q.p. 70863 strength of materials - m.e. | b.com

28
Q.P. 70863 STRENGTH OF MATERIALS (DEC 2019 SEM3 MECHANICAL) Q1) a) Derive an expression for the strain energy due to suddenly applied load. (5) Ans: Consider a member of length L, cross-sectional area A And subjected to suddenly applied load P. let the instantaneous Deformation of member be and the corresponding Instantaneous stress developed be . The load verses deformation Curve would be a straight line. Now work done by the load = area under load-deformation curve. = x . We know strain energy U=work done. = x . = 2 2 . x = 2 2 . = 2 . โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(1) But stress due to gradually applied load = f= . =2f. โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(2) Also =2 . Equations 1 and 2 indicate that sudden loads produce twice the stress thereby resulting in twice the strains as compared to the same loads when gradually applied. P P Load 0 deformation L

Upload: others

Post on 14-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

Q.P. 70863

STRENGTH OF MATERIALS (DEC 2019 SEM3 MECHANICAL)

Q1)

a) Derive an expression for the strain energy due to suddenly applied load. (5)

Ans: Consider a member of length L, cross-sectional area A

And subjected to suddenly applied load P. let the instantaneous

Deformation of member be ๐›ฟ๐ฟ๐‘  and the corresponding

Instantaneous stress developed be ๐‘“๐‘ . The load verses deformation

Curve would be a straight line.

Now work done by the load

= area under load-deformation curve.

= ๐‘ƒ x ๐›ฟ๐ฟ๐‘ .

We know strain energy U=work done.

๐‘ˆ = ๐‘ƒ x ๐›ฟ๐ฟ๐‘  .

๐‘ˆ =๐‘“2๐ด๐ฟ

2๐ธ.

๐‘ƒ x ๐›ฟ๐ฟ๐‘  = ๐‘“๐‘ 

2๐ด๐ฟ

2๐ธ.

๐‘“๐‘ = 2๐‘ƒ

๐ด. โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ.(1)

But stress due to gradually applied load = f= ๐‘ƒ

๐ด .

๐‘“๐‘ =2f. โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ(2)

Also ๐›ฟ๐ฟ๐‘ =2 ๐›ฟ๐ฟ. Equations 1 and 2 indicate that sudden loads produce twice the stress thereby

resulting in twice the strains as compared to the same loads when gradually

applied.

P

P

Load

0 deformation

L

๐›ฟ๐ฟ

Page 2: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

b) Derive the relation between load, shear force and bending

moment (5)

Ans:

Fig. (a) shows a beam carrying a general loading. Consider an element of the

beam formed by taking two cutting sections m-m and n-n distance dx apart. The

general loading over the element can be assumed to be a u.d.l. of intensity w per

unit run since dx is very small.

On the right face of the element the shear resistance force V and moment

resistance M is developed. On the left face the shear resistance force has an

increment of dV and becomes V + DV, while the moment resistance M increases

by dM and becomes M + dM. Since the beam is in equilibrium, an element of the

beam must also be in equilibrium.

Applying Conditions of Equilibrium to the element

Using Fy = 0 + ve

(v + dV) - V - w dx = 0

.: dV = w dx or dV

dx=W .......... 1

Equation 1 implies that the rate of change of shear force at any section represents

the rate of loading at that section.

Now using ฦฉM = 0 +ve

Taking moments about section m-m

(M + dM) - M - V dx โ€“ (w dx) x โ…†๐‘‹

2 =0.

m n dx/2 w dx

V+dV M

A B

M+dM V

m n

(a) (b)

dx dx

Page 3: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

dM - V dx - w (โ…†๐‘‹)2

2 =0.

The square of a small quantity can be neglected, we therefore have

dM = Vdx or dM

dx=V ....... 2

Equation 2 implies that the rate of change of bending moment at any section

represents the shear force at that section.

c) Write the assumptions made in theory of pure torsion and derive torsional

formula. (5)

Ans: Assumptions made in pure torsion theory:

The material of the shaft is homogenous and isentropic throughout its length.

Circular sections remains circular and planar.

The twisting moment T acts in a plane perpendicular to the shaft axis.

At any section, the radial lines remain straight.

Hookeโ€™s law is valid.

Derivation of Torsion Equation

Consider a solid cylindrical shaft of radius R and length L be subjected to an equal

and opposite twisting torques of magnitude T at the ends of the shaft such that the

axis of the torques coincide with the shaft axis o-o. The shaft is therefore in pure

torsion.

Consider a straight fibre AB on the surface of the shaft and parallel to the shaft

axis o-o. Now on application of the twisting torque T, the initially straight fibre AB

gets twisted into a helix AC. The corresponding angle BAC =ษธ represents the shear

strain of the fibre. Let ๐œ be the corresponding shear stress developed in the fibre.

Shear strain of the fibre = ษต = ๐ต๐ถ

๐ฟ .

Now let ษต be the angular movement of the radial line OB to new position OC.

From geometry Arc BC = R x ษต.

.:Shear strain of the fibre = ษต = ๐‘…๐‘ฅ ษต

๐ฟ .

We know , Modulus of Rigidity G=๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘ 

๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘–๐‘› .

G= ๐œ

ษธ.

๐œ = G. ษธ

A

C

B L

Page 4: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

๐œ = G x ๐‘… ๐‘ฅ ษต

๐ฟ .

๐œ

๐‘…=

G.ษต

๐ฟ โ€ฆโ€ฆโ€ฆโ€ฆ.(1)

consider a cutting section m-m taken to cut the shaft into two parts. Consider the

equilibrium of the left part of the shaft.

Now consider an elemental area dA at a distance r from o subjected to shear stress

q. Let ๐œ be the shear stress in a fibre on the shaft surface i.e.at distance R from o.

we know that the shear stress distribution along the radial line varies linearly with

the radial distance from the axis of the shaft.

Shear stress on the elemental area= q= ๐‘Ÿ

๐‘…x ๐œ .

Hence, shear resistance force developed by elemental area = qdA = ๐‘Ÿ

๐‘…x ๐œ dA.

Now. Moment of resistance developed by the elemental area = ๐‘Ÿ

๐‘…x ๐œ dA x r.

Total moment of resistance offered by the cross section of the shaft

=ฯ„

Rโˆซ r2 =

ฯ„

Rร— J.

Here, โˆซ r2 โ…†A = J is the polar moment of inertia of the shaft section about the axis

of the shaft.

Now

Torque transmitted by shaft = Moment of resistance t developed in the Shaft

T =ฯ„

Rร— J

T

R=

I

J โ€ฆโ€ฆโ€ฆ..(2)

Comparing eqn 1 and 2, we get

ฯ„

Rโˆ’

T

J=

Gฮธ

L

Above equation is referred to as the equation for pure torsion.

Page 5: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

d) Draw shear stress distribution diagram for symmetry I section, T section

and rectangular section. (5)

Ans: 1. Rectangular Section.

Consider a rectangular section of dimensionsโ€™ b x d.

The N.A passes through the centroid at d/2 from the base.

Consider a layer m-m at distance y from the N.A.

area above layer m-m, A=b x (d

2โˆ’ y)

Distance of the centroid of shaded area from N.A,

yฬ… = y +1

2(

d

2โˆ’ y)

= y

2+

d

4=

1

2(

d

2+ y)

Using shear stress equation

๐œ =vร—(Axyฬ…)

Iโ‹…b.

๐œmโˆ’m =v[b(

โ…†

2xy)ร—

1

2(

โ…†

2+y)]

b โ…†3

12ร—b

.

๐œmโˆ’m = 6V

bd3 (d2

4โˆ’ y2) โ€ฆโ€ฆ.(1) General relation for shear stress

The above equation indicates parabolic nature of shear stress variation

At top and bottom edge y =โ…†

2 , ๐œ=0.

Also ๐œ would be maximum when y=0

๐œฬ…max =3v

2bd ... (2) Relation for maximum shear stress

For a rectangular section (bxd) subjected to vertical shear V.

Average shearing stress = ๐œ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ =๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’

๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž . ๐œ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ =

๐‘‰

๐‘ ๐‘‹ โ…† โ€ฆ..(3)

From equations (2) and (3)

๐œ๐‘š๐‘Ž๐‘ฅ=1.5 ๐œ๐‘Ž๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’

This shows that for a rectangular section the maximum shear stress which occurs at

the NA is 1.5 times the mean or average shear stress resisted by the section.

d

yฬ… y

b

Page 6: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

2. symmetry I section

Consider a symmetrical I section of flange width b,

Web width b, web depth d and overall depth D.

The N>A passes through the centroid at D/2

From the base.

Shear stress analysis in the flange.

Consider a layer m-m at a distance y from N.A

Width of layer m-m=B

area above layer m-m, A=B(๐ท

2โˆ’ ๐‘ฆ).

Distance of centroid of shaded area from N.A

C =D

2โˆ’

(D

2โˆ’y)

2=

(D

2+y)

2 .

Using ฯ„ =๐‘‰ ๐‘‹ (๐ด ๐‘‹ ๐‘‰)

๐ผ.๐‘ .

ฯ„ ๐‘šโˆ’๐‘š(๐‘“๐‘™๐‘Ž๐‘›๐‘”๐‘’)=vxB

IxB(

D

2โˆ’ y)

(D

2+y)

2.

ฯ„ ๐‘šโˆ’๐‘š(๐‘“๐‘™๐‘Ž๐‘›๐‘”๐‘’)= v

2I(

D2

4โˆ’ y2). โ€ฆ.general relation for shear stress in flange.

Shear stress analysis in the web.

Consider a layer nโ€“n at a distance y from the N.A

Width of layer n-n= b.

Shaded area above layer n-n, A=๐ด1+ ๐ด2.

Where ๐ด๐ด1 = ๐ต (๐ท

2โˆ’

โ…†

2) and ๐ด2 = ๐‘ (

โ…†

2โˆ’ ๐‘ฆ)

Distance of centroid of ๐ด1 from N.A

Y1ฬ… =๐ท

2โˆ’

1

2(

๐ท

2โˆ’

โ…†

2) =

๐ท

4+

โ…†

4 =

๐ท

2+

๐‘‘

2

2 .

Distance of centroid ๐ด2 from N.A yฬ…2 = ๐‘ฆ +๐‘‘

2โˆ’๐‘ฆ

2=

๐‘ฆ+๐‘‘

2

2 .

Using ฯ„ =V x (A x yฬ…)

๐ผ.๐‘ .

Using ฯ„๐‘›โˆ’๐‘› = ๐‘‰ ร—๐ด1ร— ๏ฟฝฬ…๏ฟฝ1+๐ด2ร—๏ฟฝฬ…๏ฟฝ2

๐ผ.๐‘ .

Page 7: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

= v

Ib[B (

D

2โˆ’

d

2)

(D

2+

โ…†

2)

2+ b (

d

zโˆ’ y)

(y+โ…†

2)

2] .

= ๐‘‰

8๐ผ๐‘[ ๐ต(๐ท2 โˆ’ ๐‘‘2) + ๐‘(๐‘‘2 โˆ’ 4๐‘ฆ2)] . โ€ฆโ€ฆโ€ฆ. general relation

for shear stress

The maximum shear stress is at y=0 i.e. at N.A.

ฯ„๐‘š๐‘Ž๐‘ฅ =๐‘‰

8๐ผ๐‘[ ๐ต(๐ท2 โˆ’ ๐‘‘2) + ๐‘2] โ€ฆโ€ฆ relation for max shear stress.

Shear stress in flange at the flange and web junction i.e. at ๐‘ฆ =โ…†

2 .

ฯ„๐ฝโˆ’๐ฝ(๐‘“๐‘™๐‘Ž๐‘›๐‘”๐‘’) =๐‘‰

2๐ผ(

๐ท2

2โˆ’

โ…†2

2) =

๐‘‰

8๐ผ(๐ท2 โˆ’ ๐‘‘2) .

Shear stress in web at the flange and web junction i.e. at ๐‘ฆ =โ…†

2 .

ฯ„๐ฝโˆ’๐ฝ(๐‘ค๐‘’๐‘) =๐‘‰

8๐ผ๐‘[๐ต(๐ท2 โˆ’ ๐‘‘2) + ๐‘ (๐‘‘2 โˆ’

4โ…†2

4)

= ฯ„๐ฝโˆ’๐ฝ(๐‘ค๐‘’๐‘) =๐‘‰

8๐ผ๐‘[๐ต(๐ท2 โˆ’ ๐‘‘2)]. โ€ฆโ€ฆโ€ฆ (2)

From equations (1) and (2) we understand that the stress in web drastically

increases by ๐ต

๐‘ times the corresponding stress in the flange in the junction

Layer J-J of flange and web.

e) write the assumption for simple bending and derive and derive the flexural

formula. (5)

Ans: assumptions made in theory of simple bending:

The material of beam is homogenous and isotropic.

The beam is initially straight and all the longitudinal fibres bend in circular

arcs with a common centre of curvature.

Members have symmetric cross sections and are subjected to bending in the

plane of symmetry.

The beam is subjected to pure bending and the effect of shear is neglected.

Plane(transverse) sections through a beam taken normal to the axis of the

beam remain plane after the beam is subjected to bending.

The radius of curvature is large as compared to the dimensions of the beam.

Flexural formula:

Consider a beam section under pure sagging bending. Here the layers above

The N.A are subjected to compressive forces. The magnitude of this

Compressive force is proportional to the location of the layer from the N.A

Page 8: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

similarly, the layers below the N.A are subjected to the tensile forces in all the

Layers about the N.A is known as the moment of resistance of the section.

The moment of resistance is a result of bending and is a resisting moment to

The applied resistance is result of bending and is a resisting moment to the

Applied bending moment.

We know that, force on layer=๐ธ

๐‘…. ๐‘ฆ. ๐‘‘๐ด .

Moment of this force about N.A =๐ธ

๐‘…. ๐‘ฆ. ๐‘‘๐ด. ๐‘ฆ.

= ๐ธ

๐‘…. ๐‘ฆ2. ๐‘‘๐ด.

Total moment of forces in different layers

= moment of resistance = โˆซ ๐ธ

๐‘…. ๐‘ฆ2. ๐‘‘๐ด.

= ๐ธ

๐‘…โˆซ ๐‘ฆ2. ๐‘‘๐ด.

If M is the external bending moment, then the moment of resistance should be

equal to the bending M.

๐‘€ =๐ธ

๐‘… โˆซ ๐‘ฆ2. ๐‘‘๐ด.

But โˆซ ๐‘ฆ2. ๐‘‘๐ด. represents the second moment of area or the moment of inertia I

Of the section about the N.A

๐‘€ =๐ธ

๐‘… ๐‘‹ ๐ผ or

๐‘€

๐ผ=

๐ธ

๐‘… โ€ฆโ€ฆโ€ฆโ€ฆ.(1)

But ๐‘“

๐‘ฆ=

๐ธ

๐‘…

Comparing it with equation (1), we get.

๐‘“

๐‘ฆ=

๐‘€

๐ผ=

๐ธ

๐‘… .

Since the stress f is due to bending we denote it as ๐‘“๐‘ and would refer to it as

Bending stress.

๐‘“๐‘

๐‘ฆ=

๐‘€

๐ผ=

๐ธ

๐‘… . โ€ฆโ€ฆ equation of bending or flexure equation.

Page 9: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

f) find the maximum power that can be transmitted through 50mm diameter

shaft at 150 rpm, if the maximum permissible shear stress is 80 N/๐’Ž๐’Ž๐Ÿ.(5)

Ans: N= 150 rpm.

๐œ” =2๐œ‹๐‘

60 =

2๐œ‹ร—150

60= 15.70 rad/s.

D= 50 mm.

๐œ = 80 ๐‘/๐‘š๐‘š2.

Polar moment of inertia ๐ฝ =๐œ‹

32๐‘‘4.

โˆด ๐ฝ =๐œ‹

32ร— (50)4.

๐ฝ = 245.43 ๐‘š๐‘š4.

Using torsions equations

๐œ

๐‘…=

๐‘‡

๐ฝ

80

25=

๐‘‡

245.43.

โˆด T= 785.376 N-mm.

But

P=T x ๐œ”

= 785.376 x 15.70

= 12330.4 W.

Power developed by the shaft = 1.23 kW

Page 10: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

Q.2)

a) A bar of brass 20mm is enclosed in a steel tube of 40mm external diameter

and 20mm internal diameter. The bar and the tubes are initially 1.2 m long

and are rigidly fastened at both ends. If the temperature is raised by 60ยฐC,

find the Stresses induced in the bar and the tube.

Given: ๐‘ฌ๐’”= ๐Ÿ ร— ๐Ÿ๐ŸŽ๐Ÿ“ N/๐’Ž๐’Ž๐Ÿ.

๐‘ฌ๐’ƒ = ๐Ÿ ร— ๐Ÿ๐ŸŽ๐Ÿ“ ๐‘ต/๐’Ž๐’Ž๐Ÿ.

๐œถ๐’” = ๐Ÿ๐Ÿ. ๐Ÿ” ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”/ยฐ๐‘ช.

๐œถ๐’ƒ = ๐Ÿ๐Ÿ–. ๐Ÿ• ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ”/ยฐ๐‘ช. (10)

Ans:

Steel tube

Brass bar steel tube

d= 20mm. ๐‘‘0= 40mm.

L=1.2mm=1200mm. ๐‘‘๐‘–= 20mm.

A=๐œ‹

4ร— ๐‘‘2. A=

๐œ‹

4ร— (๐‘‘0

2 โˆ’ ๐‘‘๐‘–2).

=๐œ‹

4ร— (20)2. = 942.47 N/๐‘š๐‘š2.

= 314.15 ๐‘š๐‘š2. ๐ธ๐‘  = 2 ร— 105 ๐‘/๐‘š๐‘š2.

๐ธ๐‘ = 1 ร— 105 ๐‘/๐‘š๐‘š2. ๐›ผ๐‘  = 11.6 ร— 10โˆ’6/ยฐ๐ถ.

๐›ผ๐‘ = 18.7 ร— 10โˆ’6/ยฐ๐ถ.

T=60ยฐ๐ถ.

Load sharing relation:

Force in steel tube= force in brass bar.

๐‘ƒ๐‘  = ๐‘ƒ๐‘.

๐‘“๐‘ ๐ด๐‘  = ๐‘“๐‘๐ด๐‘.

๐‘“๐‘  ร— 942.47 = ๐‘“๐‘ ร— 314.15.

๐‘“๐‘  = 0.333๐‘“๐‘. โ€ฆโ€ฆโ€ฆ.. (1)

Brass bar

Page 11: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

Strain relation:

๐›ฟ๐ฟ๐‘ ๐‘ก๐‘’๐‘’๐‘™ = ฮด๐ฟ๐‘๐‘Ÿ๐‘Ž๐‘ ๐‘ .

[๐‘“๐‘Ÿ๐‘’๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› + ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘›]๐‘ ๐‘ก๐‘’๐‘’๐‘™ =

[๐‘“๐‘Ÿ๐‘’๐‘’ ๐‘’๐‘ฅ๐‘๐‘Ž๐‘›๐‘ ๐‘–๐‘œ๐‘› โˆ’ ๐‘–๐‘›๐‘‘๐‘ข๐‘๐‘’๐‘‘ ๐‘๐‘œ๐‘›๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘›]๐‘๐‘Ÿ๐‘Ž๐‘ ๐‘ .

[๐›ผ๐‘‡๐ฟ +๐‘ƒ๐ฟ

๐ด๐ธ]

๐‘ ๐‘ก๐‘’๐‘’๐‘™= [๐›ผ๐‘‡๐ฟ +

๐‘ƒ๐ฟ

๐ด๐ธ]

๐‘๐‘Ÿ๐‘Ž๐‘ ๐‘ .

[(11.6 ร— 10โˆ’6) ร— 60 +๐‘“๐‘ 

2ร—105] = [(18.7 ร— 10โˆ’6) ร— 60 โˆ’

๐‘“๐‘

105].

0.5๐‘“๐‘ +๐‘“๐‘=42.6.

Substituting value of ๐‘“๐‘  from eqn 1 in eqn 2, we get.

0.5(0.333๐‘“๐‘) + ๐‘“๐‘ = 42.6.

๐‘“๐‘ = 36.51 ๐‘/๐‘š๐‘š2.

๐‘“๐‘  = 0.333 ร— ๐‘“๐‘

๐‘“๐‘  = 0.333 ร— 36.51.

๐‘“๐‘  = 12.15 ๐‘/๐‘š๐‘š2.

b) the state of stress at a point in a strained material is as shown in fig.

Determine

(1) the direction of principal planes.

(2) the magnitude of maximum shear stress .

Indicate the direction of all the above by a sketch. (10)

Ans: given:

๐œŽ๐‘ฅ = 200 N/๐‘š๐‘š2.

Page 12: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

๐œŽ๐‘ฆ = 150 N/๐‘š๐‘š2.

๐œ๐‘ฅ๐‘ฆ = 100 N/๐‘š๐‘š2.

๐œŽ1,2 = (๐œŽ๐‘ฅ+๐œŽ๐‘ฆ

2) ยฑ โˆš(

๐œŽ๐‘ฅโˆ’๐œŽ๐‘ฆ

2)

2+ ๐œ๐‘ฅ๐‘ฆ

2 .

= 175 ยฑ โˆš252 + 1002 .

= 175 ยฑ 103.077.

๐œŽ1 = 278.077 ๐‘/๐‘š๐‘š2.

๐œŽ2 = 71.923 ๐‘/๐‘š๐‘š2 .

๐œ๐‘š๐‘Ž๐‘ฅ = 103.077 ๐‘/๐‘š๐‘š2.

tan 2๐œƒ๐‘ =2 ๐œ๐‘ฅ๐‘ฆ

๐œŽ1โˆ’ ๐œŽ2.

tan 2๐œƒ๐‘ =2ร—100

50 = 4.

โˆด ๐œƒ๐‘ 1 = 37.98ยฐ and ๐œƒ๐‘2 = 90 + 37.98= 127.98ยฐ .

Page 13: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

Q3)

a) find slope at point A and B, deflections at points C and D for a beam as

shown in fig. also find the maximum deflection. Take E= 200GPa and

I=๐Ÿ๐ŸŽ๐Ÿ– ๐’Ž๐’Ž๐Ÿ’ . (10)

Ans: 12 kN/m 5kN

๐ป๐ต 3m 3m 3m 2m

๐‘…๐ด ๐‘…๐ต

Finding support reactions:

Taking moment about point A: +ve.

12 ร— 3 + 5 ร— 9 โˆ’ ๐‘…๐‘ฉ ร— 11 = 0.

โˆด ๐‘…๐‘ฉ = 7.36 ๐‘˜๐‘.

โˆ‘๐น๐’€ = 0. +ve.

๐‘…๐‘จ + ๐‘…๐‘ฉ โˆ’ 12 โˆ’ 5 = 0.

๐‘…๐‘จ + 7.36 โˆ’ 12 โˆ’ 5 = 0

โˆด ๐‘…๐‘จ = 9.64 ๐‘˜๐‘.

Page 14: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

x

2(๐‘ฅโˆ’8)2

2 kN/m 5kN

๐ป๐ต (x-8)m 3m 3m 2m

np

๐‘…๐ด x ๐‘…๐ต

Taking section x-x near support A.

Distance of section x-x from point B=X

Taking moment about section x-x.

โˆด โˆ’ ๐‘…๐ต ร— ๐‘‹ + 5 ร— (๐‘‹ โˆ’ 2) +2(๐‘‹ โˆ’ 8)

2ร— (๐‘‹ โˆ’ 8) = ๐‘€๐‘ฅ๐‘ฅ

Now we have,

๐ธ๐ผ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2= ๐‘€

๐ธ๐ผ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2= โˆ’7.36 ร— ๐‘‹ + 5 ร— (๐‘‹ โˆ’ 2) + (๐‘‹ โˆ’ 8)2

Integrating both the sides w.r.t X, we get.

๐ธ๐ผโ…†๐‘ฆ

โ…†๐‘ฅ= โˆ’

7.36๐‘‹2

2+

5(๐‘‹โˆ’2)2

2+

(๐‘‹โˆ’8)3

3+ ๐‘1. โ€ฆ..(eqn for slope).

Integrating both sides w.r.t X, we get.

๐ธ๐ผ. ๐‘ฆ = โˆ’7.36๐‘‹3

2ร—3+

5(๐‘‹โˆ’2)3

6+

(๐‘‹โˆ’8)4

4+ ๐ถ1๐‘‹ + ๐ถ2. โ€ฆ..(eqn for deflection).

Page 15: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

applying boundary conditions:

At X=0 y=0.

๐ธ๐ผ. ๐‘ฆ = โˆ’7.36๐‘‹3

2 ร— 3+

5(๐‘‹ โˆ’ 2)3

6+

(๐‘‹ โˆ’ 8)4

4+ ๐ถ1๐‘‹ + ๐ถ2.

โˆด ๐ธ๐ผ(0) = 0 + 0 + ๐ถ2

โˆด ๐ถ2 = 0. Now

At X=11 y=0.

๐ธ๐ผ. ๐‘ฆ = โˆ’7.36๐‘‹3

2 ร— 3+

5(๐‘‹ โˆ’ 2)3

6+

(๐‘‹ โˆ’ 8)4

4+ ๐ถ1๐‘‹ + ๐ถ2.

0 = โˆ’7.36(11)3

6+

5(6)3

6+ 0 + 8๐ถ1 + 0

๐ถ1 = 181.58

Now slope equation :

๐ธ๐ผ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= โˆ’

7.36๐‘‹2

2+

5(๐‘‹ โˆ’ 2)2

2+

(๐‘‹ โˆ’ 8)3

3+ 181.58.

Slope at points A and B.

At point A X=0

โˆด ๐ธ๐ผ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= 0 + 181.58

โ…†y

โ…†x=

181.58

๐ธ๐ผ

= 181.58ร—109

200ร—108= 9.079๐‘Ÿ๐‘Ž๐‘‘

At point B X=11

Page 16: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

๐ธ๐ผ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= โˆ’

7.36(11)2

2+

5(11 โˆ’ 2)2

2+

(11 โˆ’ 8)3

3+ 181.58.

dy

dx= โˆ’2.91๐‘Ÿad

Deflection:

๐ธ๐ผ. ๐‘ฆ = โˆ’7.36๐‘‹3

2 ร— 3+

5(๐‘‹ โˆ’ 2)3

6+

(๐‘‹ โˆ’ 8)4

4+ ๐ถ1๐‘‹ + ๐ถ2.

Deflection at point C

X=6

๐ธ๐ผ. ๐‘ฆ = โˆ’7.36(6)3

2 ร— 3+

5(6 โˆ’ 2)3

6+ 181.58 ร— 6

y=43.89mm.

Deflection at point D.

X=9

๐ธ๐ผ. ๐‘ฆ = โˆ’7.36(9)3

2 ร— 3+

5(9 โˆ’ 2)3

6+

(1)4

4+ 181.58 ร— 6

y= 47.74mm.

maximum deflection .

X= 11 2

๐ธ๐ผ. ๐‘ฆ = โˆ’7.36(5.5)3

2 ร— 3+

5(5.5 โˆ’ 2)3

6+ 181.58 ร— 6

๐‘ฆ๐‘š๐‘Ž๐‘ฅ = 46.056 ๐‘š๐‘š.

Page 17: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

b) draw SF and BM diagram for the beam shown in fig. (10)

20kN/m 60kN 20kN

30kN

A B

2m 4m 3m 2m 2m

Ans:

40kN 60kN 20kN

30kN

1m 1m A ๐ป๐ด B

2m 4m 3m 2m 2m

๐‘…๐ด ๐‘…๐ต

Support reaction calculation:

โˆ‘๐‘€๐ด = 0 +ve.

โˆ’20 ร— 11 + ๐‘…๐ต ร— 9 โˆ’ 30 โˆ’ 60 ร— 4 + 40 ร— 1 = 0.

๐‘…๐ต = 50๐‘˜๐‘.

โˆ‘๐น๐‘ฆ = 0. +ve.

โˆ’40 + ๐‘…๐ด โˆ’ 60 + ๐‘…๐‘ฉ โˆ’ 20 = 0.

๐‘…๐ด = 70๐‘˜๐‘.

Page 18: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

Shear force calculation: -ve

๐‘†๐น๐น(๐ฝ๐‘…) = 0.

๐‘†๐น๐น(๐ฝ๐ฟ) = 20๐‘˜๐‘.

๐‘†๐น๐ต(๐ฝ๐‘…) = 20๐‘˜๐‘.

๐‘†๐น๐‘ฉ(๐ฝ๐ฟ) = โˆ’๐‘…๐ต + 20 = โˆ’50 + 20 = โˆ’30๐‘˜๐‘.

๐‘†๐น๐ท(๐ฝ๐‘…) = โˆ’30๐‘˜๐‘.

๐‘†๐น๐ท(๐ฝ๐ฟ) = 60 โˆ’ 30 = 30๐‘˜๐‘.

๐‘†๐น๐ด(๐ฝ๐‘…) = 30๐‘˜๐‘.

๐‘†๐น๐ด(๐ฝ๐ฟ) = โˆ’70 + 30 = โˆ’40๐‘˜๐‘.

Bending moment calculation +ve

๐ต๐‘€๐น = 0. ๐ต๐‘€๐ต = โˆ’20 ร— 2 = โˆ’40. ๐ต๐‘€๐ธ(๐ฝ๐‘…) = 50 ร— 2 โˆ’ 20 ร— 4 = 20.

๐ต๐‘€๐ธ(๐ฝ๐ฟ) = 20 โˆ’ 30 = โˆ’10.

๐ต๐‘€๐ท = โˆ’20 ร— 7 + 50 ร— 5 โˆ’ 30

= 80kN.

๐ต๐‘€๐ด = โˆ’20 ร— 11 + 50 ร— 9 โˆ’ 30 โˆ’ 60 ร— 4. = โˆ’40 .

Page 19: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

40kN 60kN 20kN

30kN

1m 1m A ๐ป๐ด B

2m 4m 3m 2m 2m

๐‘…๐ด ๐‘…๐ต

30 30 20 20

SFD

-30 -30

80

20

BMD

0 -10 0

P s

-40 -40

-40

0

0

Page 20: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

Q4)

a) A vertical column of rectangular section is subjected to a compressive

load of P=800kN as shown in fig. find the stress intensities at the four

corners of the column. (10)

Ans: ๐‘’๐‘ฅ๐‘ฅ = 0.2๐‘š = 200๐‘š๐‘š. ๐‘’๐‘ฆ๐‘ฆ = 0.6๐‘š = 600๐‘š๐‘š.

Direct stress= ๐‘ƒ

๐ด.

=800ร—103

2000ร—1000.

= 0.4 ๐‘/๐‘š๐‘š2.

Bending stress ๐‘“๐‘๐‘ฅ๐‘ฅ due to eccentricity w.r.t x axis:

๐‘“๐‘๐‘ฅ๐‘ฅ = ยฑ๐‘ƒ ๐‘’๐‘ฅ๐‘ฅ ๐‘ฆ๐‘ฅ๐‘ฅ

๐ผ๐‘ฅ๐‘ฅ.

Page 21: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

๐ผ๐‘ฅ๐‘ฅ =(๐‘โ…†)3

12=

2000ร—(1000)3

12= 16.6 ร— 1010๐‘š๐‘š4.

๐‘“๐‘๐‘ฅ๐‘ฅ = ยฑ800ร—103ร—200ร—500

16.66ร—1010.

๐‘“๐‘๐‘ฅ๐‘ฅ = ยฑ0.481 ๐‘/๐‘š๐‘š2 . (side AB=+ve, side CD=-ve).

Bending stress ๐‘“๐‘๐‘ฆ๐‘ฆ due to eccentricity w.r.t y axis:

๐‘“๐‘๐‘ฆ๐‘ฆ = ยฑ๐‘ƒ ๐‘’๐‘ฅ๐‘ฅ ๐‘Œ๐‘ฆ๐‘ฆ

๐ผ๐‘ฆ๐‘ฆ.

๐ผ๐‘ฆ๐‘ฆ =๐‘โ…†3

12=

1000ร—(2000)3

12= 66.67 ร— 1010 ๐‘š๐‘š4.

๐‘“๐‘๐‘ฆ๐‘ฆ = ยฑ800ร—103ร—600ร—1000

66.67ร—1010

๐‘“๐‘๐‘ฆ๐‘ฆ = ยฑ0.71 ๐‘/๐‘š๐‘š^2. (side CB=+ve, side AD =-ve).

The resultant stresses at the corners would be addition of direct stress and bending

stress along x any y axis.

๐‘“๐‘… = ๐‘“โ…† + ๐‘“๐‘๐‘ฅ๐‘ฅ + ๐‘“๐‘๐‘ฆ๐‘ฆ .

At corner A ๐‘“๐‘…๐ด= 0.4 + 0.481 โˆ’ 0.71 = 0.171 ๐‘/๐‘š๐‘š2 (compressive).

At corner B ๐‘“๐‘…๐ต=0.4 + 0.481 + 0.71 = 1.591 ๐‘/๐‘š๐‘š2 (compressive).

At corner C ๐‘“๐‘…๐ถ = 0.4 โˆ’ 0.481 + 0.71 = 0.629 ๐‘/๐‘š๐‘š2 (compressive).

At corner D ๐‘“๐‘…๐ท = 0.4 โˆ’ 0.481 โˆ’ 0.71 = โˆ’0.791 ๐‘/๐‘š๐‘š2 (tensile).

Page 22: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

b) a propeller shaft is required to transmit 50kW power at 500rpm. It is a

hollow shaft, having an inside diameter 0.6 times of outside diameter and

permissible shear stress for shaft material is 90๐‘ต/๐’Ž๐’Ž๐Ÿ. Calculate the

inside and outside diameters of the shaft. (10)

Ans: P=50Kw = 50 ร— 103 ๐‘Š.

N=500 rpm.

๐œ” =2๐œ‹๐‘

60= 52.35 ๐‘Ÿ๐‘Ž๐‘‘/๐‘ .

๐‘‘๐‘– = 0.6 ร— ๐‘‘๐‘œ. [๐œ] = 90 ๐‘/๐‘š๐‘š2 . ๐‘‘๐‘– =?

๐‘‘๐‘œ =?

Polar moment of inertia =๐ฝ =๐œ‹

32(๐‘‘๐‘œ

4 โˆ’ ๐‘‘๐‘–4).

๐ฝ =๐œ‹

32(๐‘‘๐‘œ

4 โˆ’ (0.6๐‘‘๐‘œ)4).

๐ฝ = 0.085 ๐‘‘๐‘‚4 .

Using torsion equation.

๐œ

๐‘…=

๐‘‡

๐ฝ

90

๐‘‘๐‘œ4

2=

955.10

0.085โ…†๐‘œ44.

๐‘‘๐‘œ = 3.966 ๐‘š๐‘š. ๐‘‘๐‘– = 0.6 ร— 3.966 = 2.37 ๐‘š๐‘š.

Page 23: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

Q5)

a) A cylindrical shell is 3m long and 1.2m in diameter and 12mm thick is

Subjected to internal pressure of 1.8 N/๐’Ž๐’Ž๐Ÿ calculate change in

dimensions and Volume of shell. Take ๐‘ฌ = ๐Ÿ๐Ÿ๐ŸŽ ๐’Œ๐‘ต/๐’Ž๐’Ž๐Ÿ, 1/m=0.3. (10)

Ans: given:

L= 3m= 3000mm.

d= 1.2m=1200mm.

t= 12mm.

p= 1.8 ๐‘/๐‘š๐‘š2.

E= 210 ร— 103 ๐‘/๐‘š๐‘š2.

1/m=0.3.

๐›ฟโ…†=? (change in diameter).

๐›ฟ๐ฟ=? (change in length).

ฮดv=? (change in volume).

Circumferential stress

๐‘“๐‘ =๐‘โ…†

2๐‘ก=

1.8ร—1200

2ร—12= 90 ๐‘/๐‘š๐‘š2.

Longitudinal stress

๐‘“๐‘™ =๐‘โ…†

4๐‘ก=

2160

48= 45 ๐‘/๐‘š๐‘š2 .

Circumferential strain

๐‘’๐‘ =๐‘“๐‘

๐ธโˆ’

1

๐‘š

๐‘“๐‘™

๐ธ= 3.642 ร— 10โˆ’4 .

Longitudinal strain

๐‘’๐‘™ =๐‘“๐‘™

๐ธโˆ’

1

๐‘š ๐‘“๐‘

๐ธ= 8.57 ร— 10โˆ’5

also,

๐‘’๐‘ =๐›ฟโ…†

โ…†

โˆด ๐›ฟ๐‘‘ = ๐‘’๐‘ ร— ๐‘‘

๐›ฟ๐‘‘ = 0.437๐‘š๐‘š

Now,

Page 24: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

๐‘’๐‘™ =๐›ฟ๐ฟ

๐ฟ

โˆด ๐›ฟ๐ฟ = ๐‘’๐ฟ ร— ๐ฟ. ๐›ฟ๐ฟ = 0.2571 ๐‘š๐‘š.

Volumetric strain ๐‘’๐‘ฃ = 2๐‘’๐‘ + ๐‘’๐ฟ

๐‘’๐‘ฃ = 2(3.642 ร— 10โˆ’4) + 8.57 ร— 10โˆ’5

๐‘’๐‘ฃ = 8.141 ร— 10โˆ’4

Since,

๐‘’๐‘ฃ =๐›ฟ๐‘‰

๐‘‰

โˆด ๐›ฟ๐‘‰ = ๐‘’๐‘ฃ ร— ๐‘‰.

๐›ฟ๐‘‰ = ๐‘’๐‘ฃ ร—๐œ‹

4(๐‘‘)2๐ฟ

โˆด ๐›ฟ๐‘‰ = 2.762 ร— 1010

b) A simply supported beam of length 3m and a cross section of 100mm X

200mm carrying a UDL of 4kN/m, find

1) Maximum bending stress in the beam.

2) maximum shear stress in the beam.

3) the shear stress at point 1 m to the right of the left support and 25mm

below the top surface of the beam. (10)

Ans: 12 kN

3000mm

6kN 6kN

The maximum bending moment =๐‘ค๐‘™2

8.

Using bending equation:

๐œŽ๐‘

๐‘ฆ=

๐‘€

๐ผ

y = 100mm.

M= ๐‘ค๐‘™2

8=

4(3000)

8= 1500 ๐‘ โˆ’ ๐‘š๐‘š.

Page 25: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

I=๐‘โ…†3

12=

100(200)3

120= 6666666.67๐‘š๐‘š4.

Substituting these values in bending to get max bending stress ๐œŽ๐‘

๐œŽ๐‘

100=

1500

3000

โˆด ๐œŽ๐‘ = 50 ๐‘/๐‘š๐‘š2. Max shear stress

Average shear stress =๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘“๐‘œ๐‘Ÿ๐‘๐‘’

๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž =

๐‘ค๐ฟ

100ร—200=

12000

20000

๐œ๐‘Ž๐‘ฃ๐‘” = 0.6 ๐‘/๐‘š๐‘š2.

๐œ๐‘š๐‘Ž๐‘ฅ = 1.5 ร— ๐œ๐‘Ž๐‘ฃ๐‘”

โˆด ๐œ๐‘š๐‘Ž๐‘ฅ = 1.5 ร— 0.6

๐œ๐‘š๐‘Ž๐‘ฅ = 0.9 ๐‘/๐‘š๐‘š2

Shear force at x=1m =1000mm.

๐‘†๐น๐‘ฅ=1000๐‘š๐‘š = 6000 โˆ’ 4 ร— 1000 = 2000 ๐‘.=V

yฬ… = 100๐‘š๐‘š.

Now ๐œ =๐‘‰ร—๐ดร—yฬ…

๐ผ.๐‘=

2000ร—100ร—200ร—100

6666666.67ร—100=5.97 ๐‘/๐‘š๐‘š2 .

๐œ ๐‘Ž๐‘ก 25๐‘š๐‘š ๐‘๐‘’๐‘™๐‘œ๐‘ค ๐‘ก๐‘œ๐‘ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘–. ๐‘’. 75๐‘š๐‘š ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘. ๐ด

โˆด ๏ฟฝฬ…๏ฟฝ = 100 โˆ’ 100 + 75

2= 100 โˆ’ 87.5 = 12.5

โˆด ๐œ =2000ร—175ร—100ร—12.5

6666666.67ร—100= 0.65 ๐‘/๐‘š๐‘š2.

Page 26: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

Q6)

a) A 400 mm long bar has rectangular cross section 10 X 30mm.this bar is

subjected to

1) 15 kN tensile force on 10 X 30 mm faces.

2) 80 kN compressive force on 10 X 400 mm faces.

3) 180kN tensile force on 30 X 400mm faces.

Find the change in volume if ๐‘ฌ = ๐Ÿ ร— ๐Ÿ๐ŸŽ๐Ÿ“ ๐‘ต/๐’Ž๐’Ž๐Ÿ and 1/m=0.3. (10)

E F

y

D C

z x G

A B

Ans: ๐ธ = 2 ร— 105 ๐‘/๐‘š๐‘š2.

1/m=0.3

AB=400mm.

BC=30mm.

BG=10mm.

Stress in x-direction

๐‘“๐‘ฅ =15ร—103

10ร—30. = 50 ๐‘/๐‘š๐‘š2 (tensile)

Stress in y-direction

๐‘“๐‘ฆ =80ร—103

10ร—400= 20 ๐‘/๐‘š๐‘š2. (compressive).

Stress in z- direction

๐‘“๐‘ฅ =180ร—103

400ร—30= 15 ๐‘/๐‘š๐‘š2.(compressive).

Page 27: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

Strain in x direction.

๐‘’๐‘ฅ =๐‘“๐‘ฅ

๐ธโˆ’

1

๐‘š

๐‘“๐‘ฆ

๐ธโˆ’

1

๐‘š

๐‘“๐‘ง

๐ธ

โˆด ๐‘’๐‘ฅ = 3.025 ร— 10โˆ’4 .

Similarly

๐‘’๐‘ฆ = โˆ’1.525 ร— 10โˆ’4

๐‘’๐‘ง = โˆ’1.2 ร— 10โˆ’4

Now

Change in AB= L(AB) X ๐‘’๐‘ฅ

= 400 ร— 3.025 ร— 10โˆ’4

= 0.121mm (increase)

Change in BC= ๐ฟ(๐ต๐ถ) ร— ๐‘’๐‘ฆ

= 30 ร— โˆ’1.52 ร— 10โˆ’4

= -4.575ร— 10โˆ’3 ๐‘š๐‘š

Change in BG = ๐ฟ(๐ต๐บ) ร— ๐‘’๐‘ง

= 10 X -1.525ร— 10โˆ’4

= 1.2 ร— 10โˆ’3๐‘š๐‘š

New lengths:

AB= 4000+0.121=400.121mm.

BC= 30-4.575ร— 10โˆ’3=29.99mm

BG= 10 โˆ’ 1.2 ร— 10โˆ’3=9.99mm

๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘–๐‘› ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ = ๐‘›๐‘’๐‘ค ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’ โˆ’ ๐‘œ๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’. โˆด ๐›ฟ๐‘‰ = (400.121 ร— 29.99 ร— 9.99) โˆ’ (400 ร— 30 ร— 10). ๐›ฟ๐‘‰ = โˆ’123.71๐‘š๐‘š3 (๐‘‘๐‘’๐‘๐‘Ÿ๐‘’๐‘Ž๐‘ ๐‘’).

b) A hollow cylinder CI column is 4m long with both end fixed. Determine the

minimum diameter of the column, if it has to carry a safe load of 250kN

with a FOS of 5. Take internal diameter as 0.8 times the external diameter

๐‘ฌ = ๐Ÿ๐ŸŽ๐ŸŽ ๐‘ฎ๐‘ต/๐’Ž๐Ÿ. (10)

Ans: ๐ฟ๐‘’ = 0.5 ร— 4 = 2๐‘š = 2000๐‘š๐‘š. P = 250๐‘˜๐‘ .

FOS=5.

๐‘‘๐‘– = 0.8 ร— ๐‘‘๐‘œ .

Page 28: Q.P. 70863 STRENGTH OF MATERIALS - M.E. | B.Com

MUQuestionPapers.com

Using Eulerโ€™s equation:

๐‘ƒ๐‘’ =๐œ‹2๐ธ๐ผ๐‘š๐‘–๐‘›

๐ฟ๐ธ2 .

โˆด 250

5=

๐œ‹2ร—200ร—103ร—๐œ‹

64(โ…†0

4โˆ’โ…†๐‘–4)

(2000)2.

โˆด 250

5=

๐œ‹2ร—200ร—103ร—๐œ‹

64(โ…†0

4โˆ’(0.8โ…†04))

(2000)2.

By solving we get.

๐‘‘๐‘œ = 43.24 ๐‘š๐‘š. Also

๐‘‘๐‘– = 34.59๐‘š๐‘š.