quantum chemical molecular modellingmichalak/mmod2008/l3.pdf · „general atomic and molecular...

90
Quantum chemical molecular modelling Dr. hab. Artur Michalak Department of Theoretical Chemistry Faculty of Chemistry Jagiellonian University Kraków, Poland http://www.chemia.uj.edu.pl/~michalak/mmod/ http://www.chemia.uj.edu.pl/~michalak/mmod2008/ In Polish: http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Ck08 Lecture 3

Upload: others

Post on 10-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

Quantum chemical molecular modelling

Dr. hab. Artur MichalakDepartment of Theoretical Chemistry

Faculty of Chemistry

Jagiellonian UniversityKraków, Poland

http://www.chemia.uj.edu.pl/~michalak/mmod/http://www.chemia.uj.edu.pl/~michalak/mmod2008/

In Polish: http://www.chemia.uj.edu.pl/~michalak/mmod2007/

Ck08

Lecture 3

Page 2: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

• Basic ideas and methods of quantum chemistry:

Wave-function; Electron density; Schrodinger equation; Density Functional theory;

Born-Oppenheimer approximation; Variational principles in wave-function mechanics

and DFT; One-electron approximation; HF method; Electron correlation; KS method;

Wave-function-based electron correlation methods;

• Input data for QM calculations, GAMESS program:Molecular geometry, Z-Matrix, Basis sets in ab initio

calculations; input, output;

• Geometry of molecular systems:

Geometry optimization; Constrained optimization; Conformational analysis; Global minimum problem

• Electronic structure of molecular systems: Molecular orbitals (KS orbitals); Chemical bond; Deformation density; Localized orbitals; Population

analysis; Bond-orders

•Molecular vibrations, Thermodynamics; Chemical Reactivity:

Vibrational analysis; Thermodynamic properties; Modeling chemical reactions; Trantition state optimization and validation; Intrinsic Reaction Coordinate; Chemical reactivity indices; Molecular Electrostatic Potential;

Fukui Functions; Single- and Two-Reactant Reactivity Indices

• Other Topics:

Modelling of complex chemical processes – examples from catalysis; Molecular spectroscopy from ab initio

calculations; Advanced methods for electron correlation;Molecular dynamics; Modelling of large systems –

hybrid approaches (QM/MM); Solvation models

Page 3: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS

input/output

GAMESS

input/output

Page 4: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESSGAMESS

„General Atomic and Molecular Electronic Structure System”

1. RHF, UHF, ROHF, GVB, MCSCF.

2. Calculates CI or MP2 corrections to the energy

of these SCF functions.

3. Calculates semi-empirical MNDO, AM1, or PM3

RHF, UHF, or ROHF wavefunctions.

4. Calculates analytic energy gradients for all SCF

wavefunctions, plus closed shell MP2 or CI.

5. Optimizes molecular geometries using the energy

gradient, in terms of Cartesian or internal coords.

6. Searches for potential energy surface saddle points.

Page 5: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

„General Atomic and Molecular Electronic Structure System”

7. Computes the energy hessian, and thus normal modes,

vibrational frequencies, and IR intensities. The

Raman intensities are an optional follow on job.

8. Obtains anharmonic vibrational frequencies and

intensities (fundamentals or overtones).

9. Traces the intrinsic reaction path from a saddle

point to reactants or products.

10. Traces gradient extremal curves, which may lead from

one stationary point such as a minimum to another,

which might be a saddle point.

11. Follows the dynamic reaction coordinate, a classical

mechanics trajectory on the potential energy surface.

GAMESSGAMESS

Page 6: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

„General Atomic and Molecular Electronic Structure System”

12. Computes radiative transition probabilities.

13. Evaluates spin-orbit coupled wavefunctions.

14. Applies finite electric fields, extracting the

molecule's linear polarizability, and first and

second order hyperpolarizabilities.

15. Evaluates analytic frequency dependent non-linear

optical polarizability properties, for RHF functions.

16. Obtains localized orbitals by the Foster-Boys,

Edmiston-Ruedenberg, or Pipek-Mezey methods, with

optional SCF or MP2 energy analysis of the LMOs.

GAMESSGAMESS

Page 7: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

„General Atomic and Molecular Electronic Structure System”

17. Calculates the following molecular properties:

a. dipole, quadrupole, and octupole moments

b. electrostatic potential

c. electric field and electric field gradients

d. electron density and spin density

e. Mulliken and Lowdin population analysis

f. virial theorem and energy components

g. Stone's distributed multipole analysis

GAMESSGAMESS

Page 8: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

„General Atomic and Molecular Electronic Structure System”

18. Models solvent effects by

a. effective fragment potentials (EFP)

b. polarizable continuum model (PCM)

c. conductor-like screening model (COSMO)

d. self-consistent reaction field (SCRF)

GAMESSGAMESS

Page 9: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

Example input –

RHF calculations – geometry optimization for CH2

! EXAM01.

!

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

GAMESSGAMESS

Page 10: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

! EXAM02.

$CONTRL SCFTYP=UHF MULT=3 RUNTYP=GRADIENT LOCAL=BOYS $END

$SYSTEM TIMLIM=1 MEMORY=100000 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...3-B-1 state...UHF/STO-2G

Cnv 2

Carbon 6.0

Hydrogen 1.0 0.0 0.82884 0.7079

$END

Example input –

UHF calculations – CH2

GAMESSGAMESS

Page 11: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

GAMESSGAMESS

Page 12: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

$ keyword_group_name

keyword = value

............................................

$END

$ keyword_group_name

keyword = value

............................................

$END

GAMESS example inputGAMESS example input

Page 13: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

keyword:

SCFTYP = {method / wave-function choice}

= RHF (default)

= UHF

= ROHF

= GVB

= MCSCF

Page 14: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

RUNTYP = {type of calculations}

= ENERGY (default) – SCF calculations

for provided geometry

= GRADIENT - 1SCF + gradients

= HESSIAN - 1SCF + grad. + second derivatives

(+vibrational analysis)

= OPTIMIZE - geometry optimization

[$STATPT group required]

= SADPOINT - transition state optimization

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 15: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

RUNTYP = {type of calculations}

= ENERGY (default) – SCF calculations

for provided geometry

= GRADIENT - 1SCF + gradients

= HESSIAN - 1SCF + grad. + second derivatives

(+vibrational analysis)

= OPTIMIZE - geometry optimization

[$STATPT group required]

= SADPOINT - transition state optimization

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 16: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

RUNTYP = {type of calculations}

= ENERGY (default) – SCF calculations

for provided geometry

= GRADIENT - 1SCF + gradients

= HESSIAN - 1SCF + grad. + second derivatives

(+vibrational analysis)

= OPTIMIZE - geometry optimization

[$STATPT group required]

= SADPOINT - transition state optimization

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 17: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

RUNTYP = {type of calculations}

= ENERGY (default) – SCF calculations

for provided geometry

= GRADIENT - 1SCF + gradients

= HESSIAN - 1SCF + grad. + second derivatives

(+vibrational analysis)

= OPTIMIZE - geometry optimization

[$STATPT group required]

= SADPOINT - transition state optimization

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 18: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

RUNTYP = {type of calculations}

= ENERGY (default) – SCF calculations

for provided geometry

= GRADIENT - 1SCF + gradients

= HESSIAN - 1SCF + grad. + second derivatives

(+vibrational analysis)

= OPTIMIZE - geometry optimization

[$STATPT group required]

= SADPOINT - transition state optimization

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 19: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

EXETYP = {type of the run}

= RUN (default)

= CHECK

= DEBUG

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 20: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

EXETYP = {type of the run}

= RUN (default)

= CHECK

= DEBUG

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 21: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

EXETYP = {type of the run}

= RUN (default)

= CHECK

= DEBUG

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 22: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

MAXIT = value (max. number of SCF iterations ; default 30)

ICHARG = value (charge of molecule)

MULT = value (multiplicity, 1 – singlet, 2 – doublet, etc.)

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 23: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

MAXIT = value (max. number of SCF iterations ; default 30)

ICHARG = value (charge of molecule)

MULT = value (multiplicity, 1 – singlet, 2 – doublet, etc.)

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 24: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

MAXIT = value (max. number of SCF iterations ; default 30)

ICHARG = value (charge of molecule)

MULT = value (multiplicity, 1 – singlet, 2 – doublet, etc.)

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

Page 25: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

MAXIT = value (max. number of SCF iterations ; default 30)

ICHARG = value (charge of molecule)

MULT = value (multiplicity, 1 – singlet, 2 – doublet, etc.)

GAMESS input

- $CONTRL group

GAMESS input

- $CONTRL group

COORDS = CART

= ZMT

= ZMTMPC

= UNIQUE

(default)

specifies in which format geometry

will be provided (in $DATA group)

Page 26: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS input - $DATA group

(molecular geometry)

GAMESS input - $DATA group

(molecular geometry)

1 line – title (any text)

2 line – symmetry point group

(eg. C1)

3 line empty (if symmetry other than C1 !)

next lines – atomic coordinates

Page 27: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS input - $DATA group

(molecular geometry)

GAMESS input - $DATA group

(molecular geometry)

1 line – title (any text)

2 line – symmetry point group

(eg. C1)

3 line empty (if symmetry other than C1 !)

next lines – atomic coordinates

Page 28: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS input - $DATA group

(molecular geometry)

GAMESS input - $DATA group

(molecular geometry)

1 line – title (any text)

2 line – symmetry point group

(eg. C1)

3 line empty (if symmetry other than C1 !)

next lines – atomic coordinates

Page 29: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS input - $DATA group

(molecular geometry)

GAMESS input - $DATA group

(molecular geometry)

1 line – title (any text)

2 line – symmetry point group

(eg. C1)

3 line empty (if symmetry other than C1 !)

next lines – atomic coordinates

Page 30: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS input - $DATA group

(molecular geometry)

GAMESS input - $DATA group

(molecular geometry)

1 line – title (any text)

2 line – symmetry point group

(eg. C1)

3 line empty (if symmetry other than C1 !)

next lines – atomic coordinates

dependending on COORDS value

COORDS = UNIQUE, CART :

atom-name, nuclear charge, X, Y, Z

(eg. H 1 0.0 0.0 0.0

C 6 1.1 0.0 0.0 )

Page 31: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS input - $DATA group

(molecular geometry)

GAMESS input - $DATA group

(molecular geometry)

1 line – title (any text)

2 line – symmetry point group

(eg. C1)

3 line empty (if symmetry other than C1 !)

next lines – atomic coordinates

dependending on COORDS value

COORDS = ZMT :

ATOM I distance J angle K torsion

eg. (H 1 1.1 2 125.0 3 180.0 )

For atoms 1-3 only required data!

Page 32: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS input - $DATA group

(molecular geometry)

GAMESS input - $DATA group

(molecular geometry)

1 line – title (any text)

2 line – symmetry point group

(eg. C1)

3 line empty (if symmetry other than C1 !)

next lines – atomic coordinates

dependending on COORDS value

COORDS = ZMTMPC :

ATOM distance 1 angle 1 torsion I J K

eg. (H 1.1 1 125.0 1 180.0 1 1 2 3)

For atoms 1-3 only required data!

Page 33: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS – example inputGAMESS – example input

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

Page 34: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

$STATPT

keywords for

geometry

optimization

GAMESS – example inputGAMESS – example input

Page 35: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

$STATPT

keywords for

geometry

optimization

NSTEP = value

max. number

of geometry cycles

(default 20)

GAMESS – example inputGAMESS – example input

Page 36: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

$GUESS

starting molecular

orbitals

GAMESS – example inputGAMESS – example input

Page 37: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

$BASIS

basis set

specification

GAMESS – example inputGAMESS – example input

Page 38: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS input - $BASIS groupGAMESS input - $BASIS group

keyword:

GBASIS = {basis set name}

= STO STO-nG

= N21 n-21G

= N31 n-31G

= N311 n-311G

NGAUSS = value

eg. 3 for STO3G

as well as for 3-21G

Page 39: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

GBASIS = {basis set name}

= MINI

= MIDI

= TZV

= DZV

= HW

GAMESS input - $BASIS groupGAMESS input - $BASIS group

Page 40: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

NDFUNC = value {d-type polarization functions}

NFFUNC = value {f-type polarization functions}

NPFUNC = value {p-type polarization functions}

Polarization functions:

GAMESS input - $BASIS groupGAMESS input - $BASIS group

Page 41: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

NDFUNC = 1

denotes 1 set of d functions (not a single d function, but a set)

Polarization functions:

6-31G is specified by:

$BASIS GBASIS=N31 NGAUSS=6 $END

6-31G* is specified by:

$BASIS GBASIS=N31 NGAUSS=6 NDFUNC=1 $END

GAMESS input - $BASIS groupGAMESS input - $BASIS group

Page 42: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

NDFUNC = value {d-type polarization functions}

NFFUNC = value {f-type polarization functions}

NPFUNC = value {p-type polarization functions}

Diffuse functions:

keyword:

DIFFSP = .TRUE.

DIFFS = .TRUE.

GAMESS input - $BASIS groupGAMESS input - $BASIS group

Polarization functions:

Page 43: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

GAMESS – example inputGAMESS – example input

Page 44: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

keyword:

GBASIS =

= MNDO

= AM1

= PM3

Choice of semiempirical methods: MNDO, AM1, PM3, also by GBASIS

(in semi-empirical methods minimal Slater-type basis is used)

GAMESS input - $BASIS groupGAMESS input - $BASIS group

Page 45: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END

$SYSTEM TIMLIM=2 MEMORY=100000 $END

$STATPT OPTTOL=1.0E-5 $END

$BASIS GBASIS=STO NGAUSS=2 $END

$SCF DIRSCF=.TRUE. $END$GUESS GUESS=HUCKEL $END

$DATA

Methylene...1-A-1 state...RHF/STO-2G

Cnv 2

C

H 1 rCH

H 1 rCH 2 aHCH

rCH=1.09

aHCH=110.0

$END

$SCF group

- parameters for SCF

keyword:

DIRSCF=.TRUE.

- integrals computed in every

iteration

(are not saved on disc)

$SCF group

- parameters for SCF

keyword:

DIRSCF=.TRUE.

- integrals computed in every

iteration

(are not saved on disc)

GAMESS – example inputGAMESS – example input

Page 46: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS programGAMESS program

rungms2000 input_file > output_file

eg.

rungms2000 water > water.out

rungms2000 input_file > output_file

eg.

rungms2000 water > water.out

temporary files are created in

/scr/user_id

eg.

/scr/michalak

If does not exist must be created , eg.

‘mkdir /scr/michalak’

temporary files are created in

/scr/user_id

eg.

/scr/michalak

If does not exist must be created , eg.

‘mkdir /scr/michalak’

To edit input/output files any ascii text-editor can be used

eg. vi, nedit, etc.

To edit input/output files any ascii text-editor can be used

eg. vi, nedit, etc.

Page 47: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT ICHARG=0 MULT=1 $END

$SYSTEM TIMLIM=90 MEMORY=1000000 $END

$STATPT OPTTOL=1.0E-3 NSTEP=100 $END

$BASIS GBASIS=STO NGAUSS=3 $END

$SCF DIRSCF=.TRUE. $END

$GUESS GUESS=HUCKEL $END

$DATA

h2o

C1

H

O 1 1.0

H 2 1.0 1 105.0

$END

$CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT ICHARG=0 MULT=1 $END

$SYSTEM TIMLIM=90 MEMORY=1000000 $END

$STATPT OPTTOL=1.0E-3 NSTEP=100 $END

$BASIS GBASIS=STO NGAUSS=3 $END

$SCF DIRSCF=.TRUE. $END

$GUESS GUESS=HUCKEL $END

$DATA

h2o

C1

H

O 1 1.0

H 2 1.0 1 105.0

$END

http://www.chemia.uj.edu.pl/~michalak/mmod2008/http://www.chemia.uj.edu.pl/~michalak/mmod2008/

GAMESS – example inputGAMESS – example input

Page 48: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

GAMESS – example outputGAMESS – example output

----- GAMESS execution script -----

This job is running on host cerebron.ch.uj.edu.pl at Mon Oct 20 14:39:50 GMT 2003

Available scratch disk space (Kbyte units) at beginning of the job is

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/sdb1 17639752 2793212 13950492 17% /scr

Initiating 1 compute processes for job h2o

Executable gamess.01.x will be run from directory /root/tran/gamess

Working scratch directory on each host will be /scr/michalak

Running gamess.01.x on cerebron.ch.uj.edu.pl as compute process 0

Running gamess.01.x on cerebron.ch.uj.edu.pl as data server 1

Process initiation completed.

******************************************************

* GAMESS VERSION = 3 JUL 2003 (R2) *

* FROM IOWA STATE UNIVERSITY *

* M.W.SCHMIDT, K.K.BALDRIDGE, J.A.BOATZ, S.T.ELBERT, *

* M.S.GORDON, J.H.JENSEN, S.KOSEKI, N.MATSUNAGA, *

* K.A.NGUYEN, S.J.SU, T.L.WINDUS, *

* TOGETHER WITH M.DUPUIS, J.A.MONTGOMERY *

* J.COMPUT.CHEM. 14, 1347-1363(1993) *

******************* PC-UNIX VERSION ******************

SINCE 1993, STUDENTS AND POSTDOCS WORKING AT IOWA STATE UNIVERSITY

AND ALSO IN THEIR VARIOUS JOBS AFTER LEAVING ISU HAVE MADE IMPORTANT

CONTRIBUTIONS TO THE CODE:

CHRISTINE AIKENS, ROB BELL, PRADIPTA BANDYOPADHYAY, BRETT BODE,

GALINA CHABAN, WEI CHEN, CHEOL CHOI, PAUL DAY, DMITRI FEDOROV,

GRAHAM FLETCHER, MARK FREITAG, KURT GLAESEMANN, GRANT MERRILL,

MIKE PAK, JIM SHOEMAKER, TETSUYA TAKETSUGU, SIMON WEBB

----- GAMESS execution script -----

This job is running on host cerebron.ch.uj.edu.pl at Mon Oct 20 14:39:50 GMT 2003

Available scratch disk space (Kbyte units) at beginning of the job is

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/sdb1 17639752 2793212 13950492 17% /scr

Initiating 1 compute processes for job h2o

Executable gamess.01.x will be run from directory /root/tran/gamess

Working scratch directory on each host will be /scr/michalak

Running gamess.01.x on cerebron.ch.uj.edu.pl as compute process 0

Running gamess.01.x on cerebron.ch.uj.edu.pl as data server 1

Process initiation completed.

******************************************************

* GAMESS VERSION = 3 JUL 2003 (R2) *

* FROM IOWA STATE UNIVERSITY *

* M.W.SCHMIDT, K.K.BALDRIDGE, J.A.BOATZ, S.T.ELBERT, *

* M.S.GORDON, J.H.JENSEN, S.KOSEKI, N.MATSUNAGA, *

* K.A.NGUYEN, S.J.SU, T.L.WINDUS, *

* TOGETHER WITH M.DUPUIS, J.A.MONTGOMERY *

* J.COMPUT.CHEM. 14, 1347-1363(1993) *

******************* PC-UNIX VERSION ******************

SINCE 1993, STUDENTS AND POSTDOCS WORKING AT IOWA STATE UNIVERSITY

AND ALSO IN THEIR VARIOUS JOBS AFTER LEAVING ISU HAVE MADE IMPORTANT

CONTRIBUTIONS TO THE CODE:

CHRISTINE AIKENS, ROB BELL, PRADIPTA BANDYOPADHYAY, BRETT BODE,

GALINA CHABAN, WEI CHEN, CHEOL CHOI, PAUL DAY, DMITRI FEDOROV,

GRAHAM FLETCHER, MARK FREITAG, KURT GLAESEMANN, GRANT MERRILL,

MIKE PAK, JIM SHOEMAKER, TETSUYA TAKETSUGU, SIMON WEBB

Page 49: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

EXECUTION OF GAMESS BEGUN Mon Oct 20 14:39:50 2003

ECHO OF THE FIRST FEW INPUT CARDS -

INPUT CARD> $CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT ICHARG=0 MULT=1 $END

INPUT CARD> $SYSTEM TIMLIM=90 MEMORY=1000000 $END

INPUT CARD> $STATPT OPTTOL=1.0E-3 NSTEP=100 $END

INPUT CARD> $BASIS GBASIS=STO NGAUSS=3 $END

INPUT CARD> $SCF DIRSCF=.TRUE. $END

INPUT CARD> $GUESS GUESS=HUCKEL $END

INPUT CARD> $DATA

INPUT CARD>h2o2

INPUT CARD>C1

INPUT CARD>H

INPUT CARD>O 1 1.0

INPUT CARD>H 2 1.0 1 105.0

INPUT CARD> $END

INPUT CARD>

..... DONE SETTING UP THE RUN .....

1000000 WORDS OF MEMORY AVAILABLE

BASIS OPTIONS

-------------

GBASIS=STO IGAUSS= 3 POLAR=NONE

NDFUNC= 0 NFFUNC= 0 DIFFSP= F

NPFUNC= 0 DIFFS= F

EXECUTION OF GAMESS BEGUN Mon Oct 20 14:39:50 2003

ECHO OF THE FIRST FEW INPUT CARDS -

INPUT CARD> $CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT ICHARG=0 MULT=1 $END

INPUT CARD> $SYSTEM TIMLIM=90 MEMORY=1000000 $END

INPUT CARD> $STATPT OPTTOL=1.0E-3 NSTEP=100 $END

INPUT CARD> $BASIS GBASIS=STO NGAUSS=3 $END

INPUT CARD> $SCF DIRSCF=.TRUE. $END

INPUT CARD> $GUESS GUESS=HUCKEL $END

INPUT CARD> $DATA

INPUT CARD>h2o2

INPUT CARD>C1

INPUT CARD>H

INPUT CARD>O 1 1.0

INPUT CARD>H 2 1.0 1 105.0

INPUT CARD> $END

INPUT CARD>

..... DONE SETTING UP THE RUN .....

1000000 WORDS OF MEMORY AVAILABLE

BASIS OPTIONS

-------------

GBASIS=STO IGAUSS= 3 POLAR=NONE

NDFUNC= 0 NFFUNC= 0 DIFFSP= F

NPFUNC= 0 DIFFS= F

input ‘echo’

Parameters of

BASIS group

GAMESS – example outputGAMESS – example output

Page 50: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

RUN TITLE

---------

h2o2

THE POINT GROUP OF THE MOLECULE IS C1

THE ORDER OF THE PRINCIPAL AXIS IS 0

YOUR FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 1.0000000

H 2 1.0000000 1 105.0000

THE MOMENTS OF INERTIA ARE (AMU-ANGSTROM**2)

IXX= 0.663 IYY= 1.269 IZZ= 1.932

ATOM ATOMIC COORDINATES (BOHR)

CHARGE X Y Z

H 1.0 -1.4992204246 1.0216462557 0.0000000000

O 8.0 0.0000000000 -0.1287460370 0.0000000000

H 1.0 1.4992204246 1.0216462557 0.0000000000

INTERNUCLEAR DISTANCES (ANGS.)

------------------------------

H O H

1 H 0.0000000 1.0000000 * 1.5867067 *

2 O 1.0000000 * 0.0000000 1.0000000 *

3 H 1.5867067 * 1.0000000 * 0.0000000

* ... LESS THAN 3.000

RUN TITLE

---------

h2o2

THE POINT GROUP OF THE MOLECULE IS C1

THE ORDER OF THE PRINCIPAL AXIS IS 0

YOUR FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 1.0000000

H 2 1.0000000 1 105.0000

THE MOMENTS OF INERTIA ARE (AMU-ANGSTROM**2)

IXX= 0.663 IYY= 1.269 IZZ= 1.932

ATOM ATOMIC COORDINATES (BOHR)

CHARGE X Y Z

H 1.0 -1.4992204246 1.0216462557 0.0000000000

O 8.0 0.0000000000 -0.1287460370 0.0000000000

H 1.0 1.4992204246 1.0216462557 0.0000000000

INTERNUCLEAR DISTANCES (ANGS.)

------------------------------

H O H

1 H 0.0000000 1.0000000 * 1.5867067 *

2 O 1.0000000 * 0.0000000 1.0000000 *

3 H 1.5867067 * 1.0000000 * 0.0000000

* ... LESS THAN 3.000

Information on geometry

and symmetry

Z-matrix

Moments of inertia

Cartesian coords

Interatomic distances

GAMESS – example outputGAMESS – example output

Page 51: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

ATOMIC BASIS SET

----------------

THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED

THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY

SHELL TYPE PRIMITIVE EXPONENT CONTRACTION COEFFICIENTS

H

1 S 1 3.4252509 0.154328967295

1 S 2 0.6239137 0.535328142282

1 S 3 0.1688554 0.444634542185

O

2 S 4 130.7093214 0.154328967295

2 S 5 23.8088661 0.535328142282

2 S 6 6.4436083 0.444634542185

3 L 7 5.0331513 -0.099967229187 0.155916274999

3 L 8 1.1695961 0.399512826089 0.607683718598

3 L 9 0.3803890 0.700115468880 0.391957393099

H

4 S 10 3.4252509 0.154328967295

4 S 11 0.6239137 0.535328142282

4 S 12 0.1688554 0.444634542185

ATOMIC BASIS SET

----------------

THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED

THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY

SHELL TYPE PRIMITIVE EXPONENT CONTRACTION COEFFICIENTS

H

1 S 1 3.4252509 0.154328967295

1 S 2 0.6239137 0.535328142282

1 S 3 0.1688554 0.444634542185

O

2 S 4 130.7093214 0.154328967295

2 S 5 23.8088661 0.535328142282

2 S 6 6.4436083 0.444634542185

3 L 7 5.0331513 -0.099967229187 0.155916274999

3 L 8 1.1695961 0.399512826089 0.607683718598

3 L 9 0.3803890 0.700115468880 0.391957393099

H

4 S 10 3.4252509 0.154328967295

4 S 11 0.6239137 0.535328142282

4 S 12 0.1688554 0.444634542185

Information on

basis sets

GAMESS – example outputGAMESS – example output

Page 52: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

Information

on molecule

Parameters of the

CONTRL group

GAMESS – example outputGAMESS – example output

Page 53: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

GAMESS – example outputGAMESS – example output

Information

on molecule

Parameters of the

CONTRL group

Page 54: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

GAMESS – example outputGAMESS – example output

Information

on molecule

Parameters of the

CONTRL group

Page 55: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

GAMESS – example outputGAMESS – example output

Information

on molecule

Parameters of the

CONTRL group

Page 56: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

GAMESS – example outputGAMESS – example output

Information

on molecule

Parameters of the

CONTRL group

Page 57: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

GAMESS – example outputGAMESS – example output

Information

on molecule

Parameters of the

CONTRL group

Page 58: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

TOTAL NUMBER OF BASIS SET SHELLS = 4

NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 7

NUMBER OF ELECTRONS = 10

CHARGE OF MOLECULE = 0

SPIN MULTIPLICITY = 1

NUMBER OF OCCUPIED ORBITALS (ALPHA) = 5

NUMBER OF OCCUPIED ORBITALS (BETA ) = 5

TOTAL NUMBER OF ATOMS = 3

THE NUCLEAR REPULSION ENERGY IS 8.8003426502

$CONTRL OPTIONS

---------------

SCFTYP=RHF RUNTYP=OPTIMIZE EXETYP=RUN

MPLEVL= 0 CITYP =NONE CCTYP =NONE

MULT = 1 ICHARG= 0 NZVAR = 0 COORD =ZMT

ECP =NONE RELWFN=NONE LOCAL =NONE

ISPHER= -1 NOSYM = 0 MAXIT = 30 UNITS =ANGS

PLTORB= F MOLPLT= F AIMPAC= F FRIEND=

NPRINT= 7 IREST = 0 GEOM =INPUT

NORMF = 0 NORMP = 0 ITOL = 20 ICUT = 9

INTTYP=POPLE QMTTOL= 1.0E-06

GAMESS – example outputGAMESS – example output

Information

on molecule

Parameters of the

CONTRL group

Page 59: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

$SYSTEM OPTIONS

---------------

REPLICATED MEMORY= 1000000 WORDS (ON EVERY NODE).

DISTRIBUTED MEMDDI= 0 MILLION WORDS IN AGGREGATE,

MEMDDI DISTRIBUTED OVER 1 PROCESSORS IS 0 WORDS/PROCESSOR.

TOTAL MEMORY REQUESTED ON EACH PROCESSOR= 1000000 WORDS.

TIMLIM= 5400.0 SECONDS.

COREFL=F KDIAG= 0

----------------

PROPERTIES INPUT

----------------

MOMENTS FIELD POTENTIAL DENSITY

IEMOM = 1 IEFLD = 0 IEPOT = 0 IEDEN = 0

WHERE =COMASS WHERE =NUCLEI WHERE =NUCLEI WHERE =NUCLEI

OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH

IEMINT= 0 IEFINT= 0 IEDINT= 0

MORB = 0

EXTRAPOLATION IN EFFECT

$SYSTEM OPTIONS

---------------

REPLICATED MEMORY= 1000000 WORDS (ON EVERY NODE).

DISTRIBUTED MEMDDI= 0 MILLION WORDS IN AGGREGATE,

MEMDDI DISTRIBUTED OVER 1 PROCESSORS IS 0 WORDS/PROCESSOR.

TOTAL MEMORY REQUESTED ON EACH PROCESSOR= 1000000 WORDS.

TIMLIM= 5400.0 SECONDS.

COREFL=F KDIAG= 0

----------------

PROPERTIES INPUT

----------------

MOMENTS FIELD POTENTIAL DENSITY

IEMOM = 1 IEFLD = 0 IEPOT = 0 IEDEN = 0

WHERE =COMASS WHERE =NUCLEI WHERE =NUCLEI WHERE =NUCLEI

OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH

IEMINT= 0 IEFINT= 0 IEDINT= 0

MORB = 0

EXTRAPOLATION IN EFFECT

Parameters ofthe

SYSTEM

and PROPERTIES

GAMESS – example outputGAMESS – example output

Page 60: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

-------------------------------

INTEGRAL TRANSFORMATION OPTIONS

-------------------------------

NWORD = 0 CUTOFF = 1.0E-09

MPTRAN = 0 DIRTRF = T

AOINTS =DUP

----------------------

INTEGRAL INPUT OPTIONS

----------------------

NOPK = 1 NORDER= 0 SCHWRZ= T

--- ENCODED Z MATRIX ---

COORD TYPE I J K L M N

1 1 2 1

2 1 3 2

3 2 3 2 1

THE DETERMINANT OF THE G MATRIX IS 10**( -1)

------------------------------------------

THE POINT GROUP IS C1 , NAXIS= 0, ORDER= 1

------------------------------------------

DIMENSIONS OF THE SYMMETRY SUBSPACES ARE

A = 7

..... DONE SETTING UP THE RUN .....

STEP CPU TIME = 0.03 TOTAL CPU TIME = 0.0 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00%

-------------------------------

INTEGRAL TRANSFORMATION OPTIONS

-------------------------------

NWORD = 0 CUTOFF = 1.0E-09

MPTRAN = 0 DIRTRF = T

AOINTS =DUP

----------------------

INTEGRAL INPUT OPTIONS

----------------------

NOPK = 1 NORDER= 0 SCHWRZ= T

--- ENCODED Z MATRIX ---

COORD TYPE I J K L M N

1 1 2 1

2 1 3 2

3 2 3 2 1

THE DETERMINANT OF THE G MATRIX IS 10**( -1)

------------------------------------------

THE POINT GROUP IS C1 , NAXIS= 0, ORDER= 1

------------------------------------------

DIMENSIONS OF THE SYMMETRY SUBSPACES ARE

A = 7

..... DONE SETTING UP THE RUN .....

STEP CPU TIME = 0.03 TOTAL CPU TIME = 0.0 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00%

integrals

GAMESS – example outputGAMESS – example output

Page 61: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

-----------------------------

STATIONARY POINT LOCATION RUN

-----------------------------

OBTAINING INITIAL HESSIAN, HESS=GUESS

DIAGONAL GUESS HESSIAN IN CARTESIAN COORDS IS H(I,I)= 0.3333

PARAMETERS CONTROLLING GEOMETRY SEARCH ARE

METHOD =QA UPHESS =BFGS

NNEG = 0 NFRZ = 0

NSTEP = 100 IFOLOW = 1

HESS =GUESS RESTAR = F

IHREP = 0 HSSEND = F

NPRT = 0 NPUN = 0

OPTTOL = 1.000E-03 RMIN = 1.500E-03

RMAX = 1.000E-01 RLIM = 7.000E-02

DXMAX = 3.000E-01 PURIFY = F

MOVIE = F TRUPD = T

TRMAX = 5.000E-01 TRMIN = 5.000E-02

ITBMAT = 5 STPT = F

STSTEP = 1.000E-02 PROJCT= T

-----------------------------

STATIONARY POINT LOCATION RUN

-----------------------------

OBTAINING INITIAL HESSIAN, HESS=GUESS

DIAGONAL GUESS HESSIAN IN CARTESIAN COORDS IS H(I,I)= 0.3333

PARAMETERS CONTROLLING GEOMETRY SEARCH ARE

METHOD =QA UPHESS =BFGS

NNEG = 0 NFRZ = 0

NSTEP = 100 IFOLOW = 1

HESS =GUESS RESTAR = F

IHREP = 0 HSSEND = F

NPRT = 0 NPUN = 0

OPTTOL = 1.000E-03 RMIN = 1.500E-03

RMAX = 1.000E-01 RLIM = 7.000E-02

DXMAX = 3.000E-01 PURIFY = F

MOVIE = F TRUPD = T

TRMAX = 5.000E-01 TRMIN = 5.000E-02

ITBMAT = 5 STPT = F

STSTEP = 1.000E-02 PROJCT= T

Geometry optimization

parameters

GAMESS – example outputGAMESS – example output

Page 62: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

Geometry Geometry optimizationoptimization

Starting geometry

SCF – electron density

Gradients

Atomic displacements

New geometry

Page 63: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

1NSERCH= 0

COORDINATES OF ALL ATOMS ARE (ANGS)

ATOM CHARGE X Y Z

------------------------------------------------------------

H 1.0 -0.7933533403 0.5406319553 0.0000000000

O 8.0 0.0000000000 -0.0681294737 0.0000000000

H 1.0 0.7933533403 0.5406319553 0.0000000000

THE CURRENT FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 1.0000000

H 2 1.0000000 1 105.0000000

1NSERCH= 0

COORDINATES OF ALL ATOMS ARE (ANGS)

ATOM CHARGE X Y Z

------------------------------------------------------------

H 1.0 -0.7933533403 0.5406319553 0.0000000000

O 8.0 0.0000000000 -0.0681294737 0.0000000000

H 1.0 0.7933533403 0.5406319553 0.0000000000

THE CURRENT FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 1.0000000

H 2 1.0000000 1 105.0000000

Coordinates0th geometry optimization cycle

(geometry from input)

GAMESS – example outputGAMESS – example output

Page 64: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

********************

1 ELECTRON INTEGRALS

********************

...... END OF ONE-ELECTRON INTEGRALS ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.0 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00%

-------------

GUESS OPTIONS

-------------

GUESS =HUCKEL NORB = 0 NORDER= 0

MIX = F PRTMO = F PUNMO = F

TOLZ = 1.0E-08 TOLE = 1.0E-05

SYMDEN= F PURIFY= F

INITIAL GUESS ORBITALS GENERATED BY HUCKEL ROUTINE.

HUCKEL GUESS REQUIRES 2569 WORDS.

SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW. BOTH SET(S).

5 ORBITALS ARE OCCUPIED ( 1 CORE ORBITALS).

2=A 3=A 4=A 5=A 6=A 7=A

...... END OF INITIAL ORBITAL SELECTION ......

STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00%

********************

1 ELECTRON INTEGRALS

********************

...... END OF ONE-ELECTRON INTEGRALS ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.0 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00%

-------------

GUESS OPTIONS

-------------

GUESS =HUCKEL NORB = 0 NORDER= 0

MIX = F PRTMO = F PUNMO = F

TOLZ = 1.0E-08 TOLE = 1.0E-05

SYMDEN= F PURIFY= F

INITIAL GUESS ORBITALS GENERATED BY HUCKEL ROUTINE.

HUCKEL GUESS REQUIRES 2569 WORDS.

SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW. BOTH SET(S).

5 ORBITALS ARE OCCUPIED ( 1 CORE ORBITALS).

2=A 3=A 4=A 5=A 6=A 7=A

...... END OF INITIAL ORBITAL SELECTION ......

STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00%

1-e integrals

GAMESS – example outputGAMESS – example output

Page 65: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

--------------------

2 ELECTRON INTEGRALS

--------------------

DIRECT SCF METHOD SKIPS INTEGRAL STORAGE ON DISK.

DIRECT TRANSFORMATION SKIPS AO INTEGRAL STORAGE ON DISK.

...... END OF TWO-ELECTRON INTEGRALS .....

STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00%

--------------------

2 ELECTRON INTEGRALS

--------------------

DIRECT SCF METHOD SKIPS INTEGRAL STORAGE ON DISK.

DIRECT TRANSFORMATION SKIPS AO INTEGRAL STORAGE ON DISK.

...... END OF TWO-ELECTRON INTEGRALS .....

STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.0 SECONDS, CPU UTILIZATION IS 100.00%

2-e integrals

GAMESS – example outputGAMESS – example output

Page 66: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 8.8003426502

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=F

DENSITY MATRIX CONV= 2.00E-05

MEMORY REQUIRED FOR RHF STEP= 15117 WORDS.

DIRECT SCF CALCULATION, SCHWRZ=T FDIFF=T

SCHWARZ INEQUALITY OVERHEAD: 28 INTEGRALS, T= 0.00

--------------------------

RHF SCF CALCULATION

--------------------------

NUCLEAR ENERGY = 8.8003426502

MAXIT = 30 NPUNCH= 2

EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=F DEM=F SOSCF=F

DENSITY MATRIX CONV= 2.00E-05

MEMORY REQUIRED FOR RHF STEP= 15117 WORDS.

DIRECT SCF CALCULATION, SCHWRZ=T FDIFF=T

SCHWARZ INEQUALITY OVERHEAD: 28 INTEGRALS, T= 0.00

SCF

GAMESS – example outputGAMESS – example output

Page 67: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR INTEGRALS SKIPPED

1 0 0 -74.796773179 -74.796773179 0.583541875 0.000000000 228

2 1 0 -74.949933433 -0.153160253 0.179571374 0.000000000 228

3 2 0 -74.962801350 -0.012867917 0.059444772 0.000000000 228

4 3 0 -74.964198775 -0.001397425 0.020412108 0.000000000 228

5 4 0 -74.964401115 -0.000202340 0.007567631 0.000000000 228

6 5 0 -74.964436594 -0.000035479 0.002991213 0.000000000 228

7 0 0 -74.964443388 -0.000006793 0.002392704 0.000000000 228

8 1 0 -74.964445064 -0.000001677 0.000010704 0.000000000 228

9 2 0 -74.964445065 0.000000000 0.000005217 0.000000000 228

10 3 0 -74.964445065 0.000000000 0.000002308 0.000000000 228

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR INTEGRALS SKIPPED

1 0 0 -74.796773179 -74.796773179 0.583541875 0.000000000 228

2 1 0 -74.949933433 -0.153160253 0.179571374 0.000000000 228

3 2 0 -74.962801350 -0.012867917 0.059444772 0.000000000 228

4 3 0 -74.964198775 -0.001397425 0.020412108 0.000000000 228

5 4 0 -74.964401115 -0.000202340 0.007567631 0.000000000 228

6 5 0 -74.964436594 -0.000035479 0.002991213 0.000000000 228

7 0 0 -74.964443388 -0.000006793 0.002392704 0.000000000 228

8 1 0 -74.964445064 -0.000001677 0.000010704 0.000000000 228

9 2 0 -74.964445065 0.000000000 0.000005217 0.000000000 228

10 3 0 -74.964445065 0.000000000 0.000002308 0.000000000 228

SCF iterations for 0th geometry

EnergyEnergy difference

density difference

GAMESS – example outputGAMESS – example output

Page 68: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR INTEGRALS SKIPPED

1 0 0 -74.796773179 -74.796773179 0.583541875 0.000000000 228

2 1 0 -74.949933433 -0.153160253 0.179571374 0.000000000 228

3 2 0 -74.962801350 -0.012867917 0.059444772 0.000000000 228

4 3 0 -74.964198775 -0.001397425 0.020412108 0.000000000 228

5 4 0 -74.964401115 -0.000202340 0.007567631 0.000000000 228

6 5 0 -74.964436594 -0.000035479 0.002991213 0.000000000 228

7 0 0 -74.964443388 -0.000006793 0.002392704 0.000000000 228

8 1 0 -74.964445064 -0.000001677 0.000010704 0.000000000 228

9 2 0 -74.964445065 0.000000000 0.000005217 0.000000000 228

10 3 0 -74.964445065 0.000000000 0.000002308 0.000000000 228

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 0.0 SECONDS ( 0.0 SEC/ITER)

FOCK TIME ON FIRST ITERATION= 0.0, LAST ITERATION= 0.0

TIME TO SOLVE SCF EQUATIONS= 0.0 SECONDS ( 0.0 SEC/ITER)

FINAL RHF ENERGY IS -74.9644450645 AFTER 10 ITERATIONS

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR INTEGRALS SKIPPED

1 0 0 -74.796773179 -74.796773179 0.583541875 0.000000000 228

2 1 0 -74.949933433 -0.153160253 0.179571374 0.000000000 228

3 2 0 -74.962801350 -0.012867917 0.059444772 0.000000000 228

4 3 0 -74.964198775 -0.001397425 0.020412108 0.000000000 228

5 4 0 -74.964401115 -0.000202340 0.007567631 0.000000000 228

6 5 0 -74.964436594 -0.000035479 0.002991213 0.000000000 228

7 0 0 -74.964443388 -0.000006793 0.002392704 0.000000000 228

8 1 0 -74.964445064 -0.000001677 0.000010704 0.000000000 228

9 2 0 -74.964445065 0.000000000 0.000005217 0.000000000 228

10 3 0 -74.964445065 0.000000000 0.000002308 0.000000000 228

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 0.0 SECONDS ( 0.0 SEC/ITER)

FOCK TIME ON FIRST ITERATION= 0.0, LAST ITERATION= 0.0

TIME TO SOLVE SCF EQUATIONS= 0.0 SECONDS ( 0.0 SEC/ITER)

FINAL RHF ENERGY IS -74.9644450645 AFTER 10 ITERATIONS

!!!!!! SCF converged !!!

GAMESS – example outputGAMESS – example output

SCF iterations for 0th geometry

EnergyEnergy difference

density difference

Page 69: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR INTEGRALS SKIPPED

1 0 0 -74.796773179 -74.796773179 0.583541875 0.000000000 228

2 1 0 -74.949933433 -0.153160253 0.179571374 0.000000000 228

3 2 0 -74.962801350 -0.012867917 0.059444772 0.000000000 228

4 3 0 -74.964198775 -0.001397425 0.020412108 0.000000000 228

5 4 0 -74.964401115 -0.000202340 0.007567631 0.000000000 228

6 5 0 -74.964436594 -0.000035479 0.002991213 0.000000000 228

7 0 0 -74.964443388 -0.000006793 0.002392704 0.000000000 228

8 1 0 -74.964445064 -0.000001677 0.000010704 0.000000000 228

9 2 0 -74.964445065 0.000000000 0.000005217 0.000000000 228

10 3 0 -74.964445065 0.000000000 0.000002308 0.000000000 228

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 0.0 SECONDS ( 0.0 SEC/ITER)

FOCK TIME ON FIRST ITERATION= 0.0, LAST ITERATION= 0.0

TIME TO SOLVE SCF EQUATIONS= 0.0 SECONDS ( 0.0 SEC/ITER)

FINAL RHF ENERGY IS -74.9644450645 AFTER 10 ITERATIONS

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR INTEGRALS SKIPPED

1 0 0 -74.796773179 -74.796773179 0.583541875 0.000000000 228

2 1 0 -74.949933433 -0.153160253 0.179571374 0.000000000 228

3 2 0 -74.962801350 -0.012867917 0.059444772 0.000000000 228

4 3 0 -74.964198775 -0.001397425 0.020412108 0.000000000 228

5 4 0 -74.964401115 -0.000202340 0.007567631 0.000000000 228

6 5 0 -74.964436594 -0.000035479 0.002991213 0.000000000 228

7 0 0 -74.964443388 -0.000006793 0.002392704 0.000000000 228

8 1 0 -74.964445064 -0.000001677 0.000010704 0.000000000 228

9 2 0 -74.964445065 0.000000000 0.000005217 0.000000000 228

10 3 0 -74.964445065 0.000000000 0.000002308 0.000000000 228

-----------------

DENSITY CONVERGED

-----------------

TIME TO FORM FOCK OPERATORS= 0.0 SECONDS ( 0.0 SEC/ITER)

FOCK TIME ON FIRST ITERATION= 0.0, LAST ITERATION= 0.0

TIME TO SOLVE SCF EQUATIONS= 0.0 SECONDS ( 0.0 SEC/ITER)

FINAL RHF ENERGY IS -74.9644450645 AFTER 10 ITERATIONS

!!!!!! SCF converged !!!

GAMESS – example outputGAMESS – example output

SCF iterations for 0th geometry

EnergyEnergy difference

density difference

Energy for 0th geometry

Page 70: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

------------

EIGENVECTORS

------------

1 2 3 4 5

-20.2466 -1.2472 -0.5966 -0.4467 -0.3886

A A A A A

1 H 1 S -0.005517 0.155377 -0.447469 0.293937 0.000000

2 O 2 S 0.994228 -0.234582 0.000000 0.100452 0.000000

3 O 2 S 0.025713 0.849437 0.000000 -0.520497 0.000000

4 O 2 X 0.000000 0.000000 0.604594 0.000000 0.000000

5 O 2 Y 0.003933 0.114743 0.000000 0.769094 0.000000

6 O 2 Z 0.000000 0.000000 0.000000 0.000000 1.000000

7 H 3 S -0.005517 0.155377 0.447469 0.293937 0.000000

6 7

0.5632 0.6944

A A

1 H 1 S -0.768142 0.801413

2 O 2 S -0.126475 0.000000

3 O 2 S 0.814253 0.000000

4 O 2 X 0.000000 0.968433

5 O 2 Y 0.737473 0.000000

6 O 2 Z 0.000000 0.000000

7 H 3 S -0.768142 -0.801413

...... END OF RHF CALCULATION ......

STEP CPU TIME = 0.03 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

------------

EIGENVECTORS

------------

1 2 3 4 5

-20.2466 -1.2472 -0.5966 -0.4467 -0.3886

A A A A A

1 H 1 S -0.005517 0.155377 -0.447469 0.293937 0.000000

2 O 2 S 0.994228 -0.234582 0.000000 0.100452 0.000000

3 O 2 S 0.025713 0.849437 0.000000 -0.520497 0.000000

4 O 2 X 0.000000 0.000000 0.604594 0.000000 0.000000

5 O 2 Y 0.003933 0.114743 0.000000 0.769094 0.000000

6 O 2 Z 0.000000 0.000000 0.000000 0.000000 1.000000

7 H 3 S -0.005517 0.155377 0.447469 0.293937 0.000000

6 7

0.5632 0.6944

A A

1 H 1 S -0.768142 0.801413

2 O 2 S -0.126475 0.000000

3 O 2 S 0.814253 0.000000

4 O 2 X 0.000000 0.968433

5 O 2 Y 0.737473 0.000000

6 O 2 Z 0.000000 0.000000

7 H 3 S -0.768142 -0.801413

...... END OF RHF CALCULATION ......

STEP CPU TIME = 0.03 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

Results of the calculations for 0th geometry

MO coefficients

GAMESS – example outputGAMESS – example output

Page 71: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -121.6782828665

TWO ELECTRON ENERGY = 37.9134951517

NUCLEAR REPULSION ENERGY = 8.8003426502

------------------

TOTAL ENERGY = -74.9644450645

ELECTRON-ELECTRON POTENTIAL ENERGY = 37.9134951517

NUCLEUS-ELECTRON POTENTIAL ENERGY = -196.1745515770

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 8.8003426502

------------------

TOTAL POTENTIAL ENERGY = -149.4607137751

TOTAL KINETIC ENERGY = 74.4962687106

VIRIAL RATIO (V/T) = 2.0062845611

...... PI ENERGY ANALYSIS ......

ENERGY ANALYSIS:

FOCK ENERGY= -45.8512931329

BARE H ENERGY= -121.6782828665

ELECTRONIC ENERGY = -83.7647879997

KINETIC ENERGY= 74.4962687106

N-N REPULSION= 8.8003426502

TOTAL ENERGY= -74.9644453494

SIGMA PART(1+2)= -75.9540786331

(K,V1,2)= 69.4388062585 -176.2728088806 30.8799239890

PI PART(1+2)= -7.8107093666

(K,V1,2)= 5.0574624520 -19.9017426964 7.0335708778

SIGMA SKELETON, ERROR= -67.1537359828 0.0000000000

MIXED PART= 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

...... END OF PI ENERGY ANALYSIS ......

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -121.6782828665

TWO ELECTRON ENERGY = 37.9134951517

NUCLEAR REPULSION ENERGY = 8.8003426502

------------------

TOTAL ENERGY = -74.9644450645

ELECTRON-ELECTRON POTENTIAL ENERGY = 37.9134951517

NUCLEUS-ELECTRON POTENTIAL ENERGY = -196.1745515770

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 8.8003426502

------------------

TOTAL POTENTIAL ENERGY = -149.4607137751

TOTAL KINETIC ENERGY = 74.4962687106

VIRIAL RATIO (V/T) = 2.0062845611

...... PI ENERGY ANALYSIS ......

ENERGY ANALYSIS:

FOCK ENERGY= -45.8512931329

BARE H ENERGY= -121.6782828665

ELECTRONIC ENERGY = -83.7647879997

KINETIC ENERGY= 74.4962687106

N-N REPULSION= 8.8003426502

TOTAL ENERGY= -74.9644453494

SIGMA PART(1+2)= -75.9540786331

(K,V1,2)= 69.4388062585 -176.2728088806 30.8799239890

PI PART(1+2)= -7.8107093666

(K,V1,2)= 5.0574624520 -19.9017426964 7.0335708778

SIGMA SKELETON, ERROR= -67.1537359828 0.0000000000

MIXED PART= 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

...... END OF PI ENERGY ANALYSIS ......

Energy components

GAMESS – example outputGAMESS – example output

Results of the calculations for 0th geometry

Page 72: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

---------------------------------------

MULLIKEN AND LOWDIN POPULATION ANALYSES

---------------------------------------

MULLIKEN ATOMIC POPULATION IN EACH MOLECULAR ORBITAL

1 2 3 4 5

2.000000 2.000000 2.000000 2.000000 2.000000

1 -0.000597 0.181906 0.472117 0.182084 0.000000

2 2.001194 1.636187 1.055765 1.635831 2.000000

3 -0.000597 0.181906 0.472117 0.182084 0.000000

----- POPULATIONS IN EACH AO -----

MULLIKEN LOWDIN

1 H 1 S 0.83551 0.88426

2 O 2 S 1.99782 1.99617

3 O 2 S 1.84143 1.70744

4 O 2 X 1.05577 1.08175

5 O 2 Y 1.43397 1.44611

6 O 2 Z 2.00000 2.00000

7 H 3 S 0.83551 0.88426

----- MULLIKEN ATOMIC OVERLAP POPULATIONS -----

(OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2)

1 2 3

1 0.6216002

2 0.2545193 7.8199392

3 -0.0406083 0.2545193 0.6216002

---------------------------------------

MULLIKEN AND LOWDIN POPULATION ANALYSES

---------------------------------------

MULLIKEN ATOMIC POPULATION IN EACH MOLECULAR ORBITAL

1 2 3 4 5

2.000000 2.000000 2.000000 2.000000 2.000000

1 -0.000597 0.181906 0.472117 0.182084 0.000000

2 2.001194 1.636187 1.055765 1.635831 2.000000

3 -0.000597 0.181906 0.472117 0.182084 0.000000

----- POPULATIONS IN EACH AO -----

MULLIKEN LOWDIN

1 H 1 S 0.83551 0.88426

2 O 2 S 1.99782 1.99617

3 O 2 S 1.84143 1.70744

4 O 2 X 1.05577 1.08175

5 O 2 Y 1.43397 1.44611

6 O 2 Z 2.00000 2.00000

7 H 3 S 0.83551 0.88426

----- MULLIKEN ATOMIC OVERLAP POPULATIONS -----

(OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2)

1 2 3

1 0.6216002

2 0.2545193 7.8199392

3 -0.0406083 0.2545193 0.6216002

Population analysis

GAMESS – example outputGAMESS – example output

Results of the calculations for 0th geometry

Page 73: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS

ATOM MULL.POP. CHARGE LOW.POP. CHARGE

1 H 0.835511 0.164489 0.884264 0.115736

2 O 8.328978 -0.328978 8.231473 -0.231473

3 H 0.835511 0.164489 0.884264 0.115736

TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS

ATOM MULL.POP. CHARGE LOW.POP. CHARGE

1 H 0.835511 0.164489 0.884264 0.115736

2 O 8.328978 -0.328978 8.231473 -0.231473

3 H 0.835511 0.164489 0.884264 0.115736

Population analysis

Mulliken Lowdina

Population Charge

GAMESS – example outputGAMESS – example output

Results of the calculations for 0th geometry

Population Charge

Page 74: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

-------------------------------

BOND ORDER AND VALENCE ANALYSIS

BOND ORDER THRESHOLD=0.050

-------------------------------

BOND BOND BOND

ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER

1 2 1.000 0.961 2 3 1.000 0.961

TOTAL BONDED FREE

ATOM VALENCE VALENCE VALENCE

1 H 0.973 0.973 0.000

2 O 1.922 1.922 0.000

3 H 0.973 0.973 0.000

-------------------------------

BOND ORDER AND VALENCE ANALYSIS

BOND ORDER THRESHOLD=0.050

-------------------------------

BOND BOND BOND

ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER

1 2 1.000 0.961 2 3 1.000 0.961

TOTAL BONDED FREE

ATOM VALENCE VALENCE VALENCE

1 H 0.973 0.973 0.000

2 O 1.922 1.922 0.000

3 H 0.973 0.973 0.000

Bond-order analysis

Atom pair, distance, bond-order

GAMESS – example outputGAMESS – example output

Results of the calculations for 0th geometry

Page 75: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

---------------------

ELECTROSTATIC MOMENTS

---------------------

POINT 1 X Y Z (BOHR) CHARGE

0.000000 0.000000 0.000000 0.00 (A.U.)

DX DY DZ /D/ (DEBYE)

0.000000 1.666118 0.000000 1.666118

...... END OF PROPERTY EVALUATION ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

---------------------

ELECTROSTATIC MOMENTS

---------------------

POINT 1 X Y Z (BOHR) CHARGE

0.000000 0.000000 0.000000 0.00 (A.U.)

DX DY DZ /D/ (DEBYE)

0.000000 1.666118 0.000000 1.666118

...... END OF PROPERTY EVALUATION ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

Dipole moment

GAMESS – example outputGAMESS – example output

Results of the calculations for 0th geometry

Page 76: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

Geometry Geometry optimizationoptimization

Starting geometry

SCF – electron density

Gradients

Atomic displacements

New geometry

Page 77: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

----------------------

GRADIENT OF THE ENERGY

----------------------

THE COARSE/FINE SCHWARZ SCREENINGS SKIPPED 0/ 0 BLOCKS.

THE NUMBER OF GRADIENT INTEGRAL BLOCKS COMPUTED WAS 47

...... END OF 2-ELECTRON GRADIENT ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

NSERCH= 0 ENERGY= -74.9644451

-----------------------

GRADIENT (HARTREE/BOHR)

-----------------------

ATOM ZNUC DE/DX DE/DY DE/DZ

--------------------------------------------------------------

1 H 1.0 -0.0203727 -0.0017885 0.0000000

2 O 8.0 0.0000000 0.0035770 0.0000000

3 H 1.0 0.0203727 -0.0017885 0.0000000

----------------------

GRADIENT OF THE ENERGY

----------------------

THE COARSE/FINE SCHWARZ SCREENINGS SKIPPED 0/ 0 BLOCKS.

THE NUMBER OF GRADIENT INTEGRAL BLOCKS COMPUTED WAS 47

...... END OF 2-ELECTRON GRADIENT ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

NSERCH= 0 ENERGY= -74.9644451

-----------------------

GRADIENT (HARTREE/BOHR)

-----------------------

ATOM ZNUC DE/DX DE/DY DE/DZ

--------------------------------------------------------------

1 H 1.0 -0.0203727 -0.0017885 0.0000000

2 O 8.0 0.0000000 0.0035770 0.0000000

3 H 1.0 0.0203727 -0.0017885 0.0000000

Information on gradients

GAMESS – example outputGAMESS – example output

Page 78: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

----------------------

GRADIENT OF THE ENERGY

----------------------

THE COARSE/FINE SCHWARZ SCREENINGS SKIPPED 0/ 0 BLOCKS.

THE NUMBER OF GRADIENT INTEGRAL BLOCKS COMPUTED WAS 47

...... END OF 2-ELECTRON GRADIENT ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

NSERCH= 0 ENERGY= -74.9644451

-----------------------

GRADIENT (HARTREE/BOHR)

-----------------------

ATOM ZNUC DE/DX DE/DY DE/DZ

--------------------------------------------------------------

1 H 1.0 -0.0203727 -0.0017885 0.0000000

2 O 8.0 0.0000000 0.0035770 0.0000000

3 H 1.0 0.0203727 -0.0017885 0.0000000

MAXIMUM GRADIENT = 0.0203727 RMS GRADIENT = 0.0097142

FORCE CONSTANT MATRIX NOT UPDATED --- TAKING FIRST STEP

MIN SEARCH, CORRECT HESSIAN, TRYING PURE NR STEP

NR STEP HAS LENGTH = 0.087425

RADIUS OF STEP TAKEN= 0.08742 CURRENT TRUST RADIUS= 0.30000

----------------------

GRADIENT OF THE ENERGY

----------------------

THE COARSE/FINE SCHWARZ SCREENINGS SKIPPED 0/ 0 BLOCKS.

THE NUMBER OF GRADIENT INTEGRAL BLOCKS COMPUTED WAS 47

...... END OF 2-ELECTRON GRADIENT ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

NSERCH= 0 ENERGY= -74.9644451

-----------------------

GRADIENT (HARTREE/BOHR)

-----------------------

ATOM ZNUC DE/DX DE/DY DE/DZ

--------------------------------------------------------------

1 H 1.0 -0.0203727 -0.0017885 0.0000000

2 O 8.0 0.0000000 0.0035770 0.0000000

3 H 1.0 0.0203727 -0.0017885 0.0000000

MAXIMUM GRADIENT = 0.0203727 RMS GRADIENT = 0.0097142

FORCE CONSTANT MATRIX NOT UPDATED --- TAKING FIRST STEP

MIN SEARCH, CORRECT HESSIAN, TRYING PURE NR STEP

NR STEP HAS LENGTH = 0.087425

RADIUS OF STEP TAKEN= 0.08742 CURRENT TRUST RADIUS= 0.30000

Maximum gradient

and RMS

GAMESS – example outputGAMESS – example output

Information on gradients

Page 79: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

----------------------

GRADIENT OF THE ENERGY

----------------------

THE COARSE/FINE SCHWARZ SCREENINGS SKIPPED 0/ 0 BLOCKS.

THE NUMBER OF GRADIENT INTEGRAL BLOCKS COMPUTED WAS 47

...... END OF 2-ELECTRON GRADIENT ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

NSERCH= 0 ENERGY= -74.9644451

-----------------------

GRADIENT (HARTREE/BOHR)

-----------------------

ATOM ZNUC DE/DX DE/DY DE/DZ

--------------------------------------------------------------

1 H 1.0 -0.0203727 -0.0017885 0.0000000

2 O 8.0 0.0000000 0.0035770 0.0000000

3 H 1.0 0.0203727 -0.0017885 0.0000000

MAXIMUM GRADIENT = 0.0203727 RMS GRADIENT = 0.0097142

FORCE CONSTANT MATRIX NOT UPDATED --- TAKING FIRST STEP

MIN SEARCH, CORRECT HESSIAN, TRYING PURE NR STEP

NR STEP HAS LENGTH = 0.087425

RADIUS OF STEP TAKEN= 0.08742 CURRENT TRUST RADIUS= 0.30000

1NSERCH= 1

----------------------

GRADIENT OF THE ENERGY

----------------------

THE COARSE/FINE SCHWARZ SCREENINGS SKIPPED 0/ 0 BLOCKS.

THE NUMBER OF GRADIENT INTEGRAL BLOCKS COMPUTED WAS 47

...... END OF 2-ELECTRON GRADIENT ......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.1 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.1 SECONDS, CPU UTILIZATION IS 100.00%

NSERCH= 0 ENERGY= -74.9644451

-----------------------

GRADIENT (HARTREE/BOHR)

-----------------------

ATOM ZNUC DE/DX DE/DY DE/DZ

--------------------------------------------------------------

1 H 1.0 -0.0203727 -0.0017885 0.0000000

2 O 8.0 0.0000000 0.0035770 0.0000000

3 H 1.0 0.0203727 -0.0017885 0.0000000

MAXIMUM GRADIENT = 0.0203727 RMS GRADIENT = 0.0097142

FORCE CONSTANT MATRIX NOT UPDATED --- TAKING FIRST STEP

MIN SEARCH, CORRECT HESSIAN, TRYING PURE NR STEP

NR STEP HAS LENGTH = 0.087425

RADIUS OF STEP TAKEN= 0.08742 CURRENT TRUST RADIUS= 0.30000

1NSERCH= 1

Convergence criteria not fulfilled – calculations for the new geometry

GAMESS – example outputGAMESS – example output

Maximum gradient

and RMS

Information on gradients

Page 80: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

1NSERCH= 1

COORDINATES OF ALL ATOMS ARE (ANGS)

ATOM CHARGE X Y Z

------------------------------------------------------------

H 1.0 -0.7610119585 0.5434707791 0.0000000000

O 8.0 0.0000000000 -0.0738071213 0.0000000000

H 1.0 0.7610119585 0.5434707791 0.0000000000

THE CURRENT FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 0.9798833

H 2 0.9798833 1 101.9070664

INTERNUCLEAR DISTANCES (ANGS.)

------------------------------

H O H

1 H 0.0000000 0.9798833 * 1.5220239 *

2 O 0.9798833 * 0.0000000 0.9798833 *

3 H 1.5220239 * 0.9798833 * 0.0000000

* ... LESS THAN 3.000

1NSERCH= 1

COORDINATES OF ALL ATOMS ARE (ANGS)

ATOM CHARGE X Y Z

------------------------------------------------------------

H 1.0 -0.7610119585 0.5434707791 0.0000000000

O 8.0 0.0000000000 -0.0738071213 0.0000000000

H 1.0 0.7610119585 0.5434707791 0.0000000000

THE CURRENT FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 0.9798833

H 2 0.9798833 1 101.9070664

INTERNUCLEAR DISTANCES (ANGS.)

------------------------------

H O H

1 H 0.0000000 0.9798833 * 1.5220239 *

2 O 0.9798833 * 0.0000000 0.9798833 *

3 H 1.5220239 * 0.9798833 * 0.0000000

* ... LESS THAN 3.000

New geometry

GAMESS – example outputGAMESS – example output

Page 81: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

New geometry

Informacje on SCF

Results for geometry No. 1

Gradients for geometry No.1,

etc.

GAMESS – example outputGAMESS – example output

Page 82: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

NSERCH= 3 ENERGY= -74.9659012

-----------------------

GRADIENT (HARTREE/BOHR)

-----------------------

ATOM ZNUC DE/DX DE/DY DE/DZ

--------------------------------------------------------------

1 H 1.0 -0.0001396 0.0001319 0.0000000

2 O 8.0 0.0000000 -0.0002639 0.0000000

3 H 1.0 0.0001396 0.0001319 0.0000000

MAXIMUM GRADIENT = 0.0002639 RMS GRADIENT = 0.0001262

1 ***** EQUILIBRIUM GEOMETRY LOCATED *****

NSERCH= 3 ENERGY= -74.9659012

-----------------------

GRADIENT (HARTREE/BOHR)

-----------------------

ATOM ZNUC DE/DX DE/DY DE/DZ

--------------------------------------------------------------

1 H 1.0 -0.0001396 0.0001319 0.0000000

2 O 8.0 0.0000000 -0.0002639 0.0000000

3 H 1.0 0.0001396 0.0001319 0.0000000

MAXIMUM GRADIENT = 0.0002639 RMS GRADIENT = 0.0001262

1 ***** EQUILIBRIUM GEOMETRY LOCATED *****

Convergence criteria fulfilled – geometry succesfully optimized

!!!!!!!!!!

Results for optimized geometry

GAMESS – example outputGAMESS – example output

Information on gradients

Maximum gradient

and RMS

Page 83: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

1 ***** EQUILIBRIUM GEOMETRY LOCATED *****

COORDINATES OF ALL ATOMS ARE (ANGS)

ATOM CHARGE X Y Z

------------------------------------------------------------

H 1.0 -0.7581611760 0.5497005259 0.0000000000

O 8.0 0.0000000000 -0.0862666149 0.0000000000

H 1.0 0.7581611760 0.5497005259 0.0000000000

THE CURRENT FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 0.9895770

H 2 0.9895770 1 100.0182401

INTERNUCLEAR DISTANCES (ANGS.)

------------------------------

H O H

1 H 0.0000000 0.9895770 * 1.5163224 *

2 O 0.9895770 * 0.0000000 0.9895770 *

3 H 1.5163224 * 0.9895770 * 0.0000000

* ... LESS THAN 3.000

1 ***** EQUILIBRIUM GEOMETRY LOCATED *****

COORDINATES OF ALL ATOMS ARE (ANGS)

ATOM CHARGE X Y Z

------------------------------------------------------------

H 1.0 -0.7581611760 0.5497005259 0.0000000000

O 8.0 0.0000000000 -0.0862666149 0.0000000000

H 1.0 0.7581611760 0.5497005259 0.0000000000

THE CURRENT FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 0.9895770

H 2 0.9895770 1 100.0182401

INTERNUCLEAR DISTANCES (ANGS.)

------------------------------

H O H

1 H 0.0000000 0.9895770 * 1.5163224 *

2 O 0.9895770 * 0.0000000 0.9895770 *

3 H 1.5163224 * 0.9895770 * 0.0000000

* ... LESS THAN 3.000

Uzyskana geometriaFinal geometry

GAMESS – example outputGAMESS – example output

Results for optimized geometry

Page 84: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

1 ***** EQUILIBRIUM GEOMETRY LOCATED *****

COORDINATES OF ALL ATOMS ARE (ANGS)

ATOM CHARGE X Y Z

------------------------------------------------------------

H 1.0 -0.7581611760 0.5497005259 0.0000000000

O 8.0 0.0000000000 -0.0862666149 0.0000000000

H 1.0 0.7581611760 0.5497005259 0.0000000000

THE CURRENT FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 0.9895770

H 2 0.9895770 1 100.0182401

INTERNUCLEAR DISTANCES (ANGS.)

------------------------------

H O H

1 H 0.0000000 0.9895770 * 1.5163224 *

2 O 0.9895770 * 0.0000000 0.9895770 *

3 H 1.5163224 * 0.9895770 * 0.0000000

* ... LESS THAN 3.000

NUCLEAR ENERGY = 8.9050029278

ELECTRONIC ENERGY = -83.8709040828

TOTAL ENERGY = -74.9659011550

1 ***** EQUILIBRIUM GEOMETRY LOCATED *****

COORDINATES OF ALL ATOMS ARE (ANGS)

ATOM CHARGE X Y Z

------------------------------------------------------------

H 1.0 -0.7581611760 0.5497005259 0.0000000000

O 8.0 0.0000000000 -0.0862666149 0.0000000000

H 1.0 0.7581611760 0.5497005259 0.0000000000

THE CURRENT FULLY SUBSTITUTED Z-MATRIX IS

H

O 1 0.9895770

H 2 0.9895770 1 100.0182401

INTERNUCLEAR DISTANCES (ANGS.)

------------------------------

H O H

1 H 0.0000000 0.9895770 * 1.5163224 *

2 O 0.9895770 * 0.0000000 0.9895770 *

3 H 1.5163224 * 0.9895770 * 0.0000000

* ... LESS THAN 3.000

NUCLEAR ENERGY = 8.9050029278

ELECTRONIC ENERGY = -83.8709040828

TOTAL ENERGY = -74.9659011550

Final energy [a.u.]

1 a.u. (hartree) = 627.52 kcal/mol

!!!!!!!!!!!!!!!!!!!!!!!!!!!!

GAMESS – example outputGAMESS – example output

Results for optimized geometry

Page 85: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

------------------

MOLECULAR ORBITALS

------------------

1 2 3 4 5

-20.2516 -1.2575 -0.5938 -0.4597 -0.3926

A A A A A

1 H 1 S 0.005582 -0.155579 0.449234 -0.295174 0.000000

2 O 2 S -0.994217 0.233772 0.000000 -0.104030 0.000000

3 O 2 S -0.025844 -0.844510 0.000000 0.538123 0.000000

4 O 2 X 0.000000 0.000000 -0.612709 0.000000 0.000000

5 O 2 Y -0.004163 -0.122788 0.000000 -0.755816 0.000000

6 O 2 Z 0.000000 0.000000 0.000000 0.000000 -1.000000

7 H 3 S 0.005582 -0.155579 -0.449234 -0.295174 0.000000

6 7

0.5816 0.6925

A A

1 H 1 S -0.769041 -0.814518

2 O 2 S -0.125793 0.000000

3 O 2 S 0.819855 0.000000

4 O 2 X 0.000000 -0.959690

5 O 2 Y 0.763581 0.000000

6 O 2 Z 0.000000 0.000000

7 H 3 S -0.769041 0.814518

------------------

MOLECULAR ORBITALS

------------------

1 2 3 4 5

-20.2516 -1.2575 -0.5938 -0.4597 -0.3926

A A A A A

1 H 1 S 0.005582 -0.155579 0.449234 -0.295174 0.000000

2 O 2 S -0.994217 0.233772 0.000000 -0.104030 0.000000

3 O 2 S -0.025844 -0.844510 0.000000 0.538123 0.000000

4 O 2 X 0.000000 0.000000 -0.612709 0.000000 0.000000

5 O 2 Y -0.004163 -0.122788 0.000000 -0.755816 0.000000

6 O 2 Z 0.000000 0.000000 0.000000 0.000000 -1.000000

7 H 3 S 0.005582 -0.155579 -0.449234 -0.295174 0.000000

6 7

0.5816 0.6925

A A

1 H 1 S -0.769041 -0.814518

2 O 2 S -0.125793 0.000000

3 O 2 S 0.819855 0.000000

4 O 2 X 0.000000 -0.959690

5 O 2 Y 0.763581 0.000000

6 O 2 Z 0.000000 0.000000

7 H 3 S -0.769041 0.814518

MO coefficients

GAMESS – example outputGAMESS – example output

Results for optimized geometry

Page 86: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -121.8314321096

TWO ELECTRON ENERGY = 37.9605280269

NUCLEAR REPULSION ENERGY = 8.9050029278

------------------

TOTAL ENERGY = -74.9659011550

ELECTRON-ELECTRON POTENTIAL ENERGY = 37.9605280269

NUCLEUS-ELECTRON POTENTIAL ENERGY = -196.3496926191

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 8.9050029278

------------------

TOTAL POTENTIAL ENERGY = -149.4841616645

TOTAL KINETIC ENERGY = 74.5182605095

VIRIAL RATIO (V/T) = 2.0060071269

...... PI ENERGY ANALYSIS ......

ENERGY ANALYSIS:

FOCK ENERGY= -45.9103756492

BARE H ENERGY= -121.8314321096

ELECTRONIC ENERGY = -83.8709038794

KINETIC ENERGY= 74.5182605095

N-N REPULSION= 8.9050029278

TOTAL ENERGY= -74.9659009516

SIGMA PART(1+2)= -76.0476994864

(K,V1,2)= 69.4607980575 -176.4310506479 30.9225531041

PI PART(1+2)= -7.8232043930

(K,V1,2)= 5.0574624520 -19.9186419712 7.0379751261

SIGMA SKELETON, ERROR= -67.1426965586 0.0000000000

MIXED PART= 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

...... END OF PI ENERGY ANALYSIS ......

-----------------

ENERGY COMPONENTS

-----------------

WAVEFUNCTION NORMALIZATION = 1.0000000000

ONE ELECTRON ENERGY = -121.8314321096

TWO ELECTRON ENERGY = 37.9605280269

NUCLEAR REPULSION ENERGY = 8.9050029278

------------------

TOTAL ENERGY = -74.9659011550

ELECTRON-ELECTRON POTENTIAL ENERGY = 37.9605280269

NUCLEUS-ELECTRON POTENTIAL ENERGY = -196.3496926191

NUCLEUS-NUCLEUS POTENTIAL ENERGY = 8.9050029278

------------------

TOTAL POTENTIAL ENERGY = -149.4841616645

TOTAL KINETIC ENERGY = 74.5182605095

VIRIAL RATIO (V/T) = 2.0060071269

...... PI ENERGY ANALYSIS ......

ENERGY ANALYSIS:

FOCK ENERGY= -45.9103756492

BARE H ENERGY= -121.8314321096

ELECTRONIC ENERGY = -83.8709038794

KINETIC ENERGY= 74.5182605095

N-N REPULSION= 8.9050029278

TOTAL ENERGY= -74.9659009516

SIGMA PART(1+2)= -76.0476994864

(K,V1,2)= 69.4607980575 -176.4310506479 30.9225531041

PI PART(1+2)= -7.8232043930

(K,V1,2)= 5.0574624520 -19.9186419712 7.0379751261

SIGMA SKELETON, ERROR= -67.1426965586 0.0000000000

MIXED PART= 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

...... END OF PI ENERGY ANALYSIS ......

Energy components

GAMESS – example outputGAMESS – example output

Results for optimized geometry

Page 87: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

---------------------------------------

MULLIKEN AND LOWDIN POPULATION ANALYSES

---------------------------------------

MULLIKEN ATOMIC POPULATION IN EACH MOLECULAR ORBITAL

1 2 3 4 5

2.000000 2.000000 2.000000 2.000000 2.000000

1 -0.000619 0.185546 0.463482 0.186405 0.000000

2 2.001238 1.628909 1.073036 1.627190 2.000000

3 -0.000619 0.185546 0.463482 0.186405 0.000000

----- POPULATIONS IN EACH AO -----

MULLIKEN LOWDIN

1 H 1 S 0.83481 0.88427

2 O 2 S 1.99784 1.99629

3 O 2 S 1.84899 1.71154

4 O 2 X 1.07304 1.10071

5 O 2 Y 1.41051 1.42291

6 O 2 Z 2.00000 2.00000

7 H 3 S 0.83481 0.88427

----- MULLIKEN ATOMIC OVERLAP POPULATIONS -----

(OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2)

1 2 3

1 0.6263499

2 0.2538399 7.8226930

3 -0.0453762 0.2538399 0.6263499

---------------------------------------

MULLIKEN AND LOWDIN POPULATION ANALYSES

---------------------------------------

MULLIKEN ATOMIC POPULATION IN EACH MOLECULAR ORBITAL

1 2 3 4 5

2.000000 2.000000 2.000000 2.000000 2.000000

1 -0.000619 0.185546 0.463482 0.186405 0.000000

2 2.001238 1.628909 1.073036 1.627190 2.000000

3 -0.000619 0.185546 0.463482 0.186405 0.000000

----- POPULATIONS IN EACH AO -----

MULLIKEN LOWDIN

1 H 1 S 0.83481 0.88427

2 O 2 S 1.99784 1.99629

3 O 2 S 1.84899 1.71154

4 O 2 X 1.07304 1.10071

5 O 2 Y 1.41051 1.42291

6 O 2 Z 2.00000 2.00000

7 H 3 S 0.83481 0.88427

----- MULLIKEN ATOMIC OVERLAP POPULATIONS -----

(OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2)

1 2 3

1 0.6263499

2 0.2538399 7.8226930

3 -0.0453762 0.2538399 0.6263499

Population analysis

GAMESS – example outputGAMESS – example output

Results for optimized geometry

Page 88: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS

ATOM MULL.POP. CHARGE LOW.POP. CHARGE

1 H 0.834814 0.165186 0.884271 0.115729

2 O 8.330373 -0.330373 8.231458 -0.231458

3 H 0.834814 0.165186 0.884271 0.115729

-------------------------------

BOND ORDER AND VALENCE ANALYSIS BOND ORDER THRESHOLD=0.050

-------------------------------

BOND BOND BOND

ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER

1 2 0.990 0.964 2 3 0.990 0.964

TOTAL BONDED FREE

ATOM VALENCE VALENCE VALENCE

1 H 0.973 0.973 0.000

2 O 1.928 1.928 0.000

3 H 0.973 0.973 0.000

TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS

ATOM MULL.POP. CHARGE LOW.POP. CHARGE

1 H 0.834814 0.165186 0.884271 0.115729

2 O 8.330373 -0.330373 8.231458 -0.231458

3 H 0.834814 0.165186 0.884271 0.115729

-------------------------------

BOND ORDER AND VALENCE ANALYSIS BOND ORDER THRESHOLD=0.050

-------------------------------

BOND BOND BOND

ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER

1 2 0.990 0.964 2 3 0.990 0.964

TOTAL BONDED FREE

ATOM VALENCE VALENCE VALENCE

1 H 0.973 0.973 0.000

2 O 1.928 1.928 0.000

3 H 0.973 0.973 0.000

Mulliken and Lowdin population analysis

Bond-order analysis

GAMESS – example outputGAMESS – example output

Results for optimized geometry

Page 89: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

---------------------

ELECTROSTATIC MOMENTS

---------------------

POINT 1 X Y Z (BOHR) CHARGE

0.000000 -0.028521 0.000000 0.00 (A.U.)

DX DY DZ /D/ (DEBYE)

0.000000 1.709035 0.000000 1.709035

...... END OF PROPERTY EVALUATION ......

STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.2 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.2 SECONDS, CPU UTILIZATION IS 100.00%

$VIB

IVIB= 0 IATOM= 0 ICOORD= 0 E= -74.9659011550

-1.396299038E-04 1.319388306E-04 0.000000000E+00 0.000000000E+00-2.638776612E-

04

0.000000000E+00 1.396299038E-04 1.319388305E-04 0.000000000E+00

3.408887981E-13 1.709035141E+00-3.098182603E-17

......END OF GEOMETRY SEARCH......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.2 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.2 SECONDS, CPU UTILIZATION IS 105.56%

100000 WORDS OF DYNAMIC MEMORY USED

EXECUTION OF GAMESS TERMINATED NORMALLY Mon Oct 20 14:39:50 2003

---------------------

ELECTROSTATIC MOMENTS

---------------------

POINT 1 X Y Z (BOHR) CHARGE

0.000000 -0.028521 0.000000 0.00 (A.U.)

DX DY DZ /D/ (DEBYE)

0.000000 1.709035 0.000000 1.709035

...... END OF PROPERTY EVALUATION ......

STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.2 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.2 SECONDS, CPU UTILIZATION IS 100.00%

$VIB

IVIB= 0 IATOM= 0 ICOORD= 0 E= -74.9659011550

-1.396299038E-04 1.319388306E-04 0.000000000E+00 0.000000000E+00-2.638776612E-

04

0.000000000E+00 1.396299038E-04 1.319388305E-04 0.000000000E+00

3.408887981E-13 1.709035141E+00-3.098182603E-17

......END OF GEOMETRY SEARCH......

STEP CPU TIME = 0.01 TOTAL CPU TIME = 0.2 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 0.2 SECONDS, CPU UTILIZATION IS 105.56%

100000 WORDS OF DYNAMIC MEMORY USED

EXECUTION OF GAMESS TERMINATED NORMALLY Mon Oct 20 14:39:50 2003

Dipole moments

GAMESS – example outputGAMESS – example output

Results for optimized geometry

Page 90: Quantum chemical molecular modellingmichalak/mmod2008/L3.pdf · „General Atomic and Molecular Electronic Structure System” 1. RHF, UHF, ROHF, GVB, MCSCF. 2. Calculates CI or MP2

• Basic ideas and methods of quantum chemistry:

Wave-function; Electron density; Schrodinger equation; Density Functional theory;

Born-Oppenheimer approximation; Variational principles in wave-function mechanics

and DFT; One-electron approximation; HF method; Electron correlation; KS method;

Wave-function-based electron correlation methods;

• Input data for QM calculations, GAMESS program:Molecular geometry, Z-Matrix, Basis sets in ab initio

calculations; input, output;

• Geometry of molecular systems:

Geometry optimization; Constrained optimization; Conformational analysis; Global minimum problem

• Electronic structure of molecular systems: Molecular orbitals (KS orbitals); Chemical bond; Deformation density; Localized orbitals; Population

analysis; Bond-orders

•Molecular vibrations, Thermodynamics; Chemical Reactivity:

Vibrational analysis; Thermodynamic properties; Modeling chemical reactions; Trantition state optimization and validation; Intrinsic Reaction Coordinate; Chemical reactivity indices; Molecular Electrostatic Potential;

Fukui Functions; Single- and Two-Reactant Reactivity Indices

• Other Topics:

Modelling of complex chemical processes – examples from catalysis; Molecular spectroscopy from ab initio

calculations; Advanced methods for electron correlation;Molecular dynamics; Modelling of large systems –

hybrid approaches (QM/MM); Solvation models