quantum error correction - lth · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6...

23
Quantum Error Correction In principle: whole chapter 10 TL;DR version: sec. 10.1-10.2, 10.6 What is error correction? (classically) Introduction to quantum errors Some formalism to help us What are the boundries for correctability

Upload: nguyendang

Post on 04-May-2019

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Quantum Error Correction

• In principle: whole chapter 10

• TL;DR version: sec. 10.1-10.2, 10.6

• What is error correction? (classically)

• Introduction to quantum errors

• Some formalism to help us

• What are the boundries for correctability

Page 2: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Classical Error Correction

Everyday example:

Noisy phoneline

B D VR

A

V

O

E

L

T

A

I

C

T

O

R

Page 3: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Classical Error Correction

Example:

Error:

With probability p

any bit is flipped

000

Repetition coding:

00001111

31 pProbability: 213 pp pp 13 2 3p

001

100010

110

011101000 111

Majority voting Scheme fails

?13 32 pppp 02

1

2

32 pp

Repetition better if

2

1 p

Page 4: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Parity check:

Classical Error Correction

Repetition code has heavy cost, 300 %

of original message length

1  001  1010

byte parity bit = 1 if odd number of 1’s

Error:

1  101  1010

byte and parity bit missmatch = resend

Works well, if p is very low

Example: computers, where ε < 10-17

Page 5: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Quantum Error Correction

Differences from classical:

• No cloning: Cannot use repetition coding directly, because

we cannot duplicate arbitrary states

• Measurement collapse: Everytime we try to detect what

state we have, it collapses to the basis

• Continuous errors: Infinite ways that errors can occur,

think rotations in the Bloch sphere

Despite all this, quantum error correction still works!

Page 6: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Quantum Error Correction

00000 L

11111 L

01

10XQuantum bit flip = Pauli X operator,

Define logical qubit:

11100010

No cloning… But what does this circuit do?

First task: correct for bit flip

Page 7: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Quantum Error Correction

Error-detection circuit for original state 111000 orig

Apply

correction:

bit flip

I X1 X2 X3

3210 eeeeeeorigtot cccc

1111110000000 P

0110111001001 P

1011010100102 P

1101100010013 P

Projective measurement set:

orig , α and β are untouched!

Page 8: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Quantum Error Correction

How much improvement from the error correction?

Measured by fidelity: ,F

Without error correction:

XpXp )1(

XXpppppp 3223 )1(3)1(3)1(

F XXpp )1( p 1

With error correction:

...)1(3)1( 23 pppF32 231 pp

2

1 p

Page 9: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Quantum Error Correction

Quantum phase flip:

10 orig 10

Change basis:

2

10

2

10

L0

L1

10

01Z

Z,

Same procedure as before! )( HZHX

10, X

Page 10: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Quantum Error Correction

Both phase and bit flip at the same time?

First, encode0

1, then, encode each of these according to the bit flip:

22

11100011100011100000

L

22

11100011100011100011

L

The Shor code:

9 qubit code!

XZeZeXeIeE 3210

Continuous errors?

Saved by the projective measurement!

Page 11: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Ex: How to measure the error syndrome

111000 orig

tot P0 P1 P2 P3Z1Z2 Z2Z3

32121 IZZZZ 110010

01,

Z

2121 11001100ZZ

1010010111110000

+1-1

+1-1

1111110000000 P

0110111001001 P

1011010100102 P

1101100010013 P

Projective measurement set:

Page 12: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Error Correction Formalism

• How can we find better codes?

• Can we know if we have found the best code?

• How can we build real circuits from the theory?

• How big error is allowed for a full scale fault-tolerant

quantum computer?

Why do we need to develop formalism?

Page 13: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Error Correction Formalism

Generators (classical)

Definition: a linear code C, encoding k bits of information into an n bit

code space, is specified by an n by k generator matrix G

Example: 3-bit repetion code

1

1

1

G code Gxy , where x is the k bit message

0x Ly 0

0

0

0

1x Ly 1

1

1

1

[n,k] code = [3,1] here

Page 14: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Error Correction Formalism

Parity check matrix, H (classical)

0Hy

Example: 3-bit repetion code

, where H is an n – k by k matrix

0HGx 0HG , so the rows of H must be orthogonal

vectors to the columns of G

(modulo 2)

1

1

1

G

1

1

0

,

0

1

1

11 vv

110

011H

Hy is only zero for

the code words

(0,0,0) and (1,1,1)

Page 15: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Error Correction Formalism

Error detection with parity matrix

Gxy eyy HeHeHyyH

Special case: (classical) Hamming code, a [7,4] code

1010101

1100110

1111000

HIf ej is an error

on the j’th bit

Hej is the binary

representation of j

Page 16: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Error Correction Formalism

Generators (quantum)Stabilizers

},,,,,,,{1 iZZiYYiXXiIIG Pauli group:

Suppose S is a subgroup of Gn and define VS to be the set

of n qubit states which are fixed by every element of S.

S is then said to be the stabilizer of the space VS.

Definition:

2

1100

EPR

EPRXX 21

EPR

EPRZZ 21

EPR ?

?

Page 17: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Stabilizers: example

Error Correction Formalism

},,,{

3

313221 ZZZZZZIS

n

21ZZ

111

110

001

000

32ZZ

111

011

100

000

111,000Common base (Vs):

221ZZI

322131 ZZZZZZ

3221 , ZZZZS

Z1Z2 Z2Z3

tot

3-qubit flip code!

Generator (quantum):

The stabilizers that generate our logical qubits tell

us how to measure the error syndrome!

Realization:

Page 18: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Check matrix (quantum parity)

Error Correction Formalism

1010101

1100110

1111000

H

1010101

1100110

1111000

0000000

0000000

0000000

0000000

0000000

0000000

1010101

1100110

1111000

H

Name Operator

1g IIIXXXX

2g IXXIIXX

3g XIXIXIX

4g IIIZZZZ

5g IZZIIZZ

6g ZIZIZIZ

1101001011110010110100001111

11001100110011101010100000008

10

L

0010110100001101001011110000

00110011001100010101011111118

11

L

7 qubit Steane code:

Quantum case is bigger because errors are more complex,

not only bit flips but also phase errors

Can be used to find

the generators:

Page 19: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Error Correction Measurement

Measure arbitrary operator M, as a controlled-M

Specific case: X as controlled-X

:temporary ancilla qubit

𝑍1

𝑍2

Z1Z2 Z2Z3

tot3-qubit flip code!

Page 20: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Error Correction Measurement7 qubit Steane code (standard form):

Name Operator

𝑔6 𝑍𝑍𝑍𝐼𝐼𝑍𝐼

𝑔1 𝑋𝐼𝐼𝐼𝑋𝑋𝑋

𝑔2 𝐼𝑋𝐼𝑋𝐼𝑋𝑋

𝑔5 𝐼𝑍𝑍𝐼𝑍𝐼𝑍

𝑔4 𝑍𝐼𝑍𝑍𝐼𝐼𝑍

𝑔3 𝐼𝐼𝑋𝑋𝑋𝑋𝐼

Page 21: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Error Correction Bounds

What is the smallest possible code that protects against any errors?

Quantum Singelton Bound (ch12):

tkn 4k is the original number of qubits

n is the encoded number of qubits

t is the max number of qubit errors

141 nExample: 5 n

5-qubit code:

Page 22: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Error Correction BoundsFault-tolerant quantum computing:

Single error: p After block:

Fails with cp2

• c depends on number of components

• In how many ways can two components fail? c ~104 ways

• Improvement if 𝑐𝑝2 < 𝑝

Large overhead for few qubits, but fortunately scales only logarithmically!

→ 𝑝 < ~10−4

Page 23: Quantum Error Correction - LTH · iiixxxx g 2 ixxiixx g 3 xixixix g 4 iiizzzz g 5 izziizz g 6 ziziziz 1 0001111 1011010 0111100 1101001 0000000 1010101 0110011 1100110 8 0 l 1 1110000

Quantum Error Correction

Summary

• Difference with quantum error correction• No cloning

• Continuous errors

• Measurement collapse

• Simple case: bit flip and phase flips

• Systematic treatment using stabilizers• 7-qubit Steane code

• Fault-tolerant bound: 𝑒~10−4