhge-waltie.

pmribd vake atcmlyme Etatioatithe mahine

E*!3.$●

P-103UI

, ,

Page 34: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

I!JACA~ NO.1795 33

GENERALMEI!HOD(Yl?CALCULATION

FORGIVENTYPECM’IIESIGN

Ihtheprevioussection,examplesaregiventoshowhowthe~erent typesofdesignare& tainedbyspecifyingdifferentcon-ditionsccxnpatiblewiththedegreesoffreedomavailable.Inthecalculationofthevariationofthegasstatethrougha turbomachineofanygiventype@ design,theeffectaP-1 motionhastobeticluded,ingeneral,togeta moreaccumtevalue.ThefollowingprocedureaCcalculationissuggested:

Thefirststepc#thecalculationistoobtainanapproximatesolutionbyassumingthatthegasflowsoncylindricalandconicalsurfacesforstraightandtaperedpassages,respectively,andbyneglectingtheeffectofradialmotionontheradial-equilibriaequation.ThismethodIstheusuals@ltiied-mUal-eqtilibfimcalculationad givesanapproximatesolutionforthecaseofverysmallblade-rowaspectratio.

ThesecondstepistoobtainthesolutionforthetwoextremeWuitingcasesofzeroandinfiniteblade-rowaspectratio.E thediffenncebetweenthetwocasesisnotlarge,thesolutionforthecaseofa certainfiniteblade-rowaspect=tiomaybeestimated.fromthetwoextremes.E?thedifll?erenceisfoundtobelm?ge,calculationhastobemadeforthefiniteaspectzatio.

Inthecalculationforthecaseoffimiteaspectntio,themethddevelopedusinga sinusoidalcurvegivese~ctresultsIfsuchcurveisprescribedinthedesignandisbelievedtogivegoodapproximateresultsincaseswhereitisnotprescribedinthedesign.Evenwiththissimplification,a seriesofsuccessiveapproximtipnsisrequired.

Inthis

IIIthecaseofequation(26a)

Shplified-Radial-EquilibriwnCalculation

appro-tion,equation(26)becomes

(26a)

nontaperedlpssage,Vr= O> %L=r2=r3=r~ Wisequivalentto

.

.— -.-— .——. ___ ———---.7 —— ---.-— — —— . . . -—. ..— .__,_.,. .,. .

——. ..—-—.,, . .

Page 35: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

34 NAOA”TNNO.1795

()viz% ‘T v~ f—n— +‘ii m r

Whenequation(26a)ismmbinedwithequation(27)

(26b)

dvz2arl

Fortheease& constantworkandnontapered~ssage,reduoesto

equation(27b)

The-al variationatdensityandpressureisobtainedfram

equations(26a),(AS),and(A8)(appendixA)fortheease$=0:

&7 -~ dpi v~~z avr~%,i pi y ~ = r;

P*,# - ‘r,i dri (45)

(46)

Inthesetwoequations,thelasttezmisverysmalloomparedwiththenexttolasttea andmy beneglected.Itbecomeszerofortheeased nontaperedpmage andtheresultingequationsoanbemoredireotlyderived,asisusuallydone,bytakingtheapproxi-matiainvolvedastheuseof

—.. . —.- — — ,—,- .,. . ,.

Page 36: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795 35

fortheradialcmponentofequaticmofmotioninplace

Fora giventype@ designandgivendesignvaluesIWh numberandlimitingturning,thevariationsofgasanyinletstationofthestageare_. BY insertti

of

C&limitingvelocityatthemdial

vafitionoftangentialvelo~ityintoequati%(45)~ (46),therad3alvariationsofpwssurepl(rl)anddensitypl(rl)aredetemined.Byoombiningthevariationofdensitywiththev&ia-tionufaxialvelooity,thevariationofspecifiomassflow Gl(rl)isObtainea.Thetotalmassflowacrossstation1 isthengivenby

r

l,t2Yrr1Gldrl

%,h

Thevariationofgaspopertiesatthenextstation(forexample,statian2)mustbesuohthatthecontinuityeqwtlonissatisfied

srz,t Tl,t

211r2G’2arz= 2Jrr~q ar~‘2,h ‘l)h

Byassumingthevalueofa gasvelocity,forexzmple,Vz,z atthehub,thevelooityanddensityvariationsatstation2 oanbedetemminedina similarmaxmer,andtotalmassflowoanbeobtained.Thecorrectdistributiaof Vz,z,andsoforth,whichgivestheoorrectvalueoftotalmss flow,oanbeobtainedintwoorthreetrials●

Whentherbsultsobtainedam substitutedintotheconttiityequation(B5)(appendixB),overa ptiionoftheannulusa.certainamoudofradialdisplauemntaorossthebladerowsuitediffe~ntfranthatas-d h-theoaloulationisobtal.nea.h rewtdeteminedbythissimplified--l-equilibrimoonsiaerationis

,.— . . . ... ..-_ _____ ______ ~,--..—. --—- —— -z. . . ._ .— . . ..- ______

. ..’,. ,:

Page 37: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

36

onlycloset-othecaseofwillbeconsidendinthe

NACATNNO.1795

zeroaspectratioofthebladerow,whiohnetisection.Thiscalculationcanthere-

forebeusedonlyasa firstapproximationtothezero-aspmt-ratioeased alsotogivea startingvalueforthecalculationofafiniteaspeotratio.InappendixC,formulasare~ven indimen-sionlessf-s forthiscalculationfortwocommontypesofdesign.

Zero-Aspect-RatioCalculaticm

Thecontinuityequationinitsintegnalfozm(equatim(IX))deteminesonlythefUnctim r2 (~) @ ~t ~lues~ ~Vr@z●

Twolimitingcaseswillnowbediscussedforwhichtheevaluationofthetezm~r~z isunneces~. H thebkde rowhas~axiallengthsufficiently@eatrelativetothebladeheight(thatis,iftheblade--aspectratioissufficientlysmall),thetezzu(~Vr~z)iwillbenegU@ble~ spiteof~ ~~1 ~sP~cem~t “requiredacrossthebladerow.Thisexlmemesituationisdesignatedthezero-aspect-ratiocaseanddiffersfrcmthesimplified-radial-equilibriumappro~tioninthatthemdialdisplacementacrossthebladerowisproperlydeteminedanditseffectonthestateofgasisincludedinthecalculation.Fora constant-areagaspresagewithouttaperorwithslighttaper,thiseffectissmall;conse-quently,a successiveappro-tionprocdurestartingwiththeresultal?thesimp13fied-n~l-eqtiMbrimcalcul.atimcanbeused.Thisprocedwemaybeoutlinedasfollows:

1.usingVz,l$VZ,2J

2.I’inaobtainedfrm

thesimplified-mdial-equilibriumapprotiation,fmcl, 52, Hl~ H22 %> and G2 asfunctionsof rle

r2 (~) bYeq~tion(~)~us@ the~lue of % (rl)step1.

3.Substitutethesevaluesof r2 (~) fitoeq~tions(26)ad (27)withthe (~r@z) tem equaltozero,togeta secondsduti~ for Vz,1> VZ,2,Cl,r.1

4.Repeatsteps2 and3 iffromstep3.

Instep1 ofeachpocess,calculationhastobefollowed.

tz, Hl,and H2 asfunctionsof

necessary,usingthe=lue of G2 (rl)

thesameprocedureasinthepreviohsmt is,thevariationofgas

. . . ..——-—..” - “-’. . --, .. . . . ,,“, . ..’.’ . ..., .,’

Page 38: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795 37

m!2r-l

cotitionsatstation2 issuchthatitgivesthesamemassthatinstation1. W thecasewherethereisconsiderable

flowastaper

atthepassagewalls,itisbettertoassumer2(rl)thetapertostartthecalculationratherthantouse

accoti tosteps1 and2.

Infinite-&pect-RatioCalculation

Theotherlimitingcasecorrespondstoa bladerowwithaxiallengthnegligibleascomparedwiththebladeheight;thiscaseisdesignatedtheinfinite-aspect-ratiocase.Thenegligibleaxiallengthdoesnot~rotidespaceforanya~~reciablemdialdisplace-ment,hencefora nontaperedpxwge r2 my betakenasequaltorl, or

%=% (47)

andfora taperedpassage,a relstionsimilartotheonethatfol-lows my beused:

%=%%,t2 - ‘l,h2

r2,t2- r~,h2(47a)

Becausethechamgeinaxialle@h fora verysmallchangein Vrisaleoverysmall,(aVrfiz)idoesnotvanish.AlthoughitsabsolutevaluedoesnotaffecttheHd.ialmotionbecauseofthenegligibleblade-rowaxtallength,therelativevalueof bVr~zinfnnt ofandbehinda bladerowisneededtodeteminecompletelythedistributionofgaspropertiesatthesestations.Iftheload-ingofthebladeisrelatinlysymmetricalorisdesignedtogiveasinusoidalradial-flowpath,thecurvaturesofthendial-flowpathatthetwostatimsareequalInmgnltudeandoppositeinsense.Then

(3,=-(32 (48)

Inordertoccmbinethisrelationmanner,itmaybeassumedthat

withequation(26)b a simple

(49) “

. . . - --. —.. -...——— -=-—- --. .— —.-.—. -—–----- .—. . . ..— ——— ..— —— —. —--,. ;,,.:.

Page 39: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

38

Thencmbiningequation(49)withequation(26)at

NACATN~0.1795

stations1and2

Fora t~icalstageofa givendesign,equation(47)or (47a)togetherwitheitherequation(48)orequation(49)willcompletelydeteminethevariationd?gaspzwpertiesatthetwostations.Hthevariationcd?gaspropertiesiscmpletelygivenatonestation,equation(47)or(47a)alonecompletelydeteminesthegasstateattheotherstation.

InappendixD,fomulasaregivenindimensionlessformsfortwocomontypesafdesigtocalculatethevariatimsofgasprop-ertiesforthetwopreced3nglimitingcases.TheresultssoobtainedwillgivetheUmitsofthevariationd thegaspropertiesalongthebladeheight.H thedifferenceislarge,itIsworth-whileb makethefollowbgcalculationfora finitebhde--aspectratio.

Finite-Upect-RatioCalwlation

Theresultspreciouslyobtainedfora sinusoidalradial-flowpathisused.hasmuchasthereisnogenemlanalytf=lsolutionofequations(13a),(14a),(24),and(27)thatispossibleevenforsimplet~s ofdesi~,themethodofsuccessiveapproximationisused.

Theproce~ C@thiscalmlationissomewhatsimilartOthatusedInthecaseofzem aspectmtio. Inthecasewherea taperedpassageordlfferenoeindesigncallsforan r3 =er~t f-~, firstestimatethemdial~siticms& gasparticlesatsta-tions2 emd3, ‘2 - %> respectively,asfunctionsof rl.Thencalculatethevariationofgas

rpertiesatstations1,2,

and3 byeqwations(13a),(24),and 27),suohthatthetotalmassflowisthesameatthethreestations.Usingthisresult,fNr2(rl)and ~(~) bytheconttiuityequation(B5)andseeiftheychecktheassumedvalues.Byinterpolatingr2(@ and~(~) oh-a ~tera fewtrialsatdifferent~, thevalueobtainedbythenexttrywillbeclosetotheoorrectvalue.

ForthegeneralcaseWhereHl, ~~ f~, and t2 aredeter-minedbydesignasfunctimsd ~, a roughapproximatesolutiongives(seeappendixE)

,--- -~—. - - .. . . ——--,. . .. . .,.. - ,, ,,,.,, ,.

Page 40: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795 39

(50)

This valuecanbeusedasa steztingvalueformoreexactcalcula-tionormaybeusedasthefinalvalueforapproximatecalculation.ThisapproximatevalueaPradialdisplacementacrosstherotorisobtainedinthefollowiugmanner:

Firsttakeastwosepamtefuncticms

Ae(rl)thefunction(r2- rl) of rl satisfyingradial-equilibriumandtotal-enthalpy-changeeqwations(26)and(27),respectively,fora givendistributionoftheothervariables

AC (~) thefuuction(r2- rl) of rl satisf@ngcOnt&ti*Yequation(14)fora givendistributionofothervariables

Itisassumedinthismethodthattheradialgmadientsin Vz ami

Idependprimmdlyonthema@tude oftheradialdisplacementr2- rl) andnotonitsexactUstributicm.ACCO~~ Ae (~)issetequalto

Ae(q)=Yg 8(q) (51)

whereye isthemaximumvalueof Ae ~ g (rl)isa plausiblefozznforthedistributionof Ae satisfyingtheboundaryconditions:

for (52)

8‘(rl,n)‘0J43(~,n)=1)H Ac iscalculatedfora coupleofvaluesd Ae, itispossibletoplot yc, themaxhumvalue& AC) againstye. A fairlygoodapproximatesolutionmightbeexpectedtocorrespond.tothe~ointYc= Y~* zhisprmesscanbefurtherreftidbyvw@w drl) fromthefunctionoriginallyasswmdintheUrectionofthecalculatedfunctionAc/yc.

.— .-. — . . ..— .—— — -—— — ,. ..- —,.—— ———. . . ...,,.,

Page 41: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

40 NACA’TNNO.1795

Distributionsofgaspropertiescalculatedfrm r2 (~) givenbytheappro-te relation(equation(50))hasbeanfoundtoagreemuchbetterwiththevalueobtainedbythepreviouslydesoribedmethodofsuccessiveappro~tionthanthatcalculatedundersimplified-equilibriumapprcxdmations.

mMERlcALEwfE’LEANDmscussIol’i

Themethod@ calculationoutlinedintheprevioussectionsisapplieatothetyyicalstagesd a compressormployingsyrmnetricalvelocitydiagmmandconstanttotalenthalpy,anda compressoranda turb~ mployingfree-vortexandconstant-total-enthalpydesign.Thecalculationisrendemadhensionlessbyexpressingallveloc-itiesh terms& Ut, totalenthalpyintermsof %2, and r intermsof rt. Becausethemainpurpose& calculationistodeter-minethemagnitudeoftheoscillatoryradialmotionand.itstieotondistributionofgasproperties,a nontapereiiconstant-areapassageisuses.Heatttier isassumed.tobezem inthecalculationandtheentropyisassumedtobeconstantateachstatiau.Thechangeofentropyacrossthebladesatallzadiiistakeneq=ltothatobtainedfromthepolytropicefficiencyassumedatthemeanzadius.Itthengivesa radialvariationofpol.ytropicefficiencydecreasingfromtiptohub.Thisvariationseemstobeinthesamedirectionandofccmpmblemagnitudewiththoseobtainedfromeqerimentaldata.Thiscalculationdoesnottaketitoaccounttheboundarylayersattherotordrumandtheoutercasing,andisconsequentlygoodonlyforthemainportionofgasflowingbetweenthem.

h thecomparisontiUferentblade-w aspectratiosineachdesign,inadditiatothesameaerodynamiclimitations,thesameaxialvelocityatthemeenradiusisused.ThecomparisonbetweenWferentcasestillbeslightlydifferentifanotherbasisofcomprisonisused.

(1)Symnetricalvelocitydiagramandconstanttotalenthalpyo-Becausethedifferencebetweenzero-andinHnite-aspect-ratiocasesisfoundtobelargeinthisdesign,calculationis-maaeforablade-rowaspectratioof2. ThedesignconstantsUse&forallcasesare:

—------ “’-- ..>-.—-------- -–, ~—.--——– ---,,. .,. .-

Page 42: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

.

MACATNNO.1795 41

Hub-tipm%tio. . . . . . . . . . . . . . . . . . . . . . ...0.6IdmitingMachnmberrelativetorotorblade . . . . . . . . .0.8

‘e,2-tx valued-v~~Vz,l ””””””””””””” ““”00”7

Polytropicefficiencyatmeanradius. . . . . . . . . . . . .0.9Vz,l,mfit. . . . . . . . . . . . . . . . . . . . . . . ...0.772

(ThelastValueresultsfmm theused? Vz,~,h/Ut= 0.8 inthestiplified-zadial-equilibriumcalculation,andisusedforallcases.) Theresultsofthecalculationareshowninfigure4.

Figure4(a)showsthedistributionofspecificmassflowinfrontofandbehindtherotorfortheclifferentoasesconsidered.ItmaybeseenthatinallcasesexcepttheMinite-aspect-ratiocase,thespecflicmassflow G/~ inureasestowardthehubfasterbehindtherotorthaninfrontoftherotor;inotherwords,passingthroughtherotorthegasmovestowardtheaxisofthemachine. Themagnitudeofthisdisplacementisob~inedfromthecontinuityrelationandisshowninfigure4(b).Inthesimplified-zadial-equilibriumcdculatim,itisassumedthatthereisnoradialmotion,butwhenthedistributionofspecificmassflowissubstitutedinthecontinuityequation(B5),quitelargeradialdisplacementacrossthebladeisobtained.Thisldndofcalcula-tionistheraforenota goodone.Inothercalculations,thedis-tributionsofgas’propertiesarecalculatedfromassumed.radialdisplacementsthataretobecheckedwiththedisplacementsrequiredfromthecontinuityrelationwiththesedistributions,andarethereforeconsistentinthemselves.Theradialdisplacementtobeusedintheapproximatecalculationfor A = 2 Isobtainedbytheapproximateformula(equation(50))andisabout25percentlowerthanthecorrectvalue.

Thevariationd axialvelocitiesispresentedinfigure4(c),whichshuwsthattheaxialvelocitiesincreasetowardthehubhallcasesbutatdifferentmtes. Thehighvalueofaxialvelocityatthehubbeforetherootallowstheuseofhigherturningsthroughoutthebladeheightwithoutexceedingthelimitingvalueof (Ve,z- Ve1)/Vz1 or O% atthehub. Italsohelpstogivea more~fom kch numberrelativetotherotorbladeoverthebladeheight.Asa result,thistypeofdesigngivesa higherpressureriseanda higherspecificmassfluw‘&ana free-vxmtextypeofdesignusingthesamedesignlimitations.Inordertoutilizethisadvantagefully,thevariationcd?axialvelocityshouldbeoorrectlydetemdned.

..,. .—. .—. . _.. . . ... . -.-..-—.-—.——-. ..-. ——... . . . . . . . ... . . . . —....... .. . .. . . .. ----- ------- .-–

..

Page 43: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

42 NACATNNO.1795

Thecalculatimofaxialvelocitybaaedonsimplifiedradialequilibriumgivesa resultclosetothezero-aspect-ratiocase,whichisalsotrueinthedistributionofotherpropertiesinthiscalculation,becauseinthecaseal?zeroaspectzatio,thecurva-turecausedbyradialmotionisnegligibleandthedifferenceingaspropertiescausedbytheradialdisplacementisverysmallinthecaseofa nontaperedpassage.

Thevariation& tangentialvelocitiesisshowninfigure4(d).Thesevelocitiesindifferentcasesvaryina stiil.armanner~atheclifferenceofmagaitudebetweenthemismainlyduetothedif-ferentvalueof at determinedbythedifferentvaluesat‘z,l,h% fithevariouscases.

Figure4(e)showsthevariationofairmglesenteringtherotorandstatorblades.Thedifferencebetweenthesimplified-radial-equilibriumcalculationandthecaseofaspectratioof2issigdficantthroughoutthewholebladeheight.Thesimplified-mdial-equilibriumcalculationgivesanerrorofabout-3°atthetipoftherotorbladeandatthehubcd’thestatorblades.Thisdifferenceresultsinanerrorintheangleofattackatthedesignyointbythatamountandtherangeofopezationisalsoreduced.-

ThevariationofMachnumberrelativetotherotorbladesisshownh figure4(f).Thesimplified-radial-equi13briumcalculat-ion givesa nearlyconstantvaluewhereasthemorecorrectcalcu-lationshowsthatMachnumberactuallydecreasesmorethan10per-centtowardthetipforthecaseaPblade-rowaspectratioequalto2. (Thisvariationisonlyabouthalfofthatofa similarfree-vortexcompressor.)

Figure4(g)showsthepressuredistributionsinfrontofandbehindtherotorandthepressureriseacross”therotoratdif-ferentradii.Thedifferenceinpressuredistributionsmayexplaintoa oertainextentthedifferencefoundbetweenmeasurementandsimp13fied-m3ial-equilibria calculation.Thepressureriseacrosstherotorisfairlyunifozminthecaseofanaspect=tio of2andisa des=blefeature.

ThevelocitydiagramsatthreeradiiforaspectratiosofO,2,and ~ areshowninfigure4(h).Ifthisstageisdsedasthefirststageofa compressor,thepermissibletiprotorspeedofthisdesignatstandardsea-levelconditionsisequalto868and826feetpersecondfor A = O and A = 2, respectively.The,

!

--- ..— .-. .— -—. ,— ..,, . -—, , — .— . .., .- .- ;,. . . ,.

‘. ,’ .4

Page 44: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795 43

syecificmassflowperunitannulusareacorrectedtostandardsea-levelconditionsisequalto41.5and40.0poundspersquarefootpersecond.for A = O and A = 2,respectively.

(2)Free-vofiexandconstant-total-enthalpycompressor.-ThedesignconstantsusedarethesameasinthepreviouEcalculation.Inaddition,Ve,l and Ve,2 areconsideredtobeequalto We,2~ We,l}respectively,atthemesamdius. ~ thistypeofdesign,thesimplified-radial-equilibriaapproximationIsequivalenttothezero-aspect-mtiocase,becauseaxialvelocityisalsocon-stantoverthebladeheightduetotheconstantH andconstant~withrespecttotheradiusandthenegligiblecurvatureeffectcausedbyzadialmotion.TWt is,thesamevaluesof Hl, H2,tl) Lz) ~z,l)- VZ,2 occurinbothcasesandtheentirecal-culationisthesame.(Seealsoequation(E6).)

Becausetheradialmotioninvolved‘inthistypeofdesignisdueonlytothecompressibilityofgas,thedifferencebetweenthezero-andi&inite-aspect-zwbiocasesisnotlarge;hencethecal-culationfora finite-aspect-mtiocaseisnotmade.

Thedistributicmd specificmassflowinfrontaE’~ behindtherotorispresentedinfigure5(a).Eveninthezero-aspect-ratioorsimplified-radial-equilibriumcasewitha constanttial-velocitydistribution,thereisconsiderablechangeindensity,whichrequiresanappreciableamountofoutwardmdialmotiontoobtainthegivendesignconditionsbehindtherotor.Althoughtheamountofthisradialmotionissmall(fig.5(b)),itseffectonthevariationd?@s propertiesisnotentirelynegligible.Itseffectcanbeseeninthecurvesoffigures5(c)to5(g),whicharesomewhatsimilartothesy?mnetrical-velocity-diagramandconstant-total-enthalpydesigninnaturebutofsmallermqpitudes.

Ifthisstageisusedasthefirststageata compressor,thepezmlssibletiprotorspeedatstandmiisea-levelconditionsisequalto758feetpersecondfor A = O. Thistipspeedisabout13percentluwerthanthatofthecorrespondingcaseufthepre-viouEdesign.Thespecificmassflowcorrected.tostandatisea-levelconditionsisequalto38.6poundspersquarefootcd?annularareapersecondfor A = O, whichis7 percentlowerthanthatofthecorrespondingcasecfthepreviousdesign.

. —.. ._. - .—. ——. —.-,

Page 45: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

9A liACA!L!NNO.1795

(3)free-vortexand~tit-totil-mtilpytmb~. -~e designcanstmtsusedh thecalculationare:~<1, Ut/a~,t= 0.5,

‘6,1,h/al,t= 008,‘z,l,m/al,t= ‘*4JV6,2= ‘> ti Qolytropicefficiencyatmeanzadiusequalto0.87.Forthestipllfied-mUal-equilibriumapproximationorzeroaspectratio~ Vz,lbt isconstantand.sois Vz2/ut,whichisfoundbythecontinuityrelationtoheequalto0.87$.Thesamevelooityatstation2 isused.forthecaseofinfiniteaspectmtio,thusma-kingtheonlydifferenceatsta-tion1. Theresultsofthecalculationareshowninfigure6.

Thedistributionofspecific=ss flowinfzwntofandbehbitherotorisshowninf@me 6(a).Becauseoftheconstantmlexitvelocity,thespecific~SS flw iSc~~t be~ therotor●EXceptforthecaseofinfiniteaspectratio,thereisaninwardradialmotionofgasinPssingthroughtherotor(fig.6(b)),the_tude ofwlhichisabouttwoandone-halfttiesthatinthepreviousfree-votiexcmpressor(fig.5(b)).

Thevariationofaxialvelocityinfront@ therotorisshowninfigure6(u).AnincreasingaxialvelocitytowardthehubaPabout15percentwouldberequiredforanaspectmtioof2.

Figure6(d)showstheradialvariationofgasanglesenteringrotorblades.The~ferenceisonlyimportantatthehub. ~ theactualcaseofanaspectratioof2,thestip~iedcalculationwouldgiveanangleofattack3°to4°toohighatthehub.

TheabsoluteandrelativeMachnwnbersd gasInfrontoftherotorareshmninfigure6(e).b theactualcaseofanaspectntio of2,theMachnumberatthehubisabout3 ~rcenthigherthanthes@lifieilcalculation.

Figure6(f)showsthepressuredistributioninfrontd therotor.Foranaspectratioof2,thepressuresatthetipandatthehubareabout2 percenthigherand3 percentlowerthanthesimp~iedcalculation,respectively.

Thevelocityd@3ramsatthreeradiiforthezen andimflniteaspectmtiosareshownh figure6(g).“

.— .. . . . -.- ~,,... ,$

,’ ?:,., ~------ .,

Page 46: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

o

NACATNNO.1795

SUMMARYOFANALYSISANDCAICUIATIONS

Inaxial-flowturbomachines,mdialmotionofgasoccursbecauseofthetaperingd’thepassageandthevariationofgasconditionsqGrOSSbladerOWSs~oifiedinthedesi~. Thedirec-tionandthemagnitudeofthismiialflowd6pendonthet~e of -design,thetaperingofthe@sSage,thehub-tipratio,theblade-rowas~ectratio,andthespeed& gasflow.Eveninthecaseatfree-vortextypeofdesignemployinga nontapendpassageandrequir~nochangeinvelocitydistributionsfromstagetostage,thereisanappreciableamountafoscillatoryradialmotionwithinthestage.

Thisradialmotiongivesanadditionaltezmtotheordinarymdial-equilibriumequation.Inthefreespcebetweenbladerows,thisadditionaltermisverynearlyequaltotheproductal?thesquareofaxialvelocityandthecurvaturecausedbythendialflow.Dependingonwhetherthecurvatureispositiveornegative,theradial-pressuregmiientcausedbythewhirlingmotionofgasisdecreasedorincreased,respectively,bythisadditionalterm.

Thedeterminationofthisradial-flowpathrequiresa longprocessofstep-by-stepcalculation.Itisfound,huwever,tliata stiusoidalradial-flow~th givesaneffectontheradialvaria-tionofgasconditicmbetweenbladezwwsassmallaspossiblewithoutdiscontinuityy inthecurvatureofthestreamline.Inasmuchasitrepresentsthemajorhamonicoftherad3al-flowpaththatmayefistinanydesigninwhichtheradialbladeforceiseffec-tivelysmall,thecalculationbasedonthissimple-al-flowpathgivesgod approximateresults.Itprobablyunderestimatestheeffectbecauseoftheneglect& higherharmonics.

TheanalysismadeofthemadmumcompatiblenumberofthedegreesoffreedomtispecH@ngtheradialvariationsofgaspropertiesinstationsbetweensuccessivebladerowsofa turbo-machineshowsthatundertheconventionaldesignprocedurethedesignerisfreetospecifytwoconditionsatanyonestationandoneconditionateachd theremainingstations.Thevariouswaystouseupthesedegreesd freedcmandtheresultantt~es ofdesignobtainedaretiscumed.

Theusualmethod@ calculation,whichneglectsthendialmotion,givesresultscloseonlytothecaseinwhichtheaxial

45

lengthofthebladerowismuchandisnotgoodforthecaseof

largerthanitsmdiallength,a finiteblade-rowaspectxatio.

,

.— -.. .—. ..-. ——--.— ---- .— --- .—.———.-. —- .— —-. .—. -—e ——.. ——— -— —----- -—. . ———.

..’ ‘,. ,

Page 47: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

46 NACATN~Oo 1795

Thedif5?erenceI&weentheresultsobtaindbytheusualmethodandthemethodsuggestedhereinisfound.tobequitelargeina designemployingconstanttotalenthalpyandsymmetricalvelocitydiagram.Calculationmadeforthistypeal?compressorusingthesamelimitingMachnmber,-e limi$ingturning,saneaxialvelocityatthemeanradius,andfor.a blade-rowaspeotratioaf2 givesthefollcndngdifferencesbetweentheUSUR1andthesuggestedmethod:

1.The~dialvariati~ofaxialvelocityinfrontoftherotoris13percentfortheusualmethodand28peroentforthesuggestedmethod,andthem?uiialvariationofaxialvelocitybehindthezmtoris53percentfortheformerand40p6rcentforthelatter(allexyresserlk ternsoftheirvaluesatthem- radius).

2.Theairanglesclifferfrom1°to3°atthehubandatthetip.

0

3.ThemadialvariationofWch numberrelativetotherotorbladeinthefoxmeris9 percentlowerthanthatinthelatter.

4.Themdialvariationinstatio-pressureriseaorosstherotor.is13percentforthefomerandonly2 prcentforthelatter.

5.Themassflowinthe fozmerinthelatter.

6.Thepermissiblezmtorspeed.higherthanthatinthelatter.-

LewisFl&ht~UISiOIllabo?xato~,

is4 percenthigherthanthat

intheformeris5percent

.

Nati=l Ad.-tisoryCcmmitteeforAeronautics,Cleveland.,Ohio,Ootober14,1948.

.

.. . ,.. -.— ————z —— ...— ..:- -—- -,........,. ., .-, ,. ,-., ,- -.,i.... ~~ .:

Page 48: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NAOA!CNNO.1795

APPENDIXA

47

DERIVATIONOFlQUNI’IONSIM

lhxnequation(3),thedefinitionof

&u= CvdT

thereisobtained

R=c -CvP

y= hCv

()~=2-d2P

mm equations(1)and(A4)

w

ANALYSIS

h, andtherelations

‘ (Al)

(A2)

(A3)

~a equation(2)andthedefinitionof h

QTds=dh-p

Usingequation(A4)

I?!romequtlone(2)and(3)

(A4)

(AS)

(A6)

(A7)

-.. — —- —.—— . . ... —— ..—~._ __ _ —- - —-—- -. ——..,. ~. .,. . . .

Page 49: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

48 NACATNNO.1795

() lq-~ @‘: ‘qp 7-1p

()=fid l-$

()Ad loge#-d(loge P)= y-l

Franequations(4)andthefollowingrelations

D? a~fi=~+fi”v)~

(?”v)Y =; W2-7X(V X7)

thereisobtained

-7 X(VXT)+$’AF+P +: V%+$V(V”7)

equations(A5)emd(A?)

;W2+; VP

Copbtitionwithequation

VH=~+TVs+~X(V

()*V; +;vp.VH - -

=VH -TVS

(AIO)yields

Fromequations(1)A (A6)

(A8)

(A9)

/’

(Ale)

(7,)

-— --— ----->- .-” ., :.;’ .“ ..-,,.. ,,,, ,

Page 50: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNITo.1795 ‘ 49

Bycombhingtithequation(4)

Whenequation(All)iscombinedwithequations(2)and(5)

~=Q+ g+:*+ v.{F+:[v%+*v(v*T)]}

Fmm equations(2)and(5)

T Ds 1—=Q+PDt

or

Ds :+R—=. 1!Dt P

(All)

(8)

(9)

Fromequations(6a),(3),and(A9),thefollowingformofcontinuityrelationisobtained:

(lo)

Equation(8a)isobtainedbyapplyingmotionandene~yequa-tionstoe masssystmwitha fixedcontrolsurfaceasshownbythesolidlinesinfigure3. tier steadyaxiallysyumetrim’1flow,themassMlow dmi b the dt iSequaltothe~SS outflowtijinthe dt, thestateofgaswithinthecontrolsurfaceisnotchanged,and.thewithrespecttobladeforceand.Sill’rom gas

stateofgasatstationsi and ~ isconstante. Byequation(A1O),thesumofthetangentialthetangentialviscousgasforcesexertedbytheparticlesonthesystemisequalto

—-.. ..-—-...-. :—— .— ~.— —.. ~ —.---———— —.. — --——,- ,.,’ ..’, . . .

Page 51: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

50.

lVACATTfNO.1795

Thetorqueaboutthez-axisexerted.bythesetangentialforceson

thesystemisthesystemby

thereforesimplythesetangential

D(rVe)— am~mat=Dt

b passingf- stationi to

D(rVo)Dt dmi andtheworkinp@to

forcesintimedt isequalto

stationj, besidereceivingthisworkinput,thegasparticlesaredoingworkagainsttheaxialandzadialviscousforcesexeri%dbythesurroundinggasparticles.However,thisnegativeworkis&ually-11, *-that theheatg~e~tedthegasstreamthentheandtheenergyequation

or

(HJ-Hi)dmi=L

fromthisfrictional-workheatadditioncancelstheforsteadyflowgives

if it isassumedisadded.backtonegativework,

‘t.!

whereQ denotestherateperunitmassatwhich

,.

(&)

thegasstreamsheetisreceivingheatf= etiernalsourcethroughbladesorotherpassagewalls.

ItMy benotedthatforsteadynonviscousflow,equation(8a)mn beobtainedbyusingequation(11).’Forsuchflow,equation(8)becomes

DH—=Q+~c~Dt

Fromequation_(n)itcanbeseenthat~ c~ isequalto F ● 6.However,~:U isequalto FeU or Fer@ and F@ is,byeq~- .

“D(rVe)tion(7h),equalto ~. Hencetheprecedingequationbecomes

*

—. . . . -.— ------- ‘— T—.7C=,,. . .—=.. > . .,..,,-.’ . . . . ;-

,.. . . .

Page 52: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

. .

In3A

NACA~NO. 1795 51

m D(rVe)—= Q+(I)Y.Dt (8a)

Whenequation(12)isgiven,theentropychangecanbeobtaineainthefolluwingmanner.Fiomequation(A9)and(3)

Butbyequations(12)and(3)

lDQ1 ——~ %p=n-l~l~eT

Substitutionintoequation

t Forsteadyaxially

Ds ~—=Dt

=R

(Al-2)gives

(++)%logeT

symmetricalflow,equation(A13)reducesto

(A12)

(AM)

Rorsuccessive@al stationsi and j a shortdistanceaprt,equation(A13)gives

S~(rj)-‘i “i)=R* P“ge‘$‘rJ)- 10ge‘i 4

(A14)

~smuch asthetemperaturechangebetweenthetwosuccessivesta-tionsismall,thetemperatureratiocanbeconsiderdequaltotheenthalpyratio:

\

.

—-. . ~.+ .— —.. —- —...—- -. —-----. —-. . --—-——.— .-.— -— -.—. - -- —-- -———,---

Page 53: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

52 NACATIfNO.1795

Substitution& equation(AI,5)intoequation(AI.4)gives

13J(rj)-Si(ri)=R *Hj-~

loge

%

Thedensity=tiobetweenthetwostationsequations(A9)and(3)

Combinationwithequation(AI.5)yields

P-J -—=e‘i

Substitutionintoequation(14)gives

Vz,j (Hj e ‘j‘q=%,i

V.2

vi2-—

2

(A15)

1s”obtainedfrom

(A16)

(14a)

P8CJl

‘i

‘R-ri

Page 54: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795

APPENDIXB

53

FBOMCONTINUITYEQUATION

Equation(X4)my bewrittenasa lineardifferentialequationfor r22 - a -tion ‘f ‘1’ ptidsd G2(r1)isknown

1‘l,t

~ (rl)r22= - 2r1drl+ r2,t2

~(mj

whendividedby r2,t2

.

r2

()

2

‘Z,t=1 r)2

1,2

‘2,t

r‘l,t

2 rl.rl,t

. dr~

rl,t

Thevalueofflowatstations1 and2 isthesame

(m)

~,t/~,t~S fo~dbytheccmditionthattoti IIBSS

————.—-— — .—_ . .. . ..,T_ ..—. .— —.. .—.n. .-. — —. —.+ _______ —— ..__

Page 55: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA~ NO.1795

2zs2%’-()r2,t G2,t

E&me

21-

(,)‘2,hr2t

)t ~ (rl)

()%,t Z>a

rl,t-% ) rl,t%,t q

,

.

(B!5)

.

—._....-.,.:.-- .-~ ---- .—.“ ._.’ ..:. ..... .— .——————— ,-.-”, -,,-. .. . .. . . . ,. -., -. -.. ,

Page 56: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NAOA~ NO.1795. 55

SIWMFTED—RAMAIt—Wm3BRIWEQIMTIOMS

~ Equationstocalculatedistributionsofgaspropertiesunderthesimplified-radial-equilibriumapproximationfora fewtypesofdesignaregiven.

FreeVortexandConstmtTotalEnthalpy

Forthisdesign

fromequation(26a)inthesectionentitled“Simplified-Radial-EquilibriumCalculation,”

allZ,i

dri =0

(cl)

(C2)

Thevariationintangentialvelocityis,byequation(Cl),r*“

=‘e,i,t ri%,i (C3)

Ateachstation,byusingequations(46)and(C3),

Whenthepreceding

PtY—.7

* . (V6t rt)2& *3

Pt A.

equationisintegratedfromr to rt, andtherelation

isused,thereisobtained

t

..-.,., -,.’ .,, .,-

----

, . ..- ,.

,-.—---— -— -- ..—. .._. .—— — . .. —-....,, ,. .,.. .

Page 57: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

56 NAOATNNO.1795

12 3

() ]}%-1F (M)

Thisequationholdsforallstations,providedtheappropriatevaluesof (Ve,t/~)areused.Itfollowsfromequation,(C2)thatateachstation

(C5)

Theradial.positionofgasatstation2 or3 isthenobtainedbynumericallyinte~tingequation(B5)usingdistributionsofspecificmassflowgivenbyequation(C3). Analternatemethodistoexpandtheright-handsideofeqyation(C4)intoa binominal

series.Because~ ~S (~~ - ~ isusuallylessthan

O.I.5,threetermswillbesufficient.Let ~r representtheaveragedensityintheannulusbetweenr and rt, then

1‘t

2fiprdr

fi(rt2- =) pt

...-,’

,..,.

‘. ..-.,,’ -~.’.. ...,,...,., ~-:.-.,.. .,.,--- .’.. ,.~:,‘ .,.,.’..,..>. rr2,t. . .,-,..,:.“........-*.,‘<... .+-:.,,.. . .LL_.v-lar. = 21nx

.... .. . .. .,,...,.,. . .. ..

., .:,:. . . . c.. . ... . -..:.., ...”.. . . . ,, .,, .

(C6)

Page 58: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

WA TI?190.1795.

,

55

SIWLIHEWR41KAL—IB2UIUBRIWEQUATIOMS +

Equationstocalculatedistributionsofgaspropertiesunderthesimplified-radial-equilibriumapproximationfora fewt~esofdesignaregiven.

FreeVortexandConstantTotalEnthalpy

Forthisdesign

5=0 dfi=o‘q (cl)

‘i

fromequation(26a)inthesectionentitled“Simplified-Radial-EquilibriumCalculation,n

(C2)

Thevariationintangentialvelocityis,byequation(Cl),r~“

%,i =Ve,i,t ri

Ateachstation,byusingequations(46)and(C3),

Whentheprecedingequationisintegratedfromrtherelation

(C3)

to rt, and

isused,thereisobtained

#

-. —.. — — —- - —y —— ————— -- ——-. .. ..—. —.. —,.,.. .,

Page 59: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

56 NACATNNO.1795

Thisequationholdsforallstations,providedtheappropriatevaluesof (Ve,t/~) arewed. Itfolkmsfromequation(C2)thatateachstation

G L~=pt (C5)

.

Theradialpositionofgasatstation2 or3 isthenobtainedbynumericallyintegratingeqution(B3)usingdistributionsofspecificmassflowgivenbyequation(C3). Analternatemethodistoexpandtheright-handsideofequation(C4)intoa binominal

0.15,threetermswillbesufficient.Letaveragedensityintheannulusbetweenr

&—=Pt

rrt

isusuallylessthan

Zr representtheand rt, then

J 2fiprdr

x(rt2-l’’qpt

andinasmuchas

f

rl,t

1

r2,t

2n2r,l‘z,l‘1 = 2flPr,2‘z,2drzrl 2

(C6)

Page 60: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

.

NACA~NOO 1795 57

or

‘r,l‘z,l(r1,t2- r12)‘;r,2‘z,2(r2,t2- r22)

r2) V26rlklt2- 1 ‘h 1 ‘rl*2 - ‘~h2).x=;r,z(r2,t2- r22) ‘z,l ;h,z(r2,t2- ‘2,h2)

Thechangeoftotalenthalpyacrosstherotoris

Then

Forcomprebor

% ‘1hvz,l,h—=1+~% ‘ljt‘l,t

where,

&v‘1.h 8,2,h-%,l,h

Vz,l,h

Z&‘ljh e,2,h-‘e,l,hthequantity v istobeassignedbythe

z,l,h

aesignerebasmuchas .

—.—.. . .. . .—__.__—. _____ _ -.—,- --_.——__ __, _ __ ___ ..__.,.,. ,.

Page 61: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

58

%

%,t2

‘1 t2hl,t+ ;2

%,t

alt2

r

21 Z,l,t + Ve,l,t2

= (Y-1)U1,22‘z %,t2 %,t2)

where~ isthelimitinglkchnumbertobechosenbythedesigner;

%— =1+%

‘2,hv.9,2,h- ‘e,l,h‘l,h‘z,l,h‘l,h

rlt % t ‘zlh

,,-:)%2biY+(’-vY: fi:$k::r’G::r]

(C8)

Thepressuredistributionateachstationisobtainedbyrais-ingitsdensitydistribution(eqpation(C4))tothepower7. Thepressurechangesbetweenthestationsatdifferentradiiareobtainedbycombiningthesepressuredistributionswiththepres-surechangeacrosstherotorattheradiuswherethevalueofthepolytropicexponentislmownorassumed.Theanglethatthegasvelocitymakeswiththeobtainedfromtheknown

axisofthemachineat&y radiusistangentialandaxialvelocities.

Page 62: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

.

.

NACATN190.1795 .59

SymmetricalVelocityDiagramandConstantTotalEnthalpy

Forthecaseofnontaperedpassage,rl= r2= r andfrmequations(28)and(32)

dL!l ’3522ii?=-aF=or

or

Ve,l 1=—%,t 2

%2 1-=—‘l,t 2

Bysubstitutingequation(C1O)

r % >—-.rl,t 2 r

r % ‘l,t

‘+Z r‘1,t I

intoequation(46),

(C9)

(Clo)

Pt y-2~ u2r % %jtz 1Y-y P =~% Zr( )

21Pt & ‘z ‘ljt% ‘l,t ~

wheretheminussignisusedforstationstation2. Integrationfromr to rt

1 andtheplussignforyields

fi,~ (Pt’-l- p7-1)=$ (rt2- r2]* ‘t~yt 10$e>b .

or

())2A5- * bl,t ~t!Jl,t rt2

.

-. —__ —- —----- -—. — -–——... -,. ,., . ,. ,.-

Page 63: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

60. NACA!lNHO.1795

.5,2(*737’’]}* (ml]

wheretheplussignisusedforstation1and.theminussiguforstation2.

Thevaria~ionofmdalvelocityisobtainedfromequation(26a):

dVz;*2

‘zx=-— r .,

((or

)‘l,t % ‘l,t= -6)y+ 2r

= - Ul,tz(’4) (cl.2)

Integrationfrom

()

v= 2

ul,t

wheretheplussignintheminussignforstation2.

m Z,2VZ,2 *

lasttermisusedforstation1 andtheEquation(C12)alsogives

(iv btu~t2-Vz,l :’1 = r ‘ (C14)

~ thecaseofa taperedpassage,thegasisassumedtoflowinconicalsurfaces,whichgivesthevalueof r2 asa function‘of rl. Eqyations(28)and(32)givethedistributionsof ~ andVe asshownbyequations(D6)~ (D7),respectively,giveninappendixD. Thedistributionsofaxialvelooityanddensityat

Page 64: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

.

NACATHX90.1795

station2 arethesameasAfterthesedistributionsmaSS flow G iSknownequation(E!5).

Incompressorsof

thosegivenbyareknown,the

61

equations(D8)and(15).distributionofspecific

andtheradialdisplacementisfoundfrom

thisdesign,themaximumvalueof

2L!?V6,2-%,1‘l,h isusually“zjl

setbythede”signer.l!hen

atthehub. ItsvaluethereIstobe

Z2Vrl h. e,2,h- %,l,h

vz,l,h‘z,l,h%,t

and

22QV - %,l,h ‘‘z,l,h‘l,h e,2,hbt=abh=>%,t

(Cls)‘‘l)t ‘l,t vz,l,h

Inthistypeofdesign,thelimitingMch numberisusuallyatthehub. Hencethedenominatorofthelasttermofequation(C8)shouldbereplacedby

!l%erestofthec~c~tion iStheSEUEas~ thepreviousdesi==

SyimnetricalVelocityDiagramandContitiononAxialVelocity

Forconstantworkoverthebladeheightandnontaperedpassage,equations(C9)to(Cll)stillhold.If dVz,2/drequalsO,equa-tion(27C)underSimplifiedRadial-EquilibriumCalculationgives

.—. ---- —.—--—— .7. — --.,— — ..— — —--—- -. ~--— -—---- ——-——- —--

,., ,

Page 65: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

.

62

Then

NACA!CN190.1795

(1/2

vZ,l = 1+ 2% %,t2 rvZ,lyt vz,l,t2

loge~)

Theenthalpyvariationforthistions(26a),(27a),and(C9)

%-H ~—= —.%,t2 4

caseisobtainedbyusingequa-

(C16)

rz( )1

rtl-— +; btloge;

‘l,t—

(C17)

~z,l ~Ontheotherhandif dr=

av 26Z,2

‘2,2 dr= - %,t t

r

VZ,2

(

1/2=1- 2% %,t2

vz,2,t )z log ~e rt (C18)

vz,2,t

Inordertomakethedistributionof H independentcompromisecondition

~z,l dVzzVz,l * t VZ,2 # = o

of bt, the

Page 66: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

lVA0A!J3?NO.1795 63

.

maybeused.Whenthisrelationisconibinedwithequation(27c),thereisobtained

Vz>l ( l/2= ~ + % ‘l,t

v)

loge:Z,l,t Vz,l,tz t

( 1/2Q_ . 1 5t‘1 t

)

. –—~ log A7z,2,t VZ,2,J e ‘t

(C20)

(C21)

Whenequation(26a)isappliedtostations1 and2,andthetworesultingequationsareadded

aH Utz ~—=— —dr2 rt2

Then

Iftherequirementofconstantworkoverthebladeheightisabandoned,itispossibletorequirenochangeintheaxial-velocitydistributionacrossthebladerows,whichistheincom-pressibleformoftheconditionofnoradialdisplacement

%,1 ‘3VZ,2‘VZ,3= dr2 = dr3 =0

‘1(C23)

Wheneqyation(C23)iscouibinedwithequation(27b)forthecaseofnontaperedpassage

(C24)

Bysubstitutingthesymmetryconditions(equations(31a)and(31b))intoequation(C24)

-.. ...—— .—— .-. _ _ -.——. .,:.. —.-—. - .———. ——,.-

Page 67: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

64

NACA9!HNO.1795 .

Simplificationyields

or

Ve,l _ rVe,l,t ‘l,t

Fromequations(32)and(C25)

E2r2~= ()rl,t

ve,2

()

‘2tr.~ —‘e,2,t rl,t rl,t

(C25j

(25a)

(C26)

(C26a)

‘Ihswheel-typerotationexistsbothinfrontofandbehindtherotor.Byequation(27),

=+ (tz,t-tl,t)rl, t

()=Wl,t % &, Y(C27)

whichmeansthattheworkdoneisproportionaltothesquareoftheradius.

Page 68: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

IWA

used

TNNo”.1795

APPENDIXD

65

METHODOFCA?lXIATIONFORZER3ANDINFINIIIZEASPECTRATIOS

Themethodofcalculationsisgivenforthetwotypesofdesigninthenumericalexamples..

IRreeVortex

Zeroaspectratio.-ratiocaseisthesameasapproximation.

andConstantTotalEnthalpy

h thistypeofdesign,thezero-aspect-thatofthesimplified-radial-equilibrium

?hflniteaspectratio.-Byequations(47)and(A17)

1

v P~Z,2=—=vZ,l P2 (,---$)

!231- (Ve,lz+vz,~2)(Dl)

~ - (v~,#+vz,22)

AnadditionalrelationbetweenVz,l and VZ,2 isnecessaryinordertosolvetheequation.Inthe-sectionentitled“Infinite-Aspect-RatioCalculation”twoequations.aresuggested.Forthisdesi~,equation(48)gives

or

vz ~ + VZ,2= constant>(D2)

*

\.—...—- .— —. — -— --— - ——.- ——.. .- —.—.

Page 69: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

66

andequation(49).gives

IWA TNNO 1795

dVz1 dVzzVz,l dr +VZ,2 & ‘o

or

v 12+ VZ,22z)

Alsofromequaticms(E4)&d (E5),

Vz,lVZ,2=

Thethreeprecedingequationsgive

= constant (D3)

negieotingthesquaretermin Ae

constant (D4)

practicallythesameresults.

A convenientprocedureofcalculationisasfollows:

(1)h ordertocomparetheresultwithothercases,thesamevalueof Vz,l,mmaybeused.Emmequation(Dl),Vz,2,misdetenmlned.

(2)Insertthesevaluesineitherequation(D2),(D3),or(D4)toobtaintheconstanth theequaticm.

(3)Assumea numberofvaluesof Vz,l;obtainVZ,2 bythesameequaticm.Thenusethefollou3ngequation,whichisobtainedfromequations(Dl)and(C3),tosolvefor r/rt #

( J-

S2-S1

2-e 2

‘$)2= ~E1~~;~$-l]~F:~’~~)2-(vz,2)2

(4)PlotVz,~ ~a Vz,2 againstr/rt,md obtainthetivaluesatthevaluesof r/rt destied.

.

Page 70: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

l-iot-l

NACA!!3?NO.1795 67

Whenthedistributionofaxialvelocityisknown,thedensityVariatiaatanystationisobtainedbyapplyingequation(A17)at— —thestaticm

P~= (D5)

ThepressurevariationateachstationIsobtainedbyraisingequa-tion(D5)tothe y power.Thepressurechangesacrossthestageatdiffezwntradiiaudtheairanglesereobtainedintheseinemannerasinthesimplified-radial-equilibriumcalculation.

SymmetricalVelocityDiagramPlusConstantTotalEnthalpy

Zeroaspectratio.-Withradialdisplacementnotequaltozero,theequationsfortangentialvelocitieseredifferentfromtheexpressionsofequation(C1O).Fromequations(28)and(32)

ve,2 E, r~

( )]+rl,t% ~

%,t = r2 Ul,t= 2r1,t 2r1 ~

(D7)

-————. -— .._—.—.——— .— ~–—.— —. -— —— -- —.,-

Page 71: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

68 NACATN~Oo 1795

Fromequation(26)withthelasttermnegligibleforthiscase,tiasmuchas r2-rl ismuchlessthanL,

Forstation1,fromequatim(D6)

dVz~

(

21 ‘1

)‘l,t% ‘l,t

(21 rl %

Vzjl# =-~~- 2 @rl.-ul,t –—-—1 rl 2 rl,t2 2r1)

Inte~ationfrcmrh to rl yields

whichisthesameasequation(C13).Forstation2,

dVzz 1(

(or12rl,t% ul,tVZ,2 & = -77+ 2 )

@r]2 r2

rlVZ,2dvz,2= 2 2 + btUl,t-~((orl 2)dr~

2r2.

r12 2

[)

rl ‘t d= -~%,t —+—2 (r2) rl,t rl

rl,t

dq

‘2

()‘1rl,t

Integrationtromrl,hto rl fieldsrl

rl,t

whichdiffersfromequation(C13).

.

Page 72: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

19ACATN190.1795

Thedensitydistributionatsimplifiedradialapproximation,obtainedbyusingequation(D!5).

69

station 1 is the sameas thewhereasthatatstation2 isThesolutimofthiscaseisa

processofsuccessiveapproximations.Valuesof rz(rl)obtainedinthesimplifiedradialapproximationcanbeusedhereasthestartingvalues.!l!henthedistributionsof ve2) Vz,2~P2~and

?4are‘calculatedfromtheprecedingequaions,andnewvalues

of r2rl) areccmputedfromequation(B5).Usually,onlytwoorthreecyclesarenecessarytoobtainthecorrectvalue,asthedifferencebetweenthiscaseandthesimplified-radial-equilibriumapproximationofthistypeofdesignissmall.

lhftiiteaspectratio.~Thefirstequationforthecondition~=G2 isthesameasequation(Dl).Thesecondequationnecessarytosolvethiscaseisa littlemorecanplicatedthanthat

‘+0. Ifequation(49a)intheprevioustypeofdesignbecause~isused

Then

.

or

v 2+VZ,22=-@2r2+ CmtmtZ,l

v la Vz22L+ r2 ~= -— + constantUta Utz rt2

(D1O)

.In order to compayethe resul’t ofthiscasewithothercases,theS- valueOf Vz,l,mmaybeused.Thenfromequation(Dl),Vz,2.m~isfound,andtheconstant”inequation(D1O)isevaluatedby’u~ingthissetof Vz,l,m~d Vz,2*m.A fewvaluesof Vz,lareassumedatanyother-givenradius”~th conespondingvalueeof VZ,2 obtainedfromequation(DIO\.ThecorrectvaluesofVz,land VZ,2thatwillsatisfyequation(Dl)ar%obtainedbyInterpolation.

,

.—. —-. . .... . . __. .___ ._ ..__ ..... . . _.,. —.. -—,. .—— ... ‘.

—— –.-. —.,

Page 73: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

.

70 WA TNNO. 1795

Afterthedistributionofaxialvelocityisknown,thedensitydistributionsareobtainedfromequations(Cll)and(D5),andthepressuredistributive,totalenthalpyobtainedinthesamemannerasbefme.

change, andairtiglesare

Po$!

Page 74: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATNNO.1795

APPENDIXE

71

APPROXIMATEVALUEOFRADIALDISPLACEMENTACROSSBLADEROW

AREDEMZWND BYDESIGNASFUNCTIONSOF rl

InthelatterpartofappendixD,distributionofaxialveloc-ityisexpressedintermsofknownH, ~> rl) ~d r2(r1).Alternatively,thisdistributioncanbeexpressedintermsofradialdisplacementanditsvaluedeteminedbythestiplified-radial-equilibriumcalculation,forwhichAe= O. Forthecaseofnontaperedpassage,itisseenframequation(21)

dVz~ dvzla Aefi2Vz,l &l ‘%,s drl ()‘T z Vz,12 (El)

.,

Bysubstitut~

binomialseries,equation(E2)becomes

. .

(E2)

() -2(rl+ Ae) for r2, expanding1 +~ ina

()

Ae2andneglectingtermsofgreaterorderthan ~’

(E3)

. -—— --- ..-. ... ,—. —-_ . . —.— , .,—..s —. .

.,. , ,.

Page 75: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

Il..

If Ae (q) iB known, equaticms

!.equatians In Tz, 12 and VZ,22,

,1

:’!‘j‘“l..;’

Zr

of

g AeArVZ,12= e L rm

(El)and (E3)maybesolvedasllne&flret-orAerdifferential4m

respectively,@ving(Ornl%tl%tieSubaorlpt1 on r)

[J

~2rr

OJ--

( )

Aedr‘V 28L ‘m~r Z,l,8 dr+ VZ,1,m2

‘m 1at-la

:1

() {J[-f2cp(r) ‘Lv zE2,:,.. 2Ae a 2 3(Ae)2 d ]()~ q(r)

VZ,22 = e —.~ 2,2, s + r3 * !2 -—#22e M + ‘Z,2,m2,,,., , r~,,

.’,, ‘m )1“

(E4)

‘.,1 (E5):

‘(r)=pedr+*{(Q2-[-d’]

‘m

and .wbeoript” m may here refer to w radius between hub and tSp.

I

Page 76: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATHNO.1795 73

Forthelhniklngcaseofzeroaspectratio,thelastterminequation(El)approacheszero,so Vz,l= V 1 s, whereasVZ,2isobtainedbyintegratingequation(E3)wi;~<hethirdtermneglected.

VZ>22= VZ,2,62- @z,2, s,m2 -vz,2,m2) +2 ~3[&t29ar

[

r(Ae)23— r4Jrm

(d“zWhenequation (E4)isintegrated

replacedby ye g(r) asinequation

()~2Vz,12=Vz,l,s2+e L Ye~l (r)

byPartsand Ae (rl)is(51),thereisobtained

(‘z,l,m2-‘z,l,m,s2)

(E6)

YT2() r~Yew(r) r IT2()--L Ye~l (r)

-e VZ,1,S2 & e drJ rm

inwhich

f

r

T1 (r)= g(r)~

rm

—_.. .—._———. ~ .- ..——— _ 7-——— -—- —-—-—-. —---- —,, ., ,,

Page 77: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

74

If itisdesiredtocomparebasisofthesameVz,l,m~

NACA~ NO● 1795

thegeneralcasewithothercasesonthethen-Vz,l,m= Vz,l,m,s” Bytheuseof

theprecedingequationthemeanvaluetheoremofintegralcalculus,~ bewrittenas

Yr2()~ Ye%(r)—

Vz,12-VZ,1,82L - e Vz,1,82-1

[.

2

()~

Ye~ (r)= VZ,l,B2 f3L 1-1 (E7)

2 i~a me~ =lue of Vz,l,s2whereVZ,l,B betweenr and rmzthemeandepend-onthechoiceofthefunctiong (r).Iftheapproximationi’smadetilettingVz,2jm= ‘z,2,mjs}equati~(E5)maybewrittenas

-VZ,22- VZ,2,S2= VZ,2,S2

Y’(2()e-z YeV2 (r)

-1

1 +Ye~3 (r)

L

- Ye2~4 (r) (E8j

where

Page 78: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

1035

!l!heohmgein

given g (r)

~) @

the dietmibutiona of Vzjl and VZ,2 w4th the maxhun dieplaoement ye for a

ie now detmmined by differentiating equationa (E7) and (E8), amming that rmj F

Qg

=2 me Indepemient of ye

2

()

:

Zd VZ,1,S2 Z2()

f’ Ye~ (r) q— We ‘zjl “dye ~ PI (r) e

Vz,12(I&3) &

– ~~’eq2(r)(-+,e{[,(42- km]])%,2,62 ~2’ e-r~ 1- VZ,2 = -2 Qe ()VZ,22 L

, ~(r)—+TZ,22

By .wbtraotlng equation (E1O) frcm

ye ~(r) ~4(r) “’Ye2 d~4(r)—— - 2Ye —- ——YZ,22 ‘e VZ,22 VZ,22 ‘ye

(Elo)

(IS) and neglecting three EIIMll tenm oontiining ye/Vz2

Page 79: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

76 NACATN190.1795

Theequaticmofcontinuity,equation(14),maybewrittenas

(E12)

byreplacingr2 with .1+ ycg (r).ItisherebeingassumedthatthedisplacementAc forthecontinuityequati~nhasthesamefozmas,butmaydifferinmagnitudefrom,Ae. lYthevariationof P1/P2(r)‘wtthyc isneglected,thatis,thedensitydistribu-tionisassumedtobedeterminedprimarilybythetangentialveloc-itydistribution,differentiationwithrespectto yc foragiveng (r) gives .

v &+lOG%= &d.)

VZ,2 *+l+yc$ g(r)(E13)

o

Ifthesamedistributionof Vz,l and VZ,2 satisfiesboththecontinuityandequilibriumequations,yc isa f~cti~ of yedeterminedbythedift’erentialequation,whichisobtainedbyditidingequation(En)byequation(E13):

2=b#Q&-.

- + l+yc+ [$(r)]

(—.2Vz,1,82() Yg ‘?1(r) VZ,2,S2

f12ez ()e-i YeW2 (.)

+Vz,12 VZ,22

{ }

1+ ye ‘g(r)]~j(~(rm)J2- 93(;) )(E14)

()VZ,22~ ql (.).

.

Page 80: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

.

NACAm No.1795 77

b ordertoevaluateequation(E14),theformof g(r),whichisimplicitintheequationsused,mustbefound.Anorder-of-magnituderesultmaybeobtained,however,

3y equatingtheright-handsideof

equation(E14)toa constant-K ~ ‘dete-ingthevalueoftheconstantfromtheboundaryconditionson g(r).BecausethisassumptioninvolvessettingdyC/dyeequaltoa uonetant,itisequivalenttotheassumptionalreadystatedthatfortheselected~e= ye g(r)}thecmrespondingAc differsonlyinamplitude.h ordertpobtaintheorder-of-magnituderesult,theright-handsideofequation(E14)issimplifiedby

(a)

(b)

(c)

SettingthefirsttwotermsInthebracketequalto2

Consideringthetezmsinvolvlngyc and ye negli@blewhentheyarecomparedwithunity

Ignoringthelastterminthebracketbecauseitoontaine2

()vz,#’: Inthedenominator.(Ifequation(E14)is

yrltten intermsuf2r/rtinsteadof r, theterm2

()~

()mt

L beoomes~ , whichisabout250for.A = 2reuld~ = 0.6.)’

Asa resultofthissimplification,equation(E14)becomes

RewritQ equation(E15)gives

()X2-zb

Whenequation(E16)is

(E15)

(E16)

differentiatedwithrespeotto r andtherelation ~~1 (r)= g(r) isused,

_.— ---“—.‘——— —------. — —=— — ——. — —.-———–—a .—-. —.—— .._-

Page 81: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

78

Thisequationandargumentdeterminedby

WA !!!IJEOO1795

gives g(r)asaBesselfunctionofthefirstorder(fi/LK).Thevalueof (fi/LK)andthusof K, iS

theboundaryconditionsg(~~ = g(rt)= O. Inorderthat g(r) have a singlemaximum,thefir-tieigen~lueofthisbound--valueproblemmustbetaken.A satisfactoryapproximationtothissolution may beobtainedwithoutfivolvingBesselfunotionsbyreplacingg(r)/r Inequation(E16)by g(r)/rm,differentiating,andsolving:

r.—’

g(r)= e ‘im(K1cos2r+%

where

The boundaryconditionsdetemine,usingthefm K,

l-tK=rt-rh

sln 2r)

-%- r-~g(r)=K3e m sin—art-~

firsteigenmlue.

9

(E17)

andtherefore,

(Thisa~roximteequalityiscorrectwithin1 percentfor(~/rt)s 0.5.) SubstitutingthisresultInequatim(E15)gives

b

@c =-& rt -~() 2

~ ‘- L ‘-A’ (E18)

lh thisveryroughapproximation dy~dye iS themf~e ewal to

minus the smmre oftheaspectratio.Byintegratingequation(E18)

‘1

.

.

.

Page 82: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

WA ~.NO. 1795 79

andbylettingYc,a equalthevalueof yc 0orre8P0nd@JtoYe= O (sinrpllfied-radial-equilibriumapproximation):

Y. = Yu,e - A2ye (E19)

A solutioncorresp~sto YC = ye = Yj w~chwh~ substitutedintoequation(E18)gives

Y~ sY=

1+A2

orA

A C,s=1+A2

(50)

REFERENCES

1.

2.

3.

4.

5.

6.

7.

Ruden,P.:~Oo1062,

InvestigatimofSingleStageAxialFans. NACA‘I!41944. ~

Howell,As R.: FluidmiOS Ofml c~pressorse WarEumrgenoyIssueNo.12pub.bylhst.Mech.Eng.(London),1945.(ReprintedinU.S.byA.SJ4.E.,Jan.1947,pp.441-452.)

Eukert,andKbrbaoher:The~UW throu@ml Turbinest~S OfLargeRadialBladeLength.NACATMNo.1118,1947.

Iamb,Horaoe:Hydrodynamics.CsnbridgeUtiv.Press,6thea.,1932,arti0k3S10,329,358.

Vazsonyi,Ani@ew:OnRotationalGasFlows.QuarterlyAppl.Math.,vol.3,no.1,Awil 1945,pp.29-37.

.

Sinnette,JohnT.,Jr.,Schey,OsoarW.,~ King,J.Austin:Perfom@noeofI?ACAEi@t-StageAxial.-FlowCompresswDesignedontheEasisofAirfoilThew. NACARep.No..758,1944.

Poohobrads@,B.: EffeotofCentrifugalForoeinAxial-Flow~b~s. -er=~ VO1O163~no.42~y-h 2% 1947}pp.205-207.

,- -—. ,— ~ — . .. —.~. ——.. ———.--—-..-—.--—— -.——--.- . .

Page 83: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

80 NACA TN No. 1795

(a) Stream surface over four stages of multistageturbo machine.

o

.

(b) intersection ofstream surface with

(c~ Intersection of streamsurface with axial plane.

plane normai to axis.

=5=

Figure i. - Stream surface over four stages of multistageturbomachine and its intersection with planes normai to

and containing axis of machine.

Page 84: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA TN No. 1795

r2 r3 ‘o

—.— i=0 L 2L—–

(a) Nontapered passage.

1 23

I

rl rz “3

(b) Tapered passage. =9=.

2. - Stations between blade rows.

.——.—-.—— .. . .. —.-— --...—. —,- .. ..-— — -. ———. .— ——,-. .,

Page 85: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

82 NACA TN ~0* 1795

ij

i

dz

1\\\\I Ir.

ID--‘J

I

t

1

; z

IIIII

vFigure 3. - Stationsi and j short distance apart.

.

Page 86: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

TN No. 1795

1.6

AI .4 .

1.2 “

A = O ors. r.e. , in front of rotorI

I*O

.04

●03

.02-MLL

.01

n

(a) Distribution of specific mass flow.

—-—— —

“– ––.6 .7 .8 .9 I .0

rl Irt

(b) Radial displacement across rotor.

Figure 4. - Symmetrical-vel ocity-diagram and constant–total-enthalpy compressor.

. ..—..———-_..— .- ———- . . ..— .-— —~ . . ——-—— .— -——— —,,- -- . . .

Page 87: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

I

I

>!

,.

,.,‘.

I!,,

“,.

“)

.,,!

.0

.9

.8

————

—- —&=c13

.7 ——— —

.60 .2 .4 .6 .8 1.

Figure & - Con

Vzlut

(cl Variation of axial velocities.

nued. Symmetrical-velocity-diagram and cortstant-total -enthalpycompressor.

I

oEc)>

Sso-c

Page 88: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATN No. 1795 85

—-—- -—-

(?J .5.>m

.4 ‘

.3

.2

=+.1

.*a

-. I.6 .7

.

F

A“= O I I-———–A - 2

—.— A=a

s.r. e.——— — A = 2, approximate .

I

I

..8

rl/rt.9 I .0

(d) Variation of tangential velocities.

gure 4. - Continued. Symmetrical–vel ocity-diagram and constant-total-enthalpy compressor.

\_.. ~—— ——- -—– —-—-. . . . .. . . —.?------ -—_.—. .— —..-— —. --, --=-

,.., ,“

Page 89: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA TN No. 1795

60

50

m~

● .; 4a

sL.-4

3C

,

20.6

---

//”,/ /7

/

—-

W“—--w

A-O——— . A-2—.— A=co

s.r. e.—.. A-2, approx imate

.7 - .8 .9 1.0

rl/rt

(e] Variation of air angles.

Figure 4. - Continued. Symmetrical-vel ocity-diagram and constant-total-enthalpy compressor.

Page 90: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA TN No. 1795 87

.6 .7 .8 .9 I .0

rl /rt

(f) variationof Mach number relative to rotor blades.

Figure 4. - Continued. Symmetr ical-ve]ocity-diag ram and constant-total-enthalpy compressor.

.—— ————— -..— ,, . -..-—.-———-. . — --— -—--–.--—- -- --..-” ,’

Page 91: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

88 NACA TN No. 1795

I

aN

1.1

E.

.3

-.2 ‘- — <

~..-..~

//

/

——— -. A=2—-—A-co

7 s.r.e.————A = 2, approximate

.0

~- - -

/

.9

I*I

1.0 — (or s.r.e.E..z\“c .

.9.6 .7 .8 .9 I .0

r,trt

(g) Pressure distributions and pressure rise across rotor.

Figure 4. - Continued. Symmetrical-velocity-d iagram and constant-total-enthalpy compressor.

Page 92: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

:

I

I

I

A -o A=2 A -03

At tip

Zi!hv4i!!i&$m&*‘1,.

At mean radius .

At hub

(h) Velocity diagrams at different radii.

Figure 4. - Concluded. Symmetr ica]-veloc lty-diagram and constent-t otal-anthalpy compressor.

2zo.

Page 93: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA TN No. 1795

.I*OO

.98

.92

.90

.012

.008L- Ls

.004

[a) Distribution of specific mass flow.

o.6

/ \

/

—.”_ * * ~

.7 .8rl/rt

.9 1.0

(b) Radial displacement across rotor..

Figure 5. - Free-vortex and constant-total-

●nthalpy compressor.

Page 94: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

I

:1

r’\L-

.0

I I.9

I

.8 I

A- 0 or s.r. e. v Z*2—-—A = m WI ‘%-$

.7

(c)

Figure 6. - Continued.

.4 .6 .e I .0

Vzlut

Variation of”axial velocities.

Free-vortex and constant-total-enthalpy compressor.

Page 95: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA TN No. 1795

50

40

malu

20

10

+ \ // /

a.

\.

\

V*

l+u,

/

A“ O or s.r.e.—. — A-a

—.6 .7

Figure”5. - Cent

.6 .7 ,

rllrt

(d) Variation of air angles.

nued. Free-vortex and constant-t otal-enthalpycompressor.

o

.

Page 96: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA TN No. 1795

F

.,

A=—-—A=

/

/

0 or s.r. e.

.8 .9 1.0

(e) Variation of Mach number relative to rotor blades.

gure 5. - Continued. Free-vortex and constant-total -entha pycompressor.

,

1

_ _._. —— — ———..——_ -— —

Page 97: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA TN No. 1795

1

I

I

1

.20

.15

.10

.05 /

“/

.00

/“

.95 -4 A =O or s.r.e.—.— A=~ 4

!.05

E.

-— -—.

z

=S=’

.95.6 .7 .8 .9 1.0

r{ f rt

(f) Pressure distributions and pressure rise across rotor.. .

Figure 5. - Continued. Free-vortex and constant-total-enthalpycompressor.

.

Page 98: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

r

f

I

‘.11!,

.i.!,

i

I

A- 0 or s.r. e.

A!12h%Vz, t %’,t

V,t W,t

l+Ut

APm %

v2,m ‘2,m‘1 m ‘I,m

‘2,m Uf,m

4.8hah

‘2,h‘1 h ‘I, h

UhUh

Figure 5. - Cone

At tip

A-en

Li!l!htVz,t

“I,t%,

Wl,t

UtL+

At mean radius

APm %

‘2,m ‘2,m

‘1 m ‘1 ,m

lJ2,1n‘I, m

A$lh

‘J2,‘f h

h‘I, h

Uh Uh ,

At hub

91 Veloclty diagrams at different radii.

uded. Free-vortex and constant-total-entha)py compressor.

Page 99: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

96

I ●o

wew

.9

.8

.025

.020

.015m xL LI I. #L L

.010

.005

0

NACA TN No. 1795\

(a) Distribution of specific mass flow.

;6 .7 .8 .9 I .0rllrt

(b] Radial displacement across rotor.

w

Figure 6. - Free-vortex and constant-total-enthalpy turbine.

.

Page 100: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

,,

4I,,

I

‘1I

I

L+.L-

.0

1I

.9\

t

\

\A- 0 or s.r. e. \

.8 —- —A=a

\

\\

.7/\

\

\

.6 ro 2. .4 .6 .8 t,

I

F

vz,lw~

(c) Variation of axial veloclty in front of rotor.

gure 6. - Continued, Free-vortex and constant-to tal-enthalpy turb

,0 ‘

ne.

I

Page 101: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACA TN No. 1795

55

45

35

WI

$ 25.

u

15

I

5

01

-5 ‘.6

\

+---

\

—v,

\u,

U2

x

\

\

A = O or s.r. e.—- —A-a

=@=

.7 .8 .9rl f rt

(d) Variation of gas angle entering rotor blade.

I .0

gure 6. - Continued. Free-vortex and constant-total-enthalpyturbine.

.

Page 102: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

NACATN No. 1795

.

.

a->-

a-*-

.8

.7

.6

,

\\

\\

-t-

5==\..A = O or s.r. e.

—. —As~ I=b-\. -—

.7 .8 .9 I .0rl/rt

(e) Variation of” Mach number in front of rotor.

6. - Continued. Free-vortex and constant-total-enthalpyturbine.

,

~-.——————-,——————— —. - —.—.-. _..——.,,

Page 103: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

!

I00 NACA TN No. 1795

.7 .8 .9 I .0

rl /rt

(f) Pressure distribution.

Figure 6. - Continued. Free-vortex and constant-total -enthalpy turbine.

Page 104: =qnJj7 - Digital Library/67531/metadc... · i i (“(i i 1 i 1, nationaladvisorycommittee foraeronautics technicalnote no.1795 applicationofradial-equiijbrjumconditiontoaxial-flow

1035

,,

A = O or s.r. e. A-m

*,, ‘&tUt

At tip

*D. VA

‘2,m

At mean radius

At hub

(g) velocity diagrams at different radii.

-

Figure 6. - Concluded. Free-vortex and constant-total-enthalpy turbine.

-1z

zo.