quantum optical...

115
Quantum Optical Implementations SUSSP Summer School AUG 2011 J. G. Rarity University of Bristol [email protected]

Upload: others

Post on 24-Feb-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Quantum Optical

ImplementationsSUSSP Summer School AUG

2011

J. G. RarityUniversity of Bristol

[email protected]

Page 2: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Structure

Lecture 1: Background/basics

• What is light?

• Why photons for quantum information

• The goal of an arbitrary quantum processor

• Encoding bits with single photons and single

bit manipulation.

• Two qubit logic

• Linear logic schemes

Page 3: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Structure

Lecture 2: Experimental implementations

• Detection

• Single photon sources

• Pair photon sources

• Entangled state sources

• Single photon detection

• Gate realisations and experiments

• N00N states

Page 4: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Structure

Lecture 3: More efficient gates, hybrid QIP.

• 2-level system in a cavity

• Charged quantum dots in cavity

• Spin-photon interface

• Quantum repeater

• Progress towards experiment

Page 5: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

The electro-magnetic spectrum

Optical Photon energy

Eph=hf>>KT

λ=1.5um

Eph=0.8eV

λ=0.33um

Eph=4eV

V+

Particle

like

Wave-like during propagation

Particle

like

Page 6: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Decoherence of photons:

associated with loss• Optical Photon energy>>KT

• Efficient detection

• Single photons

• Wavelength µm• Interference

• Storage time limited by loss• Storage time in fibre 5μs/km,

loss 0.17 dB/km (96%)

• Polarised light from stars==Storage for 6500 years!

• Low non-linearity

• Probabilistics gates

Page 7: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Linear gates η<0.5 F>0.9

Non-linear optics?

The PROBLEM: many qubits quantum processor

N

sN

d

U

NN

g F,

Single Qubit source Unitary transform DetectorsSingle 2-level ~ 2-10%

Heralded from pair ~ 80% Si 600-800nm ~70% (100%?)

InGaAs 1.3-1.6um ~30%

Superconducting~10-88%

Linear gates η<0.5 F>0.99

Non-linear optics η~1 F>0.9?

Throughput~ RFfNg

Nd

Ns ).(.

Page 8: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Manipulating single photons

as qubits

Page 9: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Interference effects

with single photons

Phaseplate

Beamsplitter50:50

Mirror

D(1)

D(0)

Mirror

D(0)CountRate

0 Thicknessof phase plate

Single photon can only be detected in

one detector

However interference pattern built

up from many individual counts

P. Grangier et al, Europhysics Letters 1986 L

U

In the interferometer we have superposition state

)11(2

1L

i

Ue

Page 10: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

2/)cos1()1(

2/)cos1()0(

y probabilitDetection

1 10

generalIn

1sin0cos

1)1(0)1(2

1

)11(2

1

21,

2

2

22

22

2/

P

P

ie

eei

ei

tir

i

out

ii

out

L

i

U

Simple analysis:

Phaseplate

Beamsplitter50:50

Mirror

D(1)

D(0)

Mirror

D(0)CountRate

0 Thicknessof phase plate

Page 11: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Encoding one bit per photon and

single qubit rotationsEncoding single photons using two polarisation modes

Superposition states of ‘1’ and ‘0’

|Ψ>= α|0> +β|1>Probability amplitudes α , βDetection Probability: |α|2

Single photon encoding showing QBER<5.10-4

(99.95% visibility)

-20 0 20 40 60 80 100 120 140 160 180 200

102

103

104

105

Ga

ted

co

un

t ra

te

/2 plate angle

Page 12: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Bloch Sphere Representation of

a Qubit

2

2

22

sin

cos

1sin0cos

i

i

e

e

Simple problem: write the states

|+i>, |-i>

Page 13: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Bloch Sphere: computational basis

= circular polarisation states

|R>

|V>

|H>|D>

|L>

|A>LeR i

22sincos

Page 14: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

|H>

|A>

|D>|R>

|V>

|L>VeH i

22sin|cos

Bloch Sphere: computational basis

= linear polarisation states

Page 15: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Arbitrary rotations

Combination of three waveplates QWP, HWP, QWP can take you

from any arbitrary position on Block sphere to any other

= Angle of waveplate fast axis with respect to H

2

2

sin

cos

ie

Page 16: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

|1>a

|->

|1>a+|1>b

|-i>

|1>b

|+i>

b

i

ae 1sin1cos

22

Bloch Sphere: computational basis

= path a/b

Page 17: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Waveguide based interferometer to create

arbitrary path encoded states

50:50 beamsplitter Phase shift

Need one further phase shift on h-mode

to achieve near universal rotation

h

i

g

i

out

hg

i

out

eie

ie

1sin1cos

1sin1cos

22

2/

22

2/

Page 18: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Have now introduced creation

operators for a mode

i

N

i

ii

NN

a

dcbai

a

0!

.....,,,

10

ijji

i

ii

aa

NNNa

NNNa

,

1

11

Page 19: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

And general beamsplitter operator

1

1

1

2

2

50:50

TR

tT

rR

tir

irtH

i

iH

t

The 50:50

beamsplitter can also be

mapped to the Hadamard

11

11

H

PROBLEM: show how this

can be achieved

Page 20: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Further qubit encoding schemes:

• Time bin

• Frequency

• Spatial mode (see Padgett):

• Laguerre Gaussian

• Hermite Gaussian

• Encoding in higher dimensions

• D -paths, -modes, frequencies, time bins…

Page 21: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

2-qubit states: entanglement

1100

1100

1001

1001

Two qubit states that cannot be factorised

The four general Bell states

Page 22: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

2-qubit gates

Page 23: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Control

0

1

Target

1

0

a bc c|0>+ |1>

a bt t|0>+ |1>

CNOT GATE

Control

0

1

Target

1

0

a bc c|0>+ |1>

a bt t|0>+ |1>

CPHASE GATE

U =universal quantum gate (CNOT)= ‘entangler’

ccccttin

1010

ctcctcctcctcout10011100

Page 24: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

2-qubit gates

Requires non-linearity a single photon to iduce a pi phase shift in

another photon, extremely difficult to achieve.

PROGRESS

Atoms: Turchette and Kimble PRL1995, (7 degrees per photon)

Solid state: J. P. Reithmaier/ A. Forchel, Nature 432, Nov 2004.

Young, Rarity et al arXiv

ALSO

Quadratic interactions thus need TOP HAT photons

Page 25: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

2-photon interference

ctct

toutcoutcouttoutout

irtirtrt

iratairata

222211)(

0))((

22

:

011

toutcoutccouttoutt

ctctin

irataairataa

aa

Page 26: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

When t=r=1/√2

ct

toutcoutcouttoutout iaaiaa

222

1

0))((2

1

Hong, Ou, Mandel PRL 1987

Rarity, Tapster, JOSA, 1989

Page 27: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

|2>|2> inputs and generalising the

beamsplitter to |N>|M>

• PROBLEM: |N>|M> state generalised result?

ctctct

toutcoutcouttoutout

tccin

iaaiaa

aa

222

14004

8

3

?

0)()(8

1

02

122

22

22

Page 28: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Probabilistic phase gate

ct

ctctout

ctin

irtirtrt

113

1

1,121,1211)(

11

22

Page 29: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Control

0

1

Target

1

0

a bc c|0>+ |1>

a bt t|0>+ |1>

CPHASE GATE

U =universal quantum gate (CNOT)= ‘entangler’

Control

Target

a bc c|0>+ |1>

a bt t|0>+ |1>

0

1

1

0

BS1/3:2/3

BS1/3:2/3

BS1/2:1/2

KLM CNOT gate

BS1/3:2/3

ccccttin

1010

ctcctcctcctcout10011100(

3

1

1/9 success probability conditioned on seeing

One photon in control and one in target lines

Page 30: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

First experimental all-optical quantum

controlled-NOT gate

Knill et al Nature 409, 46–52 (2001)

J L O’Brien et al, Nature 426, 264 (2003) / quant-ph/0403062

Page 31: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Polarisation KLM gate

Page 32: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Polarisation Gates

Parity Measurement OR

Fusion gate

Up to 50%

efficient

Notes?

Page 33: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Franson conditional CNOTPittman et al (2002) PRL 88, 257902

Target V-->H+V Control H-->H-V

Parity-->HH-VV -45--> H(H+V)+V(H-V)

Confirm click is H-->(H+V) out -45--> |V>

Page 34: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Lecture 2: Experimental techniques

• Detection

• Single photon sources

• Entangled state sources

• Single photon detection

• Gate realisations and experiments

• N00N states and metrology

Page 35: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Detection

111

11

111

2

2

2

abba

ba

ii

ba

ijjiij

iiii

aaaa

vac

aiaa

NNaaN

aa

Coincidence detection

Counting single photons

The number operator

Page 36: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Photon is absorbed in the avalanche region to create an electron hole pair

Electron and hole are accelerated in the high electric field

Collide with other electrons and holes to create more pairs

With high enough field the device breaks down when one photon is absorbed

Photon counting using avalanche photodiodes

Photon absorbed

Page 37: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Commercial actively quenched detector module using Silicon APD

InGaAs avalanche detectors:Gated modules operation at 1550nm

Lower efficiency ~20-30%

Higher dark counts ~1E4/sec

Afterpulsing (10 us dead time)

www.idquantique.com

Efficiency ~70% (at 700nm)

Timing jitter~400ps (latest <50ps)

Dark counts <50/sec

www.perkinelmer.com

Page 38: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Other detectors• InGaAs based devices for 1.55 um, gated

• The Geiger mode avalanche diodes count

one photon then switch off for a dead time -

NOT PHOTON NUMBER RESOLVING

• Photon number resolving detectors may

become available in the near future:

• Superconducting wire detectors, in multiwire

configurations Jaspan et al APL 89, 031112, 2006

• Superconducting transition edge detectors

• Impurity transitions in heavily doped silicon

• Self differencing gated detectors

Page 39: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Single and pair photon sources

Page 40: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Attenuated laser =

Coherent state

Laser Attenuator Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2

Number of photon

Approximate single photon source

nnn

n

ennnp

nn

22 variance

!),(

photons ofon distributiPoisson

shows stateCoherent

Mean number of photon

per pulse = 0,1

n

vace

2

22

2

...2!2

1

Page 41: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

True single photon sources

V+

Particle

like Wave-like during propagationParticle

like

Single atom or ion (in a trap)

Single dye molecule

Single colour centre (diamond NV)

Single quantum dot (eg InAs in GaAs)

Key problem: how to get single photons

from source efficiently coupled into

single spatial mode

Page 42: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

FIB etching ICP/RIE etching

Pillar microcavities for enhanced out-

coupling of photons from single quantum

dots

Page 43: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

0 2000000 4000000 6000000 8000000 10000000

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

Ex F

ield

In

ten

sit

y (

a.u

.)

Time(ps)

FDTD simulations: 0.50μm

radius micropillar microcavity:

Plane wave resonance=1001 nm

15 mirror pairs on top and 30 bottom

0

10

20

30

40

50

60

70

80

90

100

12 13 14 15 16 17 18 19 200

1500

3000

4500

6000

7500

9000

10500

12000

Q-f

acto

r

Number of top mirror pairs (Nt)

Eff

icie

ncy

(%

)

Efficiency

Q-factor

Page 44: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Experimental Setup

Hanbury-Brown Twiss measurement

)(

):(~

)()()(

2

)2(

tp

ttp

n

tntng

Time

Interval

Analyser

Page 45: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Single QD emission and

temperature tuning

962 963 964 965 966 967 968

50K48K46K44K42K40K38K

36K34K32K

4.3K7K

10K15K

20K22K24K

26K

28K30K

Oct18h4.opj Graph1

20.10.04

PL Inte

nsity (

arb

. units)

Wavelength (nm)

3m3m FIB

0 5 10 15 20 25 30 35 40 45 50 551282

1283

1284

1285

1286

1287

Energ

y (

meV

)Temperature (K)

QD1

QD2

Cavity mode

Single QD emission can be observed in smaller pillar at low excitation power

QD emission line shifts faster than cavity mode

Page 46: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Single photon generation in circular pillars

With increasing excitation power

QD emission intensity turns saturated

Cavity mode intensity develops

Page 47: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Single photon generation in circular pillars

11)()( )2(2)2( ggb

backgroundcavitysignal

signal

III

I

2)2( 1)0( bg

g(2) (0)=0.05 indicates multi-

photon emission is 20 times

suppressed.

g(2) (0) increases with pump

power due to the cavity mode

Page 48: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Progress Single-photon sources

• Optically driven with multiphoton emission <2%

• Optical fibre wavelength emission (1.3µm) – Quantum Key Distribution demonstrated over 35km

• Electrically driven single-photon sources – compact

• Interference demonstrated between pairs of photons from (i) the same QD and (ii) a QD and a laser

Bennett et al, Optics Exp 13, 7778 (2005)

Journal of Optics B 7, 129-136 (2005).

Entangled photon pairs from Biexciton

Exciton cascaded emission

(see , Nature 439, 179-182, PRL 102, 030406 (2009)

Biexciton State

Ground State

Exciton States

‘bright’ m=±1

‘dark’ m=±2

Large dot

15nm

Large dot

15nm

Page 49: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Single photons from NV- centres

in diamond

Page 50: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Solid immersion lens fabricated on diamond

using focussed ion beam

~5% collection into 0.9NA lens from flat surface

~30% collection into SIL + 0.9NA lens

FDTD simulation

Page 51: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Serendipitous discovery

of single NV centres

under SILs

on Polycrystalline

diamond (E6)

J.P. Haddon et al

APL 97, 241901 2010

Page 52: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources
Page 53: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Parametric sources of pair photons

and entangled photons

gEgvacaiga

aaaaaagH

Hi

t

pis

pispis

.exp

)(

....332211 32

isisisgggvacN

Page 54: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Why photon pairs?• Heralded single photon source

Source of

Photon pairs

Experimental realization of a localized one-photon state, C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986)

Observation of sub-poissonian light in parametric downconversion. J.G. Rarity, P.R.Tapster and E. Jakeman,

Opt. Comm., 62(3):201, 1987.

Triggered APD

APD

JGR,JMO 1998, 45,

595-604

321 Triggered

....3,32,21,1

2

32

ggN

gggvacN

Page 55: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Source for integrated quantum photonics

Page 56: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Creating Entangled Photon Pairs

idlersignalpump

idlersignalpump

www

kkk

0

Phase matching and energy conservation:

Non-linearcrystal (type II)

Blue laser

beam

Red photon

pairs

A

BCrystal axis

C

D

).why! vacuum...(ignoring

B-A Pairs

D-C Pairs

21

BA

i

BA

DC

HVeVH

VH

Page 57: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

PHOTONIC CRYSTAL FIBRES

SPECIFICATIONS

• Material: silica and air

• Core Diameter: ~2μm

• Zero Dispersion Wavelength: λ0=810nm

• Birefringent along orthogonal axes

Page 58: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Almost identical properties to three

wave process BUT quadratic in

pump power

gEgvacaiga

aaaaaagH

Hi

t

pis

pispis

2

22

.exp

)(

....332211 32

isisisgggvacN

Page 59: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

FOUR-WAVE MIXING PROCESS

╠ Pump the fibre in the normal

dispersion region

╠ Produce wavelengths

widespread and away from the

pump and Raman background

effects

χ(3)kp

kp ki

ks

idlersignalpump

pidlersignalpump Pkkk

2

022

J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. Russell and J. G. Rarity, Opt. Express 13, 7572 (2005)

MIFWM

Normal Dispersion

Page 60: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Experiment

Spectra

Coincidences~3.105 s-1

Page 61: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Entanglement

• Create |HsHi>+|VsVi>

• 2-photon fringes

visibility >90%

Page 62: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Example QIP experiments

Page 63: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Interfering

independent

photons

Page 64: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Fibre CNOT gate

Logical basis

Diagonal basis

Clark et al Phys Rev A,

Page 65: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Integrated quantum photonics

Page 66: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Reduce quantum circuits to integrated

optics realisations

Page 67: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Integrated Quantum Photonics

Page 68: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Integrated Coupler

V = 99.5 ±0.7%

A Laing, A Peruzzo, M Rodas, A Politi, M Thompson, J L O’Brien, in preparation

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien,. Science, 320, 5876 (2008)

Page 69: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

CNOT Gate Experiment

0

1

1

0

BS1/3:2/3

BS1/3:2/3

BS1/2:1/2

Detectors

C0 C1 T1T0

Page 70: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

7

0Integrated CNOT gate

Fzz = 96.9 ± 0.1 %

Szz = 99.0 ± 0.1 %

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien,. Science, 320, 5876 (2008).

Ideal:

Measured:

5 CNOT devices on the same chip

Ideal:

Page 71: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Quantum state manipulationWith resistive heater

Change refractive index of the WG.

Choose splitting ratio of exit ports.

Page 72: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Integrated Phase Control

1-photon

C = 98.2 ± 0.3 %

Page 73: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Integrated Phase Control

2-photon

C = 97.2 ± 0.4 %

Page 74: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Integrated Phase Control

4-photon

Quantum Metrology:

against

Shot noise limitHeisenberg limit

Precision:

dcdcdcdc

222

14004

8

322

Page 75: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Integrated Phase Control

4-photon

C = 92 ± 4 %

J. F. C. Matthews, A. Politi, A. Stefanov, J. L. O’Brien, to appear in Nature Photonics

Page 76: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Integrated Phase Control

C = 98.2 ± 0.3 %

C = 97.2 ± 0.4 %

C = 92 ± 4 %

Page 77: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Heralded N00N states

In interferometer

Page 78: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources
Page 79: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Improved efficiency through pure

state generation

Narrowband filters T~60%

Page 80: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

PHASE-MATCHING CONDITION

Copolar and Crosspolar birefringent phase matching curves

ss-ffff-ff

ss-ss

ff-ss

0p

s

s

f

Page 81: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

CHARACTERISTICS OF THE EMISSION

594 596 598 600 602

2000

4000

Inte

nsity (

Co

un

ts)

Wavelength (nm)

860 862 864 866 868 870

Wavelength (nm)

• Time-Bandwidth Limited with no filters Signal / Idler FWHM ~ 0.12nm / 2nm

• Single mode

• Polarized

• Total Lumped Efficiency η≈20%

Page 82: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Joint spectral distribution, state factorability and

interference visibility

Schmidt number Max Visibility < 1/K

Page 83: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

HOM DIP : RESULTS

• Purity issue ripples in JSA due

to phasematching function

• Spectral distinguishability

between separate sources

M. Halder,et al, Optics Express 17, 4670, 2009

A. Clark et al NJP, xx, xxx, 2011

Page 84: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

HOM from

same fibre

• Create |HsHiVsVi>

•Visibility again limited

to ~80%

• May be improved by

optimising pump BW?

Page 85: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Product state

Combine two photons in a PBS

Create GHZ or star cluster state

Cluster/GHZ state

generation

Page 86: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources
Page 87: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Lecture 3

Page 88: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Structure

Lecture 3: More efficient gates, hybrid QIP.

• 2-level system in a cavity

• Charged quantum dots in cavity

• Spin-photon interface

• Quantum repeater

• Progress towards experiment

Page 89: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Linear gates η<0.5 F>0.9

Non-linear optics?

The PROBLEM: many qubits quantum processor

U

NN

g F,

Unitary transform

N

s

Single Qubit source

Single 2-level ~ 2-10%

Heralded from pair ~ 80%

N

d

Detectors

Si 600-800nm ~70% (100%?)

InGaAs 1.3-1.6um ~30%

Superconducting~10-88%

Linear gates η<0.5 F>0.99

Non-linear optics η~1 F>0.9?

Throughput~ RFfNg

Nd

Ns ).(.

Page 90: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Confining light: periodic dielectric structures

Photonic crystals

From; Photonic Crystals: Moulding the Flow of Light, Joannopoulos

et al, 2008, Princeton University Press

Confining light: periodic dielectric structures

Photonic crystals

Page 91: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Spin photon interface using charged

quantum dots in microcavities

C.Y. Hu, A. Young, J. L. O’Brien, W.J. Munro, J. G. Rarity, Phys. Rev. B 78,

085307 (08)

C.Y. Hu, W.J. Munro, J. G. Rarity, Phys. Rev. B 78, 125318 (08)

C.Y. Hu, W.J. Munro, J. L. O’Brien , J. G. Rarity, Arxiv: 0901.3964(09)

C.Y. Hu, J. G. Rarity, Arxiv: 1005.5545, PRB XX, XXX (2011)

Page 92: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

FIB etching ICP/RIE etching

Pillar microcavities for strong coupling

of photons with spins in quantum dots

Page 93: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Cavity Quantum Electrodynamics (CQED)

eff

2

0

2

4 mV

feg

r

QD-cavity

interaction

Cavity decay

rate Q

s

QD dipole decay rate

Strong

coupling

f=oscillator strength

m= electron

effective mass

V= cavity volume

To optimise g/

Maximise Q/V1/2

4

sg

Page 94: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Reflection coefficient

Giant optical Faraday rotation

Phase shift gate

Single-sided cavity

RRLLieU

)(ˆ

1)~( ,

2tan2)( 1)( 0 1

0

c

c

rg

rg

Cold Cavity

Hot cavity

C.Y. Hu, Rarity et al, Phys. Rev. B 78, 085307 (08)

C.Y. Hu, Rarity et al, Phys. Rev. B 78, 125318 (08)

Page 95: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources
Page 96: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Electron spin , L-light feels a hot cavity and R-light feels a cold cavity

Electron spin , R-light feels a hot cavity and L-light feels a cold cavity

By suitable detuning can arrange orthogonal, Giant Faraday rotation angle

2 45

2

00

FF

Giant optical Faraday rotation

Achievable with

1 5.1)(

1~ 1.0)(

ss

ss

g

g

Low efficiency

High efficiency

Page 97: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Quantum non-demolition detection of a single electron spin

Input light )(2

1LRH

Spin up

0)2/(45

2

1UH

Spin down

0)2/(45

2

1UH

Spin superposition state

00 45452

1)( H

C.Y. Hu, et al, Phys. Rev. B 78, 085307 (08)

A photon spin

entangler!

Page 98: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Photon-spin quantum interface

(a)

State transfer from photon to spin

(b)

State transfer from spin to photon

• Deterministic

• High fidelity

• Two sided cavity makes an entangling

beamsplitter (Phys Rev B 80, 205326, 2009)

Page 99: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Quantum Repeater: arXiv1005.5545

Page 100: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Quantum Repeater: arXiv1005.5545

Page 101: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Experiments

• Strong coupling seen in resonant reflection

experiment

• Phase shift between resonant and non-

resonant case ~0.2 radians

• Young, Rarity et al arXiv 1011.384

Page 102: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Reflection spectroscopyConditional phase shift interferometer

)(sin

HV

AD

Page 103: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Empty cavity

-0.10 -0.05 0.00 0.05 0.100.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

|r(

)|

Detuning (meV)

s=0

s=/5

s=3

-0.10 -0.05 0.00 0.05 0.10-4

-3

-2

-1

0

1

2

3

4

(r

ad

)

Detuning (meV)

s=0

s=/5

s=3

Page 104: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Resonant reflection spectra of an empty 4μ pillar

(Q~84000)

902.01 902.02 902.03 902.04 902.05 902.06

180000

200000

220000

240000

260000

280000

300000

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Lorentz

Equation: y = y0 + (2*A/PI)*(w/(4*(x-xc)^2 + w^2))

y0 283372.64698 ±1063.78889

xc 902.03815 ±0.00009

w 0.01088 ±0.0004

A -1606.51769 ±60.32769

Inte

nsity (

co

un

ts)

Wavelength(nm)

Reflected intensity

Lorentzian fit

Phase

Ph

ase

Ra

dia

ns

Page 105: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

-0.2 -0.1 0.0 0.1 0.2-4

-3

-2

-1

0

1

2

3

4

g=5k s=/5

g=5k s=3

g=k s=/5

g=k s=3

(r

ad

)

Detuning (meV)

Strongly coupled cavity on

resonance

-0.2 -0.1 0.0 0.1 0.2

0.5

0.6

0.7

0.8

0.9

1.0|r

()|

Detuning (meV)

g=5k s=/5

g=5k s=3

g=k s=/5

g=k s=3

Page 106: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Resonant reflection spectra of a 2.5μ pillar containing a single dot:

temperature tuning to resonance (Q~54000)

Page 107: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Comparing PL and resonant spectroscopy

Page 108: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Conditional phase seen between a

dot on and off-resonance with cavity

g~9.4ueV κ+ κs ~ 26ueV γ~5ueV

g> (κ+ κs + γ)/4 Δφ~0.05 rad

(0.12rad)

21K

22K

21K

22K

Page 109: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Attojoule switch

Input a few photons

Input enough photons (1 in principle) to saturate the

dot and return to weak coupling.

Change phase of reflection, modulate D and A

All optical switch (1 photon ~0.1 attojoule)

Page 110: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Future:

• Improve coupling and reduce losses to achieve phase shift > pi/2

• Establish strong coupling with charged dots.• modulation doped

• electrically charged

• Investigate dynamics of spin via Faraday rotation• We cool the spin by measurement

• Creating spin superposition states (hard)

• Rotating spin around equator for spin echo (easy=U(φ))

• Spin coherence times (of microseconds?)

• Nuclear ‘calming’ to extend coherence times

Page 111: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Bennett and Brassard 1984 secure key

exchange using quantum cryptography

Sendsno. bit

pol.

1 1 45

2 0 45

3 0 0

4 1 45

5 1 0

6 0 45

7 1 45

1004 0 45

1005 1 0

….

3245 1 45

Receivesno. Bit Pol.

246 1 45

1004 0 45

2134 0 0

3245 0 0

4765 1 0

5698 0 45

Page 112: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Low cost short

range quantum key

exchange

Page 113: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

experiment over 23.4km Kurtsiefer et al, (2002), Nature, 419,

450.

Experimental Demonstration of Decoy State Quantum Key Distribution over 144 km,

Tobias Schmitt-Manderbach, et al Quant-ph 0608***

Page 114: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Recent experimentsFree-Space distribution of entanglement

and single

photons over 144 km, R. Ursin, et al quant-

ph/0607182

Page 115: Quantum Optical Implementationssussp67.phys.strath.ac.uk/wp-content/uploads/2011/07/Rarity_Notes… · •Single photon sources •Pair photon sources •Entangled state sources

Z. L. Yuan and A. J. Shields C. Gobby, "Quantum key

distribution over 122 km of standard telecom fiber," Applied

Physics Letters 84 (19), 3762 (2004).

Fibre based systems operating at 1.55 um,