rabbit, an electron microprobe data ... an electron microprobe data-reduction program using...

46
RABBIT, AN ELECTRON MICROPROBE DATA-REDUCTION PROGRAM USING EMPIRICAL CORRECTIONS by Fraser E. Goff U.S. Geological Survey Menlo Park, CA 94025 U.S. Geological Survey OPEN FILE REPORT 77-351 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards.

Upload: hoangliem

Post on 13-May-2018

223 views

Category:

Documents


2 download

TRANSCRIPT

RABBIT, AN ELECTRON MICROPROBE DATA-REDUCTION

PROGRAM USING EMPIRICAL CORRECTIONS

by

Fraser E. Goff

U.S. Geological Survey

Menlo Park, CA 94025

U.S. Geological Survey OPEN FILE REPORT 77-351

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards.

ABSTRACT

RABBIT is a FORTRAN IV computer program that uses Bence-Albee empirical

corrections for the reduction of electron microprobe data of silicates, oxides,

sulphates, carbonates, and phosphates. RABBIT efficiently reduces large

volumes of data collected on 3-11 channel microprobes.

INTRODUCTION

RABBIT is a high volume computer program written in FORTRAN IV that

is designed to reduce electron microprobe data in counts to quantitative

chemical analyses in weight-percent. Refinements correct the data for

instrumental drift, deadtime, and background. RABBIT uses empirical

correction schemes (Bence and Albee, 1968; Albee and Ray, 1970) for matrix

corrections of silicates, oxides, sulphates, carbonates, and phosphates.

Data sets may contain 150 individual analyses, and any number of data sets

can be processed back to back. Optional routines: 1) calculate cations/unit

cell; 2) normalize any three elements in terms of their atomic proportions;

and 3) print tables of analyses. RABBIT was designed to be convenient,

flexible, and capable of handling large amounts of data.

METHODS

Data Handling. A flow chart (Figure 1) will aid in the following discussions,

and Table 1 defines unfamiliar terms. RABBIT can reduce data sets containing

as many as 150 analyses and can reduce any number of data sets back to back.

Space is allocated in RABBIT for 11 elements, but more could easily be

accomodated. Up to 40 counts per unknown make up the count set for each

analysis. The standard deviation of the counting statistics is computed from

n (^

i=l n ~ l

where a = standard deviation

K = average counts of count set

K^= the value of the ith count

n = number of counts in count set,

Figure 1: Flow chart for program RABBIT,

rRead alpha factors

Read title, date, and other parameters

Data averaging

Standard deviation

Deadtime correction

Read beginning standards and backgrounds

Read and store unknown data

Read final standards and backgrounds

Print all standard data

Process unknown data

Drift correction

Bence-Albee correction

Compute error in counting statistics

Additional calculations

I Print unknown data

~Get new data |

End

Table 1: Definition of terms

channel - the X-ray energy for each element is detected on a separate channel,

counting interval - the length of time (in sec.) that X-ray energy is counted,

counts - the energy counted during one counting interval,

count set - all the counts accumulated for each unknown; the data for one

unknown makes up a count set.

data set - all the count sets accumulated for the run; the data for all the

unknowns being analyzed in the run make up a data set.

run - all the data for the job; includes standard, background, and unknown

data.

Deadtime. Averaged counts are next corrected for deadtime. This correction

will vary from probe to probe depending on the equipment and the operating

parameters in use. RABBIT is designed to function with three wavelength

dispersive (WDS) channels and eight energy dispersive (EDS) channels. No

deadtime correction is presently made to the three WDS channels. Counts from

the EDS system are corrected for deadtime relative to the total energy stimu­

lating the EDS detector, as measured on a ninth EDS channel. The routine

that follows is adapted form Beaman and others (1972). Let

X, « - (2) 1 t

x? = I (exp C-X.d)) (3) t A

where E = average counts from EDS system

if = average counting interval in seo.

d = deadtime of detector in sec.

For ease of manipulation we have

v = I Y - x I f 41A.- I *. ^1 I V^V

Y = Y 7 (*>} A4 - A^L {$)

where Z = upper limit of convergence in sec

If X, jl X., we make X = X and substitute this new value of X into Equation (3)

for iteration. The routine rapidly converges until X- < X.. The counts for

each individual channel are then deadtime corrected by letting

(6)

where 1C - deadtime corrected*%

average counts/sec.

Values of d and Z currently built into RABBIT are 7.5 x 10" sec. and-5 -8

1.0 x 10" respectively when using specimen currents less than 3.0 x 10 amp.,

but these values should be modified for individual needs.

Standards and Backgrounds. Standard and background data are read into the

program before and after the unknown data just as they are collected on

the probe. Standard and background data are averaged and deadtime corrected

in the same manner as unknown data but no counting statistics are computed

for backgrounds. The program reads number flags from the data cards to

differentiate standards from backgrounds. Backgrounds are treated as standards

which contain 0% of the unknown elements, thus background data does not need

any special editing. RABBIT allows a maximum of 20 standards plus backgrounds

to be used per run.

Instrument Drift and Background Corrections: Instrument drift is assumed to

be linear with time. Standard and background counts are drift corrected by

linear equations to the time of observation of each unknown. The standard

counts are background corrected by subtracting the background counts. The

unknown counts are then compared to the corrected standard counts and equated

to values of weight percent. These corrections are repeated for each element

to produce a raw analysis.

Bence-Albee Corrections. Because of their simplicity empirical correction

schemes are used for interelement matrix effects which reduce programing costs

and computer time. RABBIT incorporates the measured alpha-factors of Bence

and Albee (1968) and uses the computer generated alpha-factors of Albee and

Ray (1970) where measured values are not available (Table 2). The alpha-

factors for 36 elements are read into the program as data and stored as a

36 x 36 matrix. The alpha factors listed in Appendix II are for probes with

a take-off angle of 52.5° and operating voltages of 15 KV. Alpha factors

for other take-off angles and operating voltages may be obtained from Albee

and Ray (1970). and Amli and Griffin (1975) .

Beta-factors are computed from the standards using a computer routine

adapted from Eq. (3) of Albee and Ray (1970). The program allows compensation

to be made for elements present in the standard which are not to be analyzed

in the run. For example, if benitoite (BaTiSi^Og) is used as a titanium

standard, the beta-factors from benitoite must take into account the matrix

effects of barium even though barium may not be included in the analysis.

Raw analyses are corrected using a computer routing following Bence and

Albee (1968, p. 402) which iterates through the calculations twice.

Error in Counting Statistics. Once corrected oxide values are computed, the

overall error in counting statistics is calculated from the standard deviations

of counts in both standards and unknowns using partial differential equations.

We have the basic relationshipC S

U = (7)cs

where U = Unknown weight percent

S = Standard weight percent

C = Counts of unknown u

C = Counts of standard s

Because the total uncertainty of U is a function of the standard deviations

of the counts for both unknown and standard, W and W (ignoring the backgrounds),

the solution for the uncertainty, WT , is obtained with partial differential

equations (for example, Holman (1966), p, 38). We have

Wrp

6U £6C <= C u

«u w(8)

(9)

6U C S

ssc=- u (10)

S W Cs Wu (11)

The final equation is used to solve for the total standard deviation.

Additional and Optional Calculations. The atom weight-percent of the elements

is determined from the oxides by letting

(W f ) v o a

..9994

:.o

(12)

where W = atom weight-percent of element a

W = oxide weight-percent of element a

f = atomic weight of element a a

V = valence of element a a

Cations/unit cell (mineral norms) are calculated for all unknowns in

a given data set on the same basis. Therefore, this option is best used for

runs in which all the unknowns have the same structural formula (e.g., all

pyroxenes, all feldspars, etc.). We have

Tox - To - Ta

115.9994 N ^"

ox

where T = total weight-percent oxygen

T = total oxide weight-percent

C = cations/unit cell

N = number of oxygens/unit cell

RABBIT will calculate the normalized atomic proportions of any three pre-

chosen elements for each analysis. This option is convenient for later construction

of ternary plots and is most effective when a run consists of all feldspars or

all pyroxenes, etc.

Each analysis is printed with complete information on raw counts, counting

statistics, raw analysis, corrected analysis, and atomic proportions. A final

option prints a table of all analyses with the calculated cations/unit cell

underneath .

DECK SET-UP

A ready-to-run deck is shown diagramatically in Figure 2. Note that

the data consists of two parts: 1) the Bence-Albee alpha factors (listed

in Appendix II) and 2) the parameter cards and count data which are described

in the following sections (an example is listed in the second half of Appendix II)

10

Figure 2:

Deck set-up

for program RABBIT.

AL

PH

A

FA

CT

OR

S

/

FIN

AL

JC

L

CA

R

w*

D

RA

ME

JER

C

AR

DS

A

ND

C

OU

NT

>RS

ING

D

AT

A

DA

TA

^ XS

xXX

PR

OG

RA

M

RA

BB

IT

JOB

C

AR

D

AN

D

JCL

C

AR

DS

Table 2: Matrix numbers and valences of oxides and elements which can be

analyzed by RABBIT (adapted from Albee and Ray, 1970).

Matrix Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Oxide or Element

0

co2

F

Na20

MgO

A1203

Si02

P2°5

so3

Cl

K20

CaO

Ti02

Cr203

MnO

FeO

CoO

NiO

Valence

2

2

1

1

2

3

4

5

2

1

1

2

4

3

2

2

2

2

Matrix Number

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Oxide or Element

CuO

ZnO

Rb20

SrO

Y2°3

Zr02

BaO

La2°3

Ce2°3

Pr2°3

Nd2°3

Sm2°3

Gd2°3

Dy2o3

Er203

Hf02

Th02

U00

Valei

2

2

1

2

3

4

2

3

3

3

3

3

3

3

3

4

4

4

12

PARAMETER CARD FORMATS

Columns Name Format Description

Card 1

1-80

Card 2

1-2

3-4

5-7

LABEL

3-2-13

14-15

0,5-0,7

0,8^9

2.0-2J,

M

N

OX

MSTD

NORM(l)

NORM(2)

NORM (3)

ITAB

20A4

12

12

13

F4.1

12

12

12

12

12

Title, any characters may be used

Number of standards plus backgrounds, maximum = 20

Number of elements to be analyzedj maximum =11

Number of unknowns to be analyzed, maximum - 150

Number of oxygens/unit cell (for example, 8.0 for feldspars); use 1.0 if option is ignored

Number of standard elements (for beta- factor calculations); maximum = 11

First element to be normalized for ternary plot; elements are identified by their channel number; program will accept numbers 1-11; use 0 in space 14 if option is ignored

Second element to be normalized for ternary plot

Third element to be normalized for ternary plot

Option to print analyses in tabular form; blank means no y 1 means yes

Card 3

1-8 ROW(1),ATWT(1) A2,F6.3 Element label and atomic weight for element in first caannel (for example, FE55.847); an additional card must be used for elements in eleventh channel

13

Columns Name Format

9-16,..., ROW(2),ATWT(2), A2,F6.3

73-80 .ROW(IO),ATWT(10)

Card 4

1-8 ROW(11),ATWT(11) A2,F6.3

Card 5

1-2 MFLAG(l) 12

21-22

Card 6

1-2

MFLAG(2),..., 12

MFLAG(ll)

VAL(l) 12

3-4,..., VAL(2),..., 12

21-22 VAL(ll)

Card 7

1-16 OXID2(1),OXID1(1) A8,A8

17-32,..., OXID2(2),OXID1(2), A8,A8

65-80 ...,OXID2(5),OXID1(5)

Description

Second channel - 'tenth channel

Eleventh channel; remove this card if 10 or less elements are analyzed

Bence-Albee matrix number (from Table 1); numbers must be in same order as data are taken from microprobe. There must be as many matrix numbers as standard elements (item 5, card 2)

Second matrix number - eleventh matrix number

Valences (from Table 1); must be in same order as data a.re taken from microprobe

Second valence - eleventh valence

Oxide and element headings to be used for table (for example; FEO FE ); must be in same order as data are ta^en from microprobe; last pair of headings must read TOTAL TOTAL; maximum number of heading pairs = 12; remove cards 7-9 if ITAB = 0 (item 9, card 2)

Second pair - fifth pair of headings

14

Columns Name Format Description

Card 8

1-16,..., OXID2(6),OXID1(6), A8,A8

65-80 .-. .,OXID2(10),OXID1(10)

Card 9

1-16, OXID2(11),OXID1(11) A8,A8

17-32 OXID2(12),OXID1(12)

Sixth pair - tenth pair of headings

Eleventh and twelfth pairs of headings

STANDARD CARD FORMATS

Card 1

1-52

53-54

55-56,...,

57-58

Card 2

1-6

7-12,...,

61-66

HEAD

WT(J,1)

WT(J,2),,,»

WT(J,11)

A52

12

12

F6.3

F6.3

Title of standard or background; any characters may be used

Flag for first channel that declareshow data are to be used in calculations; 0 = channel is ignored, 1 = channel is used for background, 2 = channel used for standard

Flags for second - eleventh channels

Oxide weight-percent of element in first channel

Second - eleventh channels

15

Columns Name Format Description

Card S (Data card; must be re-formated for different microprobes)

1-6 DATA(NUM,1) 16 Count data for first channel

7-8 Blank

9-14 DATA(NUM,2) 16 Count data for second channel

15-16 Blank

17-22 DATA(NUM,3) 16 Count data for third channel

23-24 Blank

25-30 JTIME 16 Counting interval (in 10~3 sec)

31-32 Blank

33-38 ITIME 16 Total beam current energy in counts

Card 4 (Data card; must be re-formated for different microprobes)

1-6 DATA(NUM,4) 16 Count data for fourth channel

7-8, Blank

»

57-62 DATA(NUM,11) 16 Count data for eleventh channel

63-64 Blank

65-70 DATA(NUM,12) 16 Total energy in counts for energy- dispersive system (for deadtime

corrections) Cards 3 and 4 are repeated for each count; maximum » 40 counts

Cards 5 and 6 Two blank cards end the count data for the first standard orbackground. Repeat cards 1-6 for each additional standard or background; maximum =20

16

UNKNOWN CARD FORMATS

Columns Name Format Description

Card 1

1-52 NAME(J,I) 13A4 Title of unknown; any characters maybe used

Cards 2 and 3 Data cards; same format as cards 3 and 4 in Standard Card Formats above

Cards 4 and 5 Blank cards; same procedure as cards 5 and 6 in Standard Card Formatsabove

17

STANDARD CARD FORMATS

(End of Run)

All standards and backgrounds are arranged in the same order before and

after the unknowns; card format is the same as in Standard Card Formats above;

the last pair of data cards ends with 4 blank cards.

18

ALPHA (36,36)

ATPRO(12)

ATWT(12)

AVE(12)

BETAC12)

DATA(40,12)

DEV(150,12)

DIFFC40,12)

DV(12)

ENERGY

FLAG

HEAD (13)

IFLAG

INORM

ITAB

ITIME

JFLAG

JTIME

KK

KR(12)

KX

LABEL

L

LI

VARIABLE DESCRIPTIONS

matrix for storage of alpha-factors (element, oxide) listed in Appendix II

atomic proportions of elements in an unknown

atomic weight of elements to be analyzed

average counts for each channel

beta-factors calculated for each element in an unknown

counts for each channel; 40 counts per channel

standard deviation of unknown data for each channel; maximum = 150 unknowns; values in weight percent

difference between the average counts and the individual counts; used in standard deviation calculation, maximum = 40

total standard deviation for each element used in Error in Counting Statistics routine

total counts stimulating EDS system; used for deadtime correction

counter used to limit the number of iterations through Bence- Albee correction routine

heading for standard and background identification; field is 13(A4) or 52 characters wide

holds information in intermediate storage for calculation in Bence-Albee routine

holds information in intermediate storage for calculation in ternary ratio routine

option variable to print data in tabular form-3

counting interval in 1 x 10

holds information in intermediate storage for calculation in Bence-Albee routine

absolute time in 1 x 10" 3 sec for use in drift correction

counter to control entry into various routines

final Bence-Albee corrected weight percent for each element

counter to control the total number of unknowns printed in final output table

title of job being run

number of standards plus backgrounds

counter used to calculate standard data at beginning and end of run; LI = 1 at beginning; LI = L + 1 at end

19

M

MF

MFLAG(12)

MG

MSTD

MZ

Ml(20,12)

M2

N

NAME(150,13)

NORM(3)

MUM

number of elements (channels) to be analyzed

counter used to print final output table

Bence-Albee matrix number (from Table 1)

counter used to print final output table

number of standard elements; used for beta-factor calculation

number of elements plus one; MZ = M + 1

flags that control whether data will be used as standard, background, or ignored; standard = 2, background = 1, ignored = 0

counter to control entry into routine that calculates unknown data

number of unknowns to be analyzed

title of unknown data; maximum = 150; field width = 13(A4)

three cations to be normalized for ternary plot (in mol-percent)

counter whose maximum value equals the number of counts per unknown analysis

OX

OXID1(12)

OXID2(12)

R

ROW(12)

S

SBETA(12)

SDEV(20,12)

SLOPE(12)

STD(20,12)

STIME(20)

SUM(12)

T

TAB1(150,12)

TAB2(150,12)

number of oxygens per unit cell

oxide labels used in final output table

element labels used in final output table

counts in energy dispersive system during one counting interval; used for deadtime correction

element headings for each channel; used to label output

average counting interval in 1 x 10" 3 sec

standard beta factors for each element

standard deviation of standard data for each element (channel); values in weight percent

slope determined by linear equation which measures change of standard value from beginning to end of run; used for drift correction; calculated for each element (channel)

standard value in counts for each element

absolute time when standard data was read from microprobe

standard deviation of count data

average absolute time when data was read from microprobe

element values in weight percent to be printed in final output table

element values in cations per unit cell to be printed in final output table

20

THOLD

TIME(150)

TNORM

TOT

TOTKR

TOTOX

TOTWT

Tl

UNKNWN(150,12)

UKWT(13)

VAL(12)

WT(20,12)

XI,...,X4

XR(12)

- average absolute time of first data read from microprobe; used for drift correction

- average absolute time of all unknown data

- total of three cations in mol-percent for use in calculation of ternary plots

- total atom weight percent

- total oxide weight percent

- total oxygen in weight percent for an unknown

- total oxide weight percent for standards and backgrounds

- counter to control THOLD

- average unknown count data for each element; maximum =150 unknowns

- average unknown data in weight percent for each element; Bence-Albee corrected

- valences of elements for each channel

- oxide weight percent of each element for every standard and background

- used for calculating deadtime correction

- first Bence-Albee corrected values in weight percent for each element of an unknown; stored for final Bence-Albee correction on last iteration

21

ACKNOWLEDGEMENTS

RABBIT was conceived after much urging from G. K. Czamanske. C. R. Bacon

and Julie M. Donnelly encouraged adoption of empirical corrections. Mel Beeson,

C. R. Bacon, and Vie Adams reviewed the manuscript. Sue Kendall kindly typed

the manuscript.

22

REFERENCES

Albee, A. L., and Ray, L. 1970, Correction factors for electron probe

microanalysis of silicates, oxides, carbonates, phosphates, and

sulfates, Analytical Chemistry, 42, pp. 1408-1414.

Amli, R., and Griffin, W. L., 1975, Microprobe analysis of REE minerals

using empirical correction factors: Amer. Mineral., vol. 60, p. 599-606,

Beaman, D. R., Isasi, J. A., Birnbaum, H. K., and Lewis, R., 1972, The

source and nature of deadtime in X-ray counting systems used in

electron microprobe analysis, Journal of Physics E, _5, pp. 767-776.

Bence, A. E., and Albee, A. L., 1968, Empirical correction factors for the

electron microanalysis of silicates and oxides, Journal of Geology,

76, pp. 382-403.

Holman, J. P., 1966, Experimental Methods for Engineers, McGraw-Hill, Inc.,

New York, 412 pp.

23

APPENDIX I: PROGRAM LISTING

/ RELAY

PRINT HEMOTE*

MGfl536 MENLO PAHK

J 3 578

//MG9513FG JOB <971000303«C923«6«20>,'CZAMZNSKE *CLASS«F

//

EXEC FORTGCLG,REGION.GOMSOK

//FORT.SYSIN 00 *

CC PROGRAM »RABHIT» BY FWASER E.

GOFF IS

A FAST, HIGH VOLUME PROGRAM THAT

C REDUCES ELECTRON MIcROPROBE DATA FROM *A« SCALER COUNTS TO

C ELEMENTAL COMPOSITIONS IN

WEIGHT PERCENT.

CC THIS IS

A HENCE-ALBEE VERSION FOR OXIDES* SILICATES, CARBONATES,

C

SULFATES, AND PHOSPHATES.

CC OUTPUT CONSISTS OF

(1> AVERAGED COUNTS CORRECTED FOR BACKGROUND,

C DEADTIME, AND DRIFT,

(2) OXIDE WEIGHT PERCENT,

(3) BENCE-ALBEE

C CORRECTED OXIDE PERCENT,

(4) STD DEVIATION OF ALL COUNTING STATISTICS

C <5)

ATOM WT

PERCENT (6)

ATOMIC PROPORTIONS (71CATIONS/UNJT CELL

C

(8) NORMALIZED CATIONS FOR TERNARY PLOT

CCCDIMENSION UKWT(13>,UNKNWN(ISO*12),STD(20,12).SLOPE(20*12)(ROW(12),

1NAME<150*13) ,HEAD(13) *WT(20»12) OATA(40*12) «AVb(12> *ATWTU2) *

2LABEL(20>,KR(12)*COUNT(2),WAIT(2).STIHE(20),TIME(150)*ATPRO(12),

30IFF(40«12)*SUM(12)*DEV(150*12),DV(12),VAL(12)*M1(20*1?),BETA(12)*

4SBETA(12> ,SDEV(20»12) .MFLAGU2) ,NORM(3> t A

LPHA (36,36) ,XH(12)

DIMENSION TAB1(150*12)*TAB2(1SO*12),0X101(12).0X102(12)

INTEGER DATA*VAL,RREAL'8 KW,OXID1.0XID2

CC

READ IN BENCE-ALBEE ALPHA FACTORS

CDO 4443 J»l,36

READ 4444,(ALPHA(I,J)*I«1,9)

READ 4444*(ALPHA!I,J),I«10»1B>

READ 4444*(ALPHA(ItJ)*I»19,27)

READ 4444*(ALPHA(I,J),1-28,36)

4444 FORMAT(6X,9(F6.3,1X))

4443 CONTINUE

Cc READ IN PARAMETERS AND PROBE DATA

c501

READ 299.LABEL

299

FORMAT (20A4)

READ 300.L.M.N.OX.MSTO.(NORM(I).I«l,3>tITAB

300

FORMAT (212.13.F4.1.512)

IF (L)

500,500,502

502

READ 302.<ROW(I),ATWT(I)»I*1»MSTO)

302

FORMAT (12(A2.F6.3))

READ 506.(MFLAG(I).I.l.MSTD)

506 FORMAT (1212)

READ 305*(VAL(I),I«1,M)

305

FORMAT (1212)

MZ-M+1

IF (ITAB) 303,303*716

716

READ 701. (0X102(1) .OXIOUI) .I«1.MZ>

701

FORMAT (30A8)

303

PRINT 298,LABEL,LtM.N.MSTO.OX

298

FORMAT (iHl,20A4,//.5X,9HNO. STDS«, I2*5A,9HNO. ELEMs*I2i5X*

113HNO. UNKNOWNS-,13.5X.13HNO. STD ELEM»,I2*5X*12HNO* OXYGENS'.

2F4.1,//)

PRINT 297

297

FORMAT (1H .32HSTANOARO COUNTS AND COMPOSITIONS./)

TlaO

Ll»l

M2»0

KK»-1

10 00 5 J"LitL

CC READ STANDARDS AND BACKGROUNDS

CREAD 6tHEAD.(Ml(J.I).I»1»MSTO)

6

FORMAT (13A4.12I2)

READ 301*(WT(JfI).I-l.MSTD)

301

FORMAT (12F6.3)

CC

COMPUTf STANDARD BETA FACTORS

CIF

(KK> 419.104.104

419

00 422 I»1.MSTU

IF (Ml(J.I)-l) 422»4?2»423

423

JFLAG »

MFLAG(I)

SBETA(I)- 0*0

TOTWT »

0.0

00 424 KM.MSTD

IFLAGa MFLAG(K)

SBETA(I)" WT(JiK)

ALPHA(JFLAG*IFLAG)

* SBETA(I)

TOTWT. TOTWT

* WT(J.K)

424

CONTINUE

S8ETA(I)» SBETA(I>/TOTWT

422

CONTINUE

CC

AVERAGING SECTION

C104

00 105 I»!*12

AVE (I)"0,0

SUM(I)«0.0

105

CONTINUE

ENERGY»0

S»0

T»0

NUMaO

109

NUM-NUM*!

READ 110»(DATA(NUM.I).Ial,3>»JTIME.ITIME

110

FORMAT (I6«4(2X«I6)>

READ 111.(DATA(NUM.1).I»4.11).R

111 FORMAT (I6«8(2X«I6)>

IF (DATA(NUM.D)

500*112.113

113

00 114 1-1.12

AVE(I)-AVE(I)*DATA(NUM.I)

114

CONTINUE

S»S*ITIME

tNt«GY"ENERGY*R

T»T*JTIME

GO TO 109

112

NUMmNUM-1

00 115 1-1.12

AVE(I)aAVE(I)/NUM

115

CONTINUE

T»T/NUM

ENERGY-ENERGY/NUM

S«(S/NUM)*0.001

C COMPUTE STANDARD DEVIATION OF COUNTS

CIF

(NUM-1) 63t63.62

62

00 69 K*1.NUM

00 68 I«1.M

DIFF(NUM.I)«<AVE(I)-r)ATA(NUM,n) (AVE(I>-DATA(NUM.I))

' SUM(I)*SUM(I)*OIFF(NUMtI)

68

CONTINUE

69

CONTINUE

00 67 I«1.M

SUM(I)*SORT(SUM(I)/(NUM-1))

67

CONTINUE

GO TO 61

63

00 66 I«1»M

SUM(I)« 0.0

66

CONTINUE

61

IF (Tl>

38t38t39

38 THOLD-T

39

Tl«Tl*l

CC

APPLY OEAOTIME CORRECTION TO ENERGY OISPFUSIVE SYSTEM

C00 160 I»1.M

IF (1-3)

160tl60tl61

161 X1«ENERGY/S

165

X2»(ENERGY/S)»EXP<-X1«7.5E-05)

X3»ABS<X2-X1)

X4»X2»1.0£-05

IF <X3«X4) I62.163tl63

163

X1-X2

GO TO 165

162

AVE(I)"AVE(I) ((ENERGY/S)/X2)

160

CONTINUE

IF (KK)

20t20t21

, CC

PRINT STANDARD INFORMATION

C20

DO 32

I«ltMIF

(MKJtD) 30*30t31

31 STO (JtD»AVE(I>

SOEV(JtI)B(SUH(I)*WT(JtI))/STD(J*I)

GO TO 32

30

STO(JtI)*0.0

SOEV(J.I). 0.0

32

CONTINUE

STIME(J)"T«.THOLD

IF (KK)

46t47t47

46

PRINT 45

45

FORMAT (iHOtSXtSHSTART)

GO TO 48

47

PRINT 49

49

FORMAT (1H0.5X.6HFINISH)

48

PRINT 25»HEAO.STIME(J)

25

FORMAT (1HO«/*5X»13A4*5HTIME**F9.3*/)

PRINT 2?0*(ROW(I)*I«1*MSTO)

220

FORMAT (In

*17X*12(A4*6X))

PRINT 28*(STO(J»I)tlslfM)

28

FORMAT (1H0.11HAVE COUNTSs.12(F10.3))

PRINT 26t(WT(J*I)*I*1fMSTO)

26

FORMAT (1H

.11HWT PERCENT*.i2(F10.3))

PRINT 65»(SOEV(J,I)»I*1.M)

65

FORMAT (IN

illH STO OEV»t12(F10.3))

5 CONTINUE

CC READ IN

UNKNOWN DATA

CKKal

IF <M2>

36i36t37

36

00 42 Jrl.N

READ <»0i <NAME<J«I) il»iii3)40

FORMAT (13A4)

GO TO

104 21

00 41

Irl.M

UNKNWN(JtI)*AVE<I)

OEV(J,I)»SUM(I)

41 CONTINUE

TIME (J)aT-THOLD

42

CONTINUE

KK«0

M2»l

L1»L»1

L»2«L

GO TO

10 37

L»L/2

PRINT 8

8 FORMAT <1H1*21HSTANDARO BETA FACTORSi/)

PRINT 4t (

SBETAU) .IM.MSTD)

4 FORMAT (1H0.11H BETA FACTr,12(F10.3),////)

CC CALCULATE DRIFT IN

STOS BY LINEAR EQUATIONS

C00 215 J«ltL

00 216 I»1.M

IF (STO(Jtl)) 217t2l7*218

00 218

SLOPE(J.I)»<STO(J»L.I)-STD(J.I))/(STIME(J*L)-STIME(J))

^GO TO

216

217

SLOPE(J*I)aO.O

216

CONTINUE

21S

CONTINUE

CC INTERPOLATE BETWEEN STO AND BKGO VALUE.

. CALCULATE RAW COMPOSITIONS

CPHINT 257

257

FORMAT (1HO»31HUNKNOWN COUNTS AND COMPOSITIONSt/)

00 280 K»ltN

00 265 I»1»M

N2al

00 266 J«ltL

IF <SLOPE(J»I>>

267«266t267

267

COUNT(N2)«SLOPE(JtU« TIME<KJ

»STO( J. I) -SLOPE < J. I )

«STIME < J)

WAIT(N2)«WT<JtI>

N2«N2*1

266

CONTINUE

SLOP»(COUNT(2)-COUNT(1))/(WAIT(2)-WAIT(1))

UKWT(I)*

((UNKNKN(K.I)-COUNT(1)*SLOP«WAlT(1))/SLOP)

IF (UKWT(I))

3.265i265

3 UKWTIpr 0.0

265

CONTINUE

CC COMPUTE BENCE-ALBEE CORRECTED COMPOSITIONS

CTOTKRr 0.0

1)0 440 1*1.*

KRU)s (UKMT(D/SHETA(I»

XH(I)» KK(I)

TOTKR* KR(I)

* TOTKR

440

CONTINUE

FLAG" 0.0

444

00 445 1*1»M

BETAU>» 0.0

445

CONTINUE

00 441 J»1,M

JFLAG« MFLAG(J)

00 442 I»1.M

IFLAG» MFLAG(I)

BE

TA

U)"

K

R(I)»

A

LP

HA

UF

LA

G.IF

LA

G)

* 8

ET

A(J

) 4

42

C

ON

TIN

UE

447

8ETA(J)« 8ETA(J)/TOTK«

441

CONTINUE

TOTKR»0.0

00 443 J»1.M

KR(J>« RETA(J)

* XR(J)

TAB!(KfJ)» KR(J)

TOTKRa KR(J)

* TOTKR

443

CONTINUE

TABKK»M*1>» TOTKR

FLAG* FLAG *

1.0

IF (FLAG-2.0) 444«444t446

CC PRINT ANALYSES

C446

PRINT 268i(NAHE(KiJJ)iJJali!3>iTIHE(K)

268

FORMAT (lHOi/i3X

t13A4i2X

( 5HTIME»»F9.3»/)

PRINT 258,(ROW(I>tl»l*M>

258

FORMAT <1H t17Xil2(A4i6X))

PRINT 269i(UNKNWN(Kif).I«liM)

269

FORMAT (iHOtllHAVE COUNTS*.12(F10,3))

PRINT 270*(UKWT(I>ilaliM)

270

FORMAT <1H tllH OXIDE PER»i12(F10.3))

PRINT 292i(BETA(I>tIal*M)

292

FORMAT <1H tllH BETA FACT*i12(F10.3)>

PRINT 408i(KR(I)tl'ltM)

408

FORMAT <1H tllH

B-A CORR.t12(F10.3))

PRINT 272.TOTKR

272

FORMAT (1H

.11HTOT WT PER«iF10.3)

CC COMPUTE TOTAL STO DEVIATION W/ PARTIAL DIFFERENTIALS

C00 64 JaliL

00 431 IMtM

IF (MKJiI)-l) 432*432,433

432

GO TO

431433

DV(I)» <(MT(JtI) * OEV(K.I))/STO(JiI))«»?.0

* ((

UNKNWN(KiI)

1

WT(J,I) SDEV(J.D) /(STO(J»I)

STO(Jtl))) »»2.0

OV(I)« SQRT(DV(I»

431

CONTINUE

64

CONTINUE

PRINT 271,(

nV(D,1=1.M)

271

FORMAT (1H0.11H

STO OEV«,12(FlO.3))

CC COMPUTE ATOM-WT PERCENT, ATOM PROPOR., CATIONS/UNIT CELL (OPTIONAL)

CTOT«0.0

00 409 I«1»M

UKWT(I)* KR(I>

UKWT(I)= <UKWT(I)»ATWTU) >/(ATWT(I)*( ( V

AL ( I > »

IS.9994) /?. 0) )

ATPRO(I)' <UKWT(I)/ATWT(I))

TOTsTOT»UKWT<I)

409

CONTINUE

PRINT 276*(UKWT(I)*I«1*M)

276

FORMAT (1H

»11H AT

WT PER«.12(F10.3))

PRINT 277,TOT

277

FORMAT (1H

»11HTOT ATOMPC«»F10.3)

PRINT 283*(ATPRO(I)*lBltM)

283

FORMAT (1H

tllHATOMlC PRO«.12(F10.5))

IF (OX)

280*280*274

274

TOTOX. <TOTKR.TOT)/(15.9994»OX)

TAB2(K*M«1)« 0.0

DO 291

I«ltM

UKWT(I>« ATPRO(I)/TOTOX

TAB2(K*P« UKWT(D

TAB2(K*M»1)« TAB2(KtM*l)

* UKWT(I)

291 CONTINUE

PRINT 412*<UKWT(I).I«1.M)

412

FORMAT (1H

t11HATOMS/CELL«t12(F10.5))

CC NORMALIZE THREE ELEMFNTS FOR TERNARY DIAGRAMS

CIF

<NORM(1» 280*280*464

O

464

TNORM«0.0

, CO

DO 460 IMt3

INORMB NORM(I)

TNORM. TNORM

* UKWT(lNORM)

460

CONTINUE

IF (TNORM)

280*280*465

465

DO 461

I«l*3

INORMB NORM(I)

UKWT(JNORM) (UKWT(INORM) »

100.0)/TNORM

461 CONTINUE

PRINT 462*( ROW(I)*UKWT(NORM(D) ,I«1,3)

462

FORMAT (1H0.52HNORMALIZED ATOM RATIOS FOR TERNARY PLOT OF ELEMENTS

lt*A2*lH**F5.1*6X,A2*lH«,F5.1*6X*A2*lH**F5.1>

280

CONTINUE

IF (ITAB)

720*720*721

720 60 TO

501 CC

PRINT DATA IN

TABULAR FORM

C721

MG«0

MF« -11

KX« N

710 IF

(KX-12) 708*708.709

708

MF« MF*12

MG« N

GO TO

711709

MF« MF»12

MG« MG*12

711

PRINT 700

700

FORMAT (iHlt//////)

PRINT 718t((NAME(K.JJ)*JJ«1,2).K.MF.MQ)

718

FORMAT (11X*12(2X*2A4))

00 71? I»1.MZ

PRINT 713t 0X101(I).(TAH1(K.I)*K«MFtMG>

713

FORMAT (1H *lXtAMtl2(F10,3))

712

CONTINUE

PHINT 714.OX

714 FORMAT (1HO./.1X.26HCATIONS/UNIT CELLI OXYGFN*.F4.1t//)

00 715 I«1»M2

PRINT 713.

OXI02<I)t<TAB2<K.I)tK»MFtMG)

715

CONTINUE

IF (KX-12)

501.501.717

717

KX. KX-12

GO TO

710 500

STOP

END

/ //oo.srsiN no *

APPENDIX II: SAMPLE DATA LISTING

The following data consist of 1) alpha factors (as described in text

above) and 2) microprobe data. This example is for a run of five unknown

pyroxenes using three standards and one background (assembled from several

compounds as noted on title-card below). The elements were compared against

the standards as follows:

Ca, Mg, Si -- Diopside CPX-1

Fe, Mn Hedenbergite C-9

Al, Ti Amphibole 52-4

Calculated beta factors for amphibole 52-4 included compensation for Na and K.

The elements were read off the microprobe in the order Fe, Ca, Mg, Si, Al, Mn, Ti,

32

ee

oooooooaooo^oooinooooooo-^ooo

oooocoooooooooocooooooooooo

o ooeoooooooooeoooooon

o oooocoooooooooocoo

OO3O9O3OOO939OOO3O3OOOOOOOOO OOO3OOO9OO3OOO3OO

>\>

oooooocooooooooooooooooooooooooo oooooooooooooooo

»>M>M *>»-^- .-Ul »- fc- * *- »-fc- * -

OOOOOGOOOOOOOOOOOO OOOOOOOOOOOGOGOOOOOO

oooooooooooooooooooooooooooooooooooooooooooo

OOOOOOOOOOOO3OOOOOOOOOOOOOOO3O9OOOOOOOOOOOOOOOOOOOO3OOOOOOOOO

oooooooooooooooooooooooooooooooooooooooooooruooooooooooooooooo

OOOO3OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO<COOOOOOOOOOOOOO3OO

ooooooooooooooooooooooooooooooooooo oooooooooooooooooooo

moo UI OB(XIOU)> tjorv <c r\j

34

«-4 «- O - .-4 OO « O.-4 O -* O *+

OOOCOOOOOOOOOOOOOOOOOOOOO

OOOCOOOOOOOOOOOOOOOCOOOOO-*>?O3!

^4 r> ^ -» -i-.«o-H-« n

ooooooooooooooooooooooooooooooooooooooooooooooooooooa3 i

oooooooooooooocooooocooeooooooooocooooocooeceooeococr>

o a: r^ in M MQ. -J- UJ -C (VI

FtMN

FFO

HMO

CATl

CAO

TI02

MGTOTAL

MGO

TOTAL

DIOPSIDE CPX-1

2.92 24

000813

005122

000760

005180

000809

005254

000833

005222

000815

005243

000799

005319

000756

005161

000790

005284

000784

005109

000762

005265

.56 16

011196

OOOH14

011302

OOOR47

0 1 H 34

000828

0 1 1 ) 46

000792

011113

000838

011196

000799

01U27

000795

011034

000828

011250

000810

011122

000837

HEDCNBERGITE

24.29 21

006589

004751

006462

004763

006092

004831

006452

004652

006036

004732

006509

004782

006260

004797

006684

004695

006370

004698

006337

004540

005899

004711

006298

004643

006440

004662

.30 1.

010696

000705

010771

000715

010980

000694

010772

000711

010293

000713

010469

000693

010900

000698

010851

000691

009904

000812

010618

000827

010481

000751

010283

000761

010508

000799

.93 53.93

007520

000138

007618

000160

007592

000152

007445

000146

007564

000139

007734

000155

007530

000150

007460

000140

007752

000145

007749

000131

C-9

06

48.34

000585

000242

000674

000281

000707

000297

000665

000261

000708

000364

000688

000261

000588

000320

000682

000?77

000543

000225

000514

000255

000761

000297

000418

000253

000464

000252

0.66

119230

000339

119243

000313

119258

000310

119271

000311

119287

000295

119299

000304

119314

000354

119329

000320

119342

000312

119358

000310

0.3

3119418

000322

119432

000337

119444

000334

119456

000323

119469

000335

119485

000321

119498

000340

119511

000335

119528

000328

119543

000336

119557

000343

119570

000383

119582

0003b2

0.0 0.23

010061

ooonoo010061

000000

010055

000000

009995

000000

010014

oooooo010021

OOOOOO

009996

OOOOOO

010023

OOOOOO

010055

OOOOOO

010010

OOOOOO

.70 0.0

010044

OOOOOO

010091

000000

010077

OOOOOO

010071

OOOOOO

010071

OOOOOO

010064

OOOOOO

010028

OOOOOO

010072

OOOOOO

010046

OOOOOO

010056

OOOOOO

010025

OOOOOO

010043

OOOOOO

010026

OOOOOO

0.22

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

0.14

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

000000

OOOOOO

si

00.22

OOOOOO

OOOOOO

oooooo

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO2

0.0

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

SI02

2220

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

0000

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

OOOOOO

oooooo

OOOOOO

OOOOOO

AL

0000

021534

021505

021638

021673

021*77

021846

021445

021776

021532

021538

2000

021703

021766

021572

021598

021677

021569

021784

021670

021380

021345

021623

021383

021579

AL203

CO

AMPHIdULF 52-4

26.28 10.50 4.29

39.50 10.10 0.56

3.08

2.24

006889

00494)

001794

119609

010125

004100

001351

000192

000485

000000

OOOOOU

007016

005167

001810

119621

010088

000020?22

1.4

5

00

00

00

000000

02

01

44

004055

006948

00^057

006973

004036

006735

003905

006993

004012

00716]

004035

006980

003978

007040

003978

006803

003966

00117*.005010

001143

005047

001132

005137

001142

005139

0012B9

005217

001300

005024

001357

005020

001420

005142

001325

000197

001882

000201

001905

000185

001748

000167

001724

000190

001913

000212

001842

0001*5

001752

000214

001795

000168

000429

119A34

000449

119646

000464

119659

000502

119671000463

119684

000419

119696

000464

119709

000456

119721000492

000000

010067

000000

01004:i000000

010038

000000

009990

000000

010021

000000

010034

000000

010023

000000

010059

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

000000

oooooo000000

oooooooooooooooooooooooooooooooooooooooooo

020154

020199

020129

019863

020066

019945

020197

020056

020053

BACKGROUNDS OFF Ai_203.

si02* AND C

PX-I 0*0

o.o o.o

o.o o.o

o.o o.o

51 118

59 119800

100235

48

8

22

146

296

o.o o.o

11

11

11

11

10

.0

20100

CR2SI BEGIN ANALYSES OF

SECOND GROUP OF PYROXENES

003507

004727

003462

004594

003420

004721

003438

004791

66004027

004836

004235

004877

004113

004934

004277

004824

67003557

004836

003571

004699

68003621

004797

003751

004809

003747

004771

008773

000929

008858

000961

008734

000910

008690

000904

008470

000886

008105

000900

008093

000828

008080

000838

008529

000905

008451

000873

008704

000861

008109

000902

008414

000975

005273

000153

005254

000172

005487

000176

005397

000161

005324

000164

005275

000179

005310

000172

005182

000160

005655

000161

005655

000142

005575

000171

005692

000188

005612

000179

119818

000398

119831

000405

119843

000354

119856

000419

119875

000359

119889

000352

119903

000385

11Q916

000369

119940'000387

119955

000415

120022

000400

120036

000390

120048

000394

010135

OOOOOO

010050

OOOOOO

010123

OOOOOO

010109

OOOOOO

010081

OOOOOO

010088

OOOOOO

010098

OOOOOO

010091

OOOOOO

010081

OOOOOO

010089

OOOOOO

010057

OOOOOO

010060

OOOOOO

010021

OOOOOO

OOOOOO

oooooooooooo

oooooo

oooooooooooooooooooooooo

oooooooooooo

oooooooooooo

oooooo

oooooooooooooooooo

oooooo

oooooooooooooooooooooooo

oooooooooooo

oooooooooooooooooo

oooooooooooooooooo

oooooo

oooooooooooooooooooooooo

oooooooooooo

oooooooooooooooooo

020645

020741

020506

020945

020946

020775

021026

020B13

020657

020549

020643

020741

020819

r-.en

U>

00

C051

20

6*5120 *

26C120

2£9120

£*9120

£99120

199180

625120

02£120

£9C120

0002

BBC 120

2S9I20

sc£i

2o

e*ST20

6SOI20

C09120

899120

£05120

00£t20

*92t20

CO£120

A*2120

0000

000000

000000

000000

000000

oooo

oooo

oooo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

0000

oooo

oo

oooo

oooo

oooo

oooo

oo

oooooo

oooooo

oooo

oo

oooo

oo

oooo

oo

oooooo

oooooo

oooooo

0222

oooooo

oooo

oo

oooo

oo

oooo

oo

oooo

oooo

oooo

oooo

oo

oooo

oo

oooo

oo

oooo

oo o»o

2 oooo

oooo

oooo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

oooo

oooo

oooo

22'0

0

nooo

oo

oooo

oo

nooo

oo

oooo

oo

oooo

oooo

oooo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

*! <

>

oooo

oooo

oooo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

oooo

oo

oooooo

oooo

oooo

oooo

22*0

oooo

oo5*0010

oooooo

290010

oooooo

*9UOtO

oooooo

*90010

oooo

oo*£UOIO

oooooo

£80010

oooo

oo££0010

oooo

ooso

toio

oooo

ooCUOIO

oooo

oo660010

0»0

QL*

oooooo

*COOtO

oooo

oo260010

oooo

ooe*

ooio

oooo

oo590010

oooo

oo150010

oooooo

oooto

oooooo

9*0010

oooo

oo8*0010

oooo

oo950010

oooo

oo601010

oooo

oo*60010

oooooo

011010

C2*0

0*0

*«>f

:ooo

**E22i

2eco

ooB2C221

£CtUOO

CIC22I

9TCOOO

IOC221

9CCOOO

062221

*2COOO

542221

£«?C

OOO

292221

*seooo

052221

05COOO

£C222l

teeo

ooC22221

e c*o

20COOO

691221

eeco

oo9S122I

9ICOOO

0*1221

20COOO

621221

6UOOO

*11221

662000

101221

loeooo

£90221

02COOO

*£022l

ueooo

190221

C82000

£*0221

oico

oo*C022I

I2COOO

020221

99'0

952000

50VOOO

s*tooo

18VOOO

£62000

C£VOOO

662000

oe/ooo

oceooo

C2£000

62COOO

C59000

ootooo

205000

6£2000

£*SOOO

£92000

£99000

652000

60£000

*C*6*

90

6-3

9C1000

£OS£00

ociooo

20*£00

*5IOOO

*6S£00

£91000

C0££00

891000

t*l£00

*9lOOO

*S9£00

151000

OE9£00

9*1000

60££00

BCIOOO

869£00

55(000

*CS£00

6C1000

60i£00

OUOOO

*2££00

C6-CS C6*

<>8£000

*8*010

96^0UO

£91010

i£VUOO

0*5UIO

oe£Qoo

I6£0t0

80£000

090 110

IfWOOO

2*£010

C89000

BBbOlO

20£000

69£OIO

069000

S9£OtO

069000

1SSOIO

I OC»

899*00

82S900

68£*00

100900

6*9*00

£6*900

*££*00

28*900

299*00

t8C900

22£*00

551900

2*8*00

689900

*2£*00

66*900

OC8*00

SC1900

*S£*00

*£*900

\2 62**2

31I983HN303H

818000

£52110

65UOOO

986010

59£000

86UIO

0*8000

bseuo

528000

UUIO

IC8000

2£lHO

9£8000

192110

isuooo

6*1110

*06000

ISOIIO

r*8o

oo166010

5*8000

562UO

SB£000

6*1110

91 95*

29ISOO

918000

£OCSOO

soeo

oo09CSOO

l££000

£92500

2*£000

6£OSOO

600100

802500

6B£000

*02SOO

S8£000

822500

*S£000

£22500

*I8000

502500

2C8000

£02500

516000

*OISOO

0££000

*2 26*2

1-XdD 30ISdOlO

616020

OOOOOO

OOOOOO

*00120

OOOOOO

OOOOOO

£2£020

OOOOOO

OOOOOO

000000

OOOOOO

*£COOO

9SIOOO

596000

CB£*00

*20010

021021

£9*500

9*0600

WStCOO

OOOOOO

OOOOOO

11*000

991000

H96000

108*00

120010

£OIU2l

*CtSOO

tetBOO

1*9COO

OOOOOO

OOOOOO

62*000 BMOOO

II6000

C9£*00

290010

060021

*0*500

t£W800

I9*COO69

r* o* <vi m * in * »o ^i»-t CD m IT (v o in inin » <vi ec « -* <vi o (*~* * (> O O O O Oru (V CM ~i tvi rvj <v (\i

* o

o oo oo oo o

O "

o o e o o o o o

coocoooo o o~o o cooooooo

oocooooooooooe

ono(\ioo>o(*>o ocoooooo

(X c <v o oj o oj o

a. o u o 20

iO «tO -»

oooooooo ccoooooo oooooooooooooooooooooooooooooo

c n -- n o «n c n n o «\to> «\t o> MO> ro o ro «\( r» ow ji^ui tr IT ir«^-«-»'«^'-<ir^^»^

uiirooooooooooooeooooooooo_J *OOOOOOOOOOOOOOOOOOOOOOo o ac -.

o o> u> n n $ IM r»

oooooooo

no « » o (M O

u. o U. O M

O O (M(VM«

I/IoZO

oo3

00 in in

*o in

APPENDIX III: SAMPLE OUTPUT LISTING

40

PYROXENES OF

15 DEC 751

15 KV .03 MA

SECOND BATCH

NO. STOS« 4

NO. ELEMa 7

NO. UNKNOWNS*

5

STANDARD COUNTS AND COMPOSITIONS

START

NO. STU ELEMs 9

NO. OXYGENS* 6.0

DIOPSIPE CPX-1FE

AVC COUNTS"

0.0 NT PERCENT-

2.920

STD DEV»

0.0

START

HEDENBEHGITE C-9

FE

AVE COUNTS*

6340.613

NT PERCENT*

24.290

STD DEV«

0.396

START

AMPHIBOLE 53-4FE

AVE COUNTS*

0.0 NT PERCENT*

26.260

STD OEV*

0.0

CA

11162.000

24.560

0.093

CA

0.0 21.300

0.0CA

0.0 10.500

0.0

MG

7596.398

16.930

0.358

MG

0.0 1.060 0.0

MG

0.0 4.290

0.0

SI

6001.824

53.930

0.465

SI

0.0 48.340

0.0SI

0.0 39.500

0.0

TIMK»

AL

0.0 0.660

0.0

TIME*

AL

0.0

0.300

0.0

TIME*

AL

1532.412

10.100

0.130

0.0MN

0.0 0.0

0.0

206.375

MN

317.207

3.700

0.289

371.938

MN

0.0

0.560

0.0

TT NA

0.0 0.230

0.220

0.0TI NA

0.0 0.0

0.140

0.0TI

NA

527. ?26

3.080

2.240

0.183

K

0.2?0

K

0.0K1.450

START

BACKGROUNDS OFF AL203. SI 02,

AVE COUNTS*

NT PERCENT*

STD DEV*

FINISH

OIOPS10E

AVE COUNTS*

UT PERCENT*

FE

51.000

0.0 0.0

CPX-1FE

0.0 2.920

CA

118.000

0.0 0.0C

A

11161.250

24.560

AND CPX-1

MG

59.000

0.0 0.0MG

7550.414

16.930

SI

625.219

0.0 0.0SI

599?. 934

53.930

TIME"

AL

937. 8?9

0.0 0.0

TIMF*

AL

0.0 0.660

506.938

MN

166.573

0.0

0.0

2801.063

MN

0.0 0.0

TI

339.991

0.0 0.0TI

0.0 0.230

NA

K

0.0

0.0

NA

K

0.220

0.220

sin DEV«

FINISH

0.0

0.2^0

0.102

0.4810.0

0.0

FINISH

0.0

HEDEN8FRGITE C-9

FE

AVE COUNTS*

6402.426

MT PERCENT*

24.290

STO DEV«

0.1 OS

FINISH

AHPHIBOLE

AVE COUNTS*

WT PERCENT*

STO OEV*

52-4FE

0.0 26.280

0.0

CA

0.0 21.300

0.0CA

0.0 10.500

0.0

MG

0.0 1.060

0.0MG

0.0 4.290

0.0

SI

0.0 48.340

0.0SI

0.0 39.500

0.0

TIME*

AL

0.0 0.300

0.0

TIME*

AL

1531.033

10.100

0.125

3015.813

MN

324.486

3.700

0.66S

3196.000

MN

0.0 0.560

0.0

TI

0.0

0.0 0.0TI

527.721

3.080

0.171

NA

0.140

0.0

NA

3.340

1.450

BACKGROUNDS OFF AL203i SI02.

AVE COUNTS*

WT PERCENT*

STO OEV*

FE

50.000

0.0 0.0

CA

120.000

0.0 0*0

AND CPX-1

MG

60.000

0.0 0.0

TIME* 3356.938

SI

627.501

0.0 0.0

AL

936.688

0.0 0.0

MN

167.714

0.0 0.0

TI

341.132

0.0 0.0

NA

0.0

0.0

CM

st

STANDARD BETA FACTORS

BETA FACT-

1.110 1.114

UNKNOWN COUNTS AND COMPOSITIONS

1.14S

1.070

1.2011.110

1.057

1.720

1.058

CR2SI BEGIN ANALYSES

AVE COUNTS'

OXIDE PER-

BETA FACT-

B-A CORR-

TOT WT

PER*

STO OEV-

AT WT

PER-

TOT ATOMPC*

ATOMIC PRO-

ATOMS/CELL*

NORMALIZED

66

AVE COUNTS-

OXIDE PER-

BETA FACT*

B-A CORR*

TOT WT

PER*

STO DEV-

AT WT PER» TOT ATOMPC-ATOMIC PRO-

ATOMS/CELL-

NORMALIZED

67

AVE COUNTS-

OXIDE PER-

BETA FACT-

B-A CORR-

TOT WT

PER*

STD DEV-

AT WT

PER-

TOT ATOMPC-

ATOMIC PHO»

FE

3456.750

13.137

1.130

13.37b

97.674

0.083

10.396

56.727

0.18616

0.43643

ATOM RATIOS

FE

4163.000

15.858

1.127

16.101

99.323

0.504

12.516

57.906

0.22411

0.51943

ATOM RATIOS

FE

3564.000

13.546

1.130

13.794

97.896

0.038

10.722

56.764

0.19199

OF SECOND

CA

8763.750

19.227

1.091

18.859

0.187

13.479

0.33630

0.78843

GHOUP OF

MG

5352.750

11.905

1.215

12.640

0.114

7.623

0.31356

0.73511

FOR TERNARY PLOT OF

CA

8187.000

17.944

1.091 17.579

0.272

12.564

0.31347

0.72657

MG

5272.750

11.726

1.230 12.597

0.234

7.598

0.31250

0.72431

FOR TERNARY PLOT OF

CA

8490.000

18.618

1.094

18.274

0.121

13.060

0.32586

MG

5655.000

12.587

1.215

13.360

0.001 8.058

0.33143

PYHOXENES

SI

5385.453

47.763

1.082

48.309

O.b59

22.58?

0.80401

1.88496

TIME-

AL

1059.190

2. 06? 1.192

2.047

0.167

1.083

0.04015

0.09412

ELEMENTSlFEt 22.3

SI

5574.625

49.663

1.081 50.186

0.454

23.459

0.83525

1.93592

TIME-

AL

988.321

0.858

1.200

0.857

0.190

0.4S4

0.01681

0.03897

ELEMENTSIFE. 26.4

SI

5451.141

48.425

1.082

48.963

0.870

22.887

0.81491

TIMF-

AL

1016.479

1.337

1.196

1.331

0.149

0.705

0.02611

543.938

MN

1H9.305

0.555

1.133

0.566

0.061 0.439

0.00798

0.01872

CA. 40

602.688

MN

193.?55

0.650

1.129

0.661

0.118

0.51?

0.00932

0.02161

CA. 36

654.438

MN

173.225

0.161 1.133

0.164

0.157

0.127

0.00231

TI

450.670

1.820

1.091 1.878

0.169

1.126

0.02350

0.05510

.2 MG.

37.5

TI

419.435

1.306

1.085

1.341

0.019

0.804

0.01678

0.03889

.9 MG.

36.8

TI

458.502

1.949

1.090

2.010

0.116

1.205

0.02515

CO si-

ATOMS/CELL"

0.44807

0.76050

0.77349

1.90186

0.06094

0*00540

0,05870

NORMALIZED ATOM RATIOS FOR TERNARY PLOT OF ELEMENTSIKEt 2*.6

CAt 38.4

MGt 39.0

68

AVE COUNTS"

OXIDE PER"

BETA FACT-

B-A CORR-

TOT WT

PER-

STD OEV-

AT WT

PtR-

TOT ATOMPC-

ATOMIC PRO-

ATOMS/CELL-

NORMALIZED

69

AVE COUNTS-

OXIDE PER-

BETA FACT-

8-A CORrt-

TOT WT PER-

STD OEV-

AT WT PER-

TOT ATOMPC-

ATOMIC PRO-

ATOMS/CELL-

FE

3706.333

14.090

I. 129 14.327

99.832

0.191

11.137

58.040

0.19942

0.45806

ATOM RATIOS

FE

3486.667

13.240

1.130

13.483

99.390

0.604

10.481

57.584

0.18767

0.43093

CA

8409.000

18.438

1.092

18.072

0.013

12.916

0.32226

0.74025

MG

5626.312

12.525

1.220

13.344

0.039

8.048

0.33103

0.76038

FOR TERNARY PLOT OF

CA

8750.000

19.196

1.094

18.843

0.798

13.467

0.33601

0.77157

MG5401.664

12.022

1.213

12.743

0.178

7.685

0.31611

0.72586

SI

5486.188

48.779

1.084

49.425

O.?3b

23.103

0.82258

1.88949

TIME-

AL

1044.807

1.819

1.197 1.813

0.503

0.959

0.03556

0.08167

ELEMENTSIFEt 23.4

SI

5480.316

48.722

1.083

49.305

0.008

23.047

0.82060

1.88428

TlMf.

AL

1086.362

2.526

1.190 2.502

0.117

1.324

0.04909

0.11271

742.250

MN

205.298

0.941

1.131 0.959

0.005

0.743

0.0135?

0.03105

CAt 37

812.563

MN

183.352

0.405

1.133

0.414

0.057

0.320

0.00583

0.01340

TI

451.808

' 1.838

1.088

1.891

0.005

1.134

0.02367

0.05437

.8 MGt

38.8

TI

463.728

2.034

1.091 2.099

0.219

1.258

0.02626

0.06031

NORMALIZED ATOM RATIOS FOR TERNARY PLOT OF ELEMENTSIFEt 22.3

CA* 40.0

MGt 37.6

-4-4 Z >(/> X (1 *! Mo***zr**^o^f*i o-4 Z > V)

c

-« o Ofw o o o o> M O OJ

n wx .ro

* o o o »- o o o <c o o o

c *> ai - ro u» o OB o o « - u* o *

* o o o - o o o

uooo^-ooo

<O o u u « 9- IN>«-

45