quantum rotational dynamics of ch 3 i group d y liu, s jonas, v atakan, h wu, s omar-diallo, i-k....

11
Quantum Rotational Dynamics of CH 3 I Group D iu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Je D. Phelan

Upload: jonathan-lucas

Post on 18-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

Quantum Rotational Dynamics of CH3I

Group D

Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. JeongD. Phelan

Page 2: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

System description

tunneling

libration

stochasticreorientation

kBT

Methyl Iodide Three fold potential model

V3

θ3cos12

VθV 3

Page 3: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

Numerical Values of Energy Level

Page 4: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

Experimental Goals

What we are looking for:1. The “height”of the V3 well

2. The librational energy

3. The projected radius of Hydrogen from Carbon

Page 5: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

Why HFBS and FANS?

The tunneling energy is quite small Tunneling process have energies on order of ~

eV

The HFBS has high resolution. ~1 eV, well below the conventional triple-axis and neutron

TOF spectrometers.

The FANS has high energy transfer (~100meV)

Page 6: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

HFBS and FANS diagram:

Page 7: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

How HFBS works

The HFBS varies incident energy by using a cam-based Doppler-driven monochromator.

Phase Space Transformer increase flux

4x. Very large analyzer array, 20% of 4The scattering chamber is operated under vacuum instead of Ar or He improving the signal-to-

background ratio.

Page 8: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

Tunneling Energy: ~2.3eV V3 ~ 42meV

Inelastic Scattering (T = 8K)

Page 9: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

Rexp =1.03A

Rcal =1.027A

Elastic and Quasielastic Peak EISF Fitting

Quasielastic Analysis (T = 38K)

Jump Diffusion Model:

))3(21(3

10 Qrj

))3(21(3

10 Qrj

Page 10: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

Librational Energy Study by FANS

1st libration energy: ~14meV

Page 11: Quantum Rotational Dynamics of CH 3 I Group D Y Liu, S Jonas, V Atakan, H Wu, S Omar-Diallo, I-K. Jeong D. Phelan

Acknowledgement

NIST

Zema Chowdhuri, Robert Dimeo (HFBS)

Craig Brown (FANS)

Members of Group D, summer school 2003