r. haettel, m. kavasoglu, a. daneryd and c. ploetner, abb ... · prediction of transformer core...

21
Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB, 2014-09-18

Upload: dinhhanh

Post on 26-Apr-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Prediction of Transformer Core NoiseMultiphysics Approach

R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB, 2014-09-18

Page 2: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Presentation Outline

Month DD, Year | Slide 2

© ABB Group

Introduction and Background

Transformer Acoustics

Model development for Core Noise

Electromagnetic Model

Magnetostriction Implementation

Mechanical and Acoustic Models

Model Validation

Conclusion

Page 3: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Product and System Examples

© ABB Group

November 18, 2014 | Slide 3

Page 4: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Multiphysics Approach

© ABB Group

November 18, 2014 | Slide 4

Electric Power supply

Electro-magnetic System

ForcesMechanical

SystemVibrations

Acoustic Environment

Noise

Energy Conversion Chain from electric supply to noise

The sound generation in ABB products requires a global understanding of the

energy conversion chain from electrical input to noise

Strong interaction among the technical fields is required

Multiphysics Approach implies strong cooperation

Noise level is an essential parameter to assess a product quality

Page 5: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Project Drivers

© ABB

Month DD, YYYY | Slide 5

Costs for noise issues such as orders lost, costly modifications and overkill margins in

design

Significant advances by major competitors in noise mitigation

Increased focus on environmental issues (customer requirements)

Product development: Tools to investigate the impact of present and future requirements

and design

Page 6: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Power Transformers

© ABB

Month DD, YYYY | Slide 6

Power Transformers enable electricity production, transport and distribution

at the most convenient (economical) voltages

They can be considered as the “gearboxes” of the electrical grid

A power transformer is a component that receives power at one voltage and

delivers virtually the same power at another voltage

Generator step-up

transformers System

transformers

Page 7: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Main Components in Power Transformers

© ABB

Month DD, YYYY | Slide 7

Power transformers have a core to handle the magnetic flux

They have windings to lead the currents and to provide the correct voltage

The core, windings, insulation material and mechanical frame constitute the

active part

CoreWindings

ACTIVE PART

Page 8: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Transformer Acoustics

© ABB

Month DD, YYYY | Slide 8

Now: empirical models based on statistics and use of fitting coefficients

Next stage: detailed analysis and models of:

Core in air and oil

Winding in air and oil

Tank and oil interactions

Structural transmission paths

Synthesis phase in the modeling chain:Development of a 3D-model for the whole system

Experimental validation

Page 9: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

© ABB Group

November 18, 2014 | Slide 9

Transformer Core Noise

The spectrum of core noise is characterized in AC conditions by a fundamental tone at 100 Hz

(120 Hz) and several harmonics at n x 100 Hz (n x 120 Hz) with n = 2,3…

Noise is generated by magnetostriction in core laminations

10

15

20

25

30

35

40

45

50

55

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

frequency in H z

A-w

eig

hte

d s

ou

nd

pre

ss

ure

le

ve

l in

dB

(A)

Page 10: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

© ABB Group

November 18, 2014 | Slide 10

Behind the Standard Measurements

SourceTransmission Path

(FRF)Receiver

General model for sound transmission

FRF: Frequency Response Function

f1 f2 f3 f4 f5

Amplitude

Frequency0 100 200 300 400 500 600 700 800

[Hz]

-20

-16

-12

-8

-4

0

4

8

12

16

20

24

28

32

36

40[dB/50n (m/s)/N]

Cursor values

X: 18.000 Hz

Y: 33.236 dB/50n (m/s)/N

dateTime : 2008/12/12 15:11:07:306

Frequency Response H1(4508 (2),PCB208A03 Ref.) - STS Measurement 11 (Magnitude) \ STS Measurement 11

Page 11: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Core Noise Prediction: Coredyn 2.0

© ABB

Month DD, YYYY | Slide 11

Magnetic flux calculation

Harmonic dynamic analysis

Acoustic propagation

Magnetostriction experiment

,, fBλλ

Bfyx ,,,BB

Structure-

fluid

interaction

Page 12: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Model Development

© ABB Group

November 18, 2014 | Slide 12

WpvpFyxcrdrdBUoilcore

tanktank

),(),(

The complete chain for prediction can be expressed from Magnetic Flux Density

to Acoustic Power:

The Total Acoustic Power can be written in the matrix form with the harmonics

contribution:

i

ii

H

iBWˆ̂

Magnetostriction data can be regarded as the essential input

Page 13: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Electromagnetic Model

© ABB Group

November 18, 2014 | Slide 13

At no-load conditions, a voltage is applied to the windings on one side of the

transformer while the windings on the other side are left open

The magnetic flux density induced in the core 𝐁 = 𝜇𝐇 with μ magnetic

permeability in the core material and H the magnetic field strength

The current density 𝐉 = 𝜎𝐄 with σ conductivity and E the electric field density

The resulting magnetic flux density B = 𝛻 × A induced by the total currents

(Ampere turns) with A the magnetic vector potential

The governing equation for the magnetic field is given by the relationship

𝜎𝜕𝐀

𝜕𝑡+ 𝛻 ×

𝛻 × 𝐀

𝜇= 𝐉

The model is investigated in two dimensions by considering one single core

package at a time

The magnetically insulating boundary condition on the outer boundary imposing

the constraint 𝐧 ∙ 𝐇 = 0 with the normal component of the magnetic field set to

zero

Page 14: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Magnetic Flux Density Prediction

© ABB Group

November 18, 2014 | Slide 14

Experimental data for a specific steel type are used in the model to describe the magnetic

properties of the core material. The core steel sheets are magnetically oriented and the

permeabilities in the rolling and cross-rolling directions present different non-linear virgin curves

The excitation is provided by voltages shifted by a phase of 120º applied to the windings to

simulate a three phase transformer

The analysis is carried out in the time domain to obtain a magnetic field density in the core

Magnetic flux density Distribution Magnetic flux density at Middle Limbs

Page 15: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Magnetostriction Implementation

© ABB Group

November 18, 2014 | Slide 15

The main frequency components of the magnetic flux density are obtained

by applying a FFT on the time signals in rolling and cross-rolling directions

The fundamental magnetic components at each node can be associated

with magnetostrictive strains available in tables gathering experimental

data specific for each steel grade

Page 16: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Mechanical Model

© ABB Group

November 18, 2014 | Slide 16

The linear elasticity equations are used to describe the in-plane motion of the

core

The electric steel has different properties in rolling and cross-rolling directions

The elasticity tensor is specified for an orthotropic material

The governing equation for the core motion

𝑀 𝑢𝑁 + 𝐶 𝑢𝑁 + 𝐾𝑢𝑁 = 𝑓𝑁

The excitation due to the magnetostritive strains

𝑓𝑁 = 𝐵𝑇𝐸𝜀𝑚𝑎𝑔 𝑑𝑉

Page 17: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Core Motion

© ABB Group

November 18, 2014 | Slide 17

Overall in-plane displacement of the core for a frequency sweep

Core resonance at 2312 Hz

Page 18: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Acoustics Model

© ABB Group

November 18, 2014 | Slide 18

The core motion generates sound waves in the surrounding media

𝛻2𝑝 −1

𝑐2𝜕2𝑝

𝜕𝑡2= 0

The relationship between pressure and velocity is obtaine by using the linear equation of

motion

𝜌𝜕u

𝜕𝑡= −𝛻𝑝

The acoustic analysis is performed in 3D by extruding the 2D model used for the

mechanical simulations

Perfectly Matched Layers (PML) are used to create a free space for sound propagation

Page 19: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Validation on Test Core

© ABB Group

November 18, 2014 | Slide 19

Core Height 700 mm

Core Length 700 mm

Limb Pitch 280 mm

Limb Diameter 140 mm

Core Steel Type 0,23 mm Grain-Oriented

400 600 800 1000 1200 1400 1600 1800 2000 2200 240020

30

40

50

60

70

80

90Force response by parametric studies, Monte Carlo, Power

frequency, Hz

Pow

er,

dB

sim scatter

sim nominal

exp low

exp nominal

exp high

Resonance at 763 Hz

Page 20: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,

Conclusion

© ABB Group

November 18, 2014 | Slide 20

A multiphysic model to predict transformer core noise was built in COMSOL

The electromagnetic model of the core in 2D is solved in time domain

The resulting magnetostrictive forces are used in the frequency domain to

perform the mechanical and acoustic analysis in 3D

Future work on oil-immersed core and implementation of BEM for sound

propagation

Page 21: R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB ... · Prediction of Transformer Core Noise Multiphysics Approach R. Haettel, M. Kavasoglu, A. Daneryd and C. Ploetner, ABB,