quark helicity distribution at large-x collaborators: h. avakian, s. brodsky, a. deur,...

34
Quark Helicity Distribution at large-x llaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep- Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory

Upload: hollie-mccarthy

Post on 02-Jan-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

Quark Helicity Distribution at large-x

Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph]

Feng Yuan Lawrence Berkeley National Laboratory

RBRC, Brookhaven National Laboratory

Page 2: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

2

Outline

Introduction Issues at large-x Quark orbital angular momentum

contribution Outlook

Page 3: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

3

Physics Motivation for large-x Global fit for the PDFs New Physics at Tevatron and LHC Precision Test of EW physics at Colliders … Itself is very interesting to study QCD

effects, such as resummation; and nucleon structure, such as quark orbital angular momentum,…

Page 4: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

4

Importance of high x in global fit

Djouadi and Ferrag, hep-ph/0310209

Page 5: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

5

New physics or PDF uncertainty?

Inclusive Jet production at Tevatron, hep-ex/0506038

High x Partons relevant

Page 6: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

6

Theoretical Issues at High x

Resummation Power counting, pQCD predictions

Page 7: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

7

Why Perturbative calculable

• All propagators are far off-shell: ~ kT2/(1-x)>>QCD

2

• Spectator power counting

Page 8: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

8

Power counting of Large x structure Drell-Yan-West (1970)

Farrar-Jackson (1975)

Brodsky-Lepage (1979)

Brodsky-Burkardt-Shmidt (1995)fit the polarized structure functions.

Page 9: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

9

Power counting from LZ=0

Eight propagators (1-x)8, (1-x)-4 from the scattering, (1-x)-1 from the phase space integral (1-x)3

Spectator two quarks with spin-1 configuration will be suppressed by (1-x)2 relative to spin-0 q- ~(1-x)2q+

q+~

q-~

Spin-0

Spin-1

Page 10: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

10

Quark polarization at large-x

Power counting rule: q+~ (1-x)3, q-~(1-x)5

The ratio of q/q will approach 1 in the limit of x->1 Brodsky-Burkardt-Shmidt

(1995)

JLab Hall A, PRL04

Page 11: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

11

Light-front wave function decomposition:

Total quark spin

Lz=0

Lz=1 Lz=1

Quark orbital angular momentum of proton

Page 12: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

12

OAM relevance to nucleon structure Finite orbital angular momentum is essential for

Anomalous magnetic moment of nucleons Helicity-flip Pauli form factor F2

g2 structure function Asymmetric momentum-dependent parton

distribution in a transversely polarized nucleon, Sivers function

Large-x quark helicity distribution …

Page 13: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

13

For example, the Sivers functions Quark Orbital Angular

Momentum e.g, Sivers function ~ the wave

function amplitude with nonzero orbital angular momentum!

Vanishes if quarks only in s-state!Ji-Ma-Yuan, NPB03Brodsky-Yuan, PRD06

Page 14: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

14

Lz=1 contributions to q-

No suppression from the partonic scattering part Intrinsic pt expansion will lead to power

suppression

Total suppression factor will be

Spin-0

Page 15: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

15

Orbital angular momentum contribution It does not change the power counting

q-~ (1-x)5

It introduces double logarithms to q-

q-~(1-x)5 log2(1-x)Coming from additional factor 1/y3y3’ in

the intrinsic pt expansionq-/q+~(1-x)2 log2(1-x) at x->1

Page 16: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

1604/20/23 Large-x Partons

OAM contribution to the Pauli form factor F2

Belitsky-Ji-Yuan, PRL, 2003

Lz=1

It predicts that F2 goes like (ln2Q2)/Q6 and henceF2/F1 ~ (ln2Q2)/Q2

Lz=0

Expansion~1/x3y3

Page 17: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

17

Quark orbital angular momentum contribution at large-x Power counting rule

Brodsky-Burkardt-Schmidt 95Leader-Sidorov-Stamenov 98q-/q+~ (1-x)2

Quark-orbital-angularMomentum contributionAvakian-Brodsky-Deur-Yuan,07q-/q+~(1-x)2 log2(1-x)

It will be interested to see how this compares withthe future data from JLab

Page 18: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

18

12GeV JLab Upgrade

Page 19: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

Outlook Soft divergence factorization

1/kt4 for Pion distribution

Quantitative connections to the quark orbital angular momentumModel building, light-cone wave functions

of nucleon Large logarithms resummation

Log2(1-x) terms should be resummed consistently

19

Page 20: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

Applications to GPDs: GPD for Pion

Gauge Link

Page 21: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

Where is the t-dependence

• In the leading order, there is no t-dependence• Any t-dependence is suppressed by a factor (1-x)2

(See also, Burkardt, hep-ph/0401159)

Page 22: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

Power counting results for pion GPD in the limit of x->1,

We can approximate the GPD with forward PDF at large x,

Page 23: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

GPDs for nucleon

Helicity nonflip

Helicity flip

Page 24: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

Helicity non-flip amplitude

The propagator

Power behavior

Forward PDF

Page 25: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

Helicity flip amplitude• Since hard scattering conserves quark helicity, to get the helicity flip amplitude, one needs to consider the hadron wave function with one-unit of orbital angular momentum

• In the expansion of the amplitude at small transverse momentum l, additional suppression of (1-x)2 will arise

Lz=1 Lz=0

Page 26: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

• Two kinds of expansionsPropagator:

Wave function:

• The power behavior for the helicity flip amplitude

• GPD EE

• GPD HHForward PDF

Page 27: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

Summary for the GPDs’ power prediction No t-dependence at leading order Power behavior at large x

Forward PDF

~(1-x)2

~ (1-x)3

=

Log(1-x) should also show up

Page 28: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

28

Conclusion

Quark orbital angular momentum contribution changes significantly power counting results for the quark helicity distribution at large-x

More precise determination of these contributions requires a model building and/or a NLO global fit with all experimental data

Page 29: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

29

Factorization (II)

Leading region

Page 30: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

30

Factorization (III)

Factorization formula

The power behavior of q(x) is entirely determined by the eikonal cross section

Ji,Ma,Yuan,PLB610(2005)

Page 31: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

31

Power Counting for GPDs No t-dependence at leading order Power behavior at large x

Forward PDF

~ (1-x)2

~ (1-x)3

= ~ (1-x)5

Yuan, PRD69(2004)

Page 32: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

32

Why Resummation is Relevant Additional scale, Q2>> (1-x)Q2>>QCD

2

Real and Virtual contributions are “imbalanced” IR cancellation leaves large logarithms (implicit)

Page 33: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

33

Example INet Enhancement for the DIS Structure functions

A. Vogt

Page 34: Quark Helicity Distribution at large-x Collaborators: H. Avakian, S. Brodsky, A. Deur, arXiv:0705.1553 [hep-ph] Feng Yuan Lawrence Berkeley National Laboratory

34Large-x Partons

Example II: Spin Asymmetry Resummation effects cancel exactly

in moment space, and “almost” in x-space

W. Vogelsang