radiation tolerant sensors for solid state tracking detectors michael moll cern - geneva -...

56
Radiation Tolerant Sensors for Solid State Tracking Detectors Michael Moll Michael Moll CERN - Geneva - Switzerland CERN - Geneva - Switzerland EPFL – LPHE, Lausanne, January 29, 2007 - CERN-RD50 project – http://www.cern.ch/rd50 http://www.cern.ch/rd50

Post on 18-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Radiation Tolerant Sensors for Solid State Tracking Detectors

Michael MollMichael Moll

CERN - Geneva - SwitzerlandCERN - Geneva - Switzerland

EPFL – LPHE, Lausanne, January 29, 2007

- CERN-RD50 project –

http://www.cern.ch/rd50http://www.cern.ch/rd50

Michael Moll – Lausanne, 29. January 2007 -2-

RD50 Outline

Introduction: LHC and LHC experiment

Motivation to develop radiation harder detectors

Introduction to the RD50 collaboration

Part I: Radiation Damage in Silicon Detectors (A very brief review) Microscopic defects (changes in bulk material) Macroscopic damage (changes in detector properties)

Part II: RD50 - Approaches to obtain radiation hard sensors Material Engineering Device Engineering

Summary and preliminary conclusion

Michael Moll – Lausanne, 29. January 2007 -3-

RD50 LHC - Large Hadron Collider

Start : 2007

• Installation in existing LEP tunnel

• 27 Km ring

• 1232 dipoles B=8.3T

• 4000 MCHF (machine+experiments)

• pp s = 14 TeV Ldesign = 1034 cm-2 s-1

• Heavy ions (e.g. Pb-Pb at s ~ 1000 TeV)LHC experiments located at 4 interaction points

p p

Michael Moll – Lausanne, 29. January 2007 -4-

RD50 LHC Experiments

CMS

+ LHCf

Michael Moll – Lausanne, 29. January 2007 -5-

RD50 LHC Experiments

CMS

LHCf

Michael Moll – Lausanne, 29. January 2007 -6-

RD50 LHC example: CMS inner tracker

5.4 m

2.4

m

Inner TrackerOuter Barrel

(TOB)Inner Barrel (TIB) End Cap

(TEC)Inner Disks(TID)

CMS – “Currently the Most Silicon” Micro Strip: ~ 214 m2 of silicon strip sensors, 11.4 million strips

Pixel: Inner 3 layers: silicon pixels (~ 1m2) 66 million pixels (100x150m) Precision: σ(rφ) ~ σ(z) ~ 15m Most challenging operating environments (LHC)

CMS

Pixel

93 cm

30 cm

Pixel Detector

Total weight 12500 t

Diameter 15m

Length 21.6m

Magnetic field 4 T

Michael Moll – Lausanne, 29. January 2007 -7-

RD50 Status December 2006

LHC Silicon Trackers close to or under commissioning

CMS Tracker Outer Barrel

ATLAS Silicon Tracker (08/2006)August 2006 – installed in ATLAS

CMS Tracker (12/2006)(foreseen: June 2007 into the pit)

Michael Moll – Lausanne, 29. January 2007 -8-

RD50 Motivation for R&D on Radiation Tolerant Detectors: Super - LHC

• LHC upgrade LHC (2007), L = 1034cm-2s-1

(r=4cm) ~ 3·1015cm-2

Super-LHC (2015 ?), L = 1035cm-2s-1

(r=4cm) ~ 1.6·1016cm-2

• LHC (Replacement of components) e.g. - LHCb Velo detectors (~2010) - ATLAS Pixel B-layer (~2012)

• Linear collider experiments (generic R&D)Deep understanding of radiation damage will be fruitful for linear collider experiments where high doses of e, will play a significant role.

5 years

2500 fb-1

10 years

500 fb-1

5

0 10 20 30 40 50 60

r [cm]

1013

5

1014

5

1015

5

1016

eq

[cm

-2]

total fluence eqtotal fluence eq

neutrons eq

pions eq

other charged

SUPER - LHC (5 years, 2500 fb-1)

hadrons eqATLAS SCT - barrelATLAS Pixel

Pixel (?) Ministrip (?)

Macropixel (?)

(microstrip detectors)

[M.Moll, simplified, scaled from ATLAS TDR]

Michael Moll – Lausanne, 29. January 2007 -9-

RD50 The CERN RD50 Collaboration http://www.cern.ch/rd50

Collaboration formed in November 2001 Experiment approved as RD50 by CERN in June 2002 Main objective:

Presently 264 members from 52 institutes

Development of ultra-radiation hard semiconductor detectors for the luminosity upgrade of the LHC to 1035 cm-2s-1 (“Super-LHC”).

Challenges: - Radiation hardness up to 1016 cm-2 required - Fast signal collection (Going from 25ns to 10 ns bunch crossing ?)

- Low mass (reducing multiple scattering close to interaction point)- Cost effectiveness (big surfaces have to be covered with detectors!)

RD50: Development of Radiation Hard Semiconductor Devices for High Luminosity Colliders

Belarus (Minsk), Belgium (Louvain), Canada (Montreal), Czech Republic (Prague (3x)), Finland (Helsinki, Lappeenranta), Germany (Berlin, Dortmund, Erfurt, Freiburg, Hamburg, Karlsruhe),

Israel (Tel Aviv), Italy (Bari, Bologna, Florence, Padova, Perugia, Pisa, Trento, Turin), Lithuania (Vilnius), The Netherlands (Amsterdam), Norway (Oslo (2x)), Poland (Warsaw (2x)), Romania (Bucharest (2x)), Russia

(Moscow), St.Petersburg), Slovenia (Ljubljana), Spain (Barcelona, Valencia), Switzerland (CERN, PSI), Ukraine (Kiev), United Kingdom (Diamond, Exeter, Glasgow, Lancaster, Liverpool, Sheffield),

USA (Fermilab, Purdue University, Rochester University, SCIPP Santa Cruz, Syracuse University, BNL, University of New Mexico)

Michael Moll – Lausanne, 29. January 2007 -10-

RD50 Outline

Motivation to develop radiation harder detectors

Introduction to the RD50 collaboration

Part I: Radiation Damage in Silicon Detectors (A very brief review) Microscopic defects (changes in bulk material) Macroscopic damage (changes in detector properties)

Part II: RD50 - Approaches to obtain radiation hard sensors Material Engineering Device Engineering

Summary and preliminary conclusion

Michael Moll – Lausanne, 29. January 2007 -11-

RD50 Radiation Damage – Microscopic Effects

particle SiS Vacancy + Interstitial

point defects (V-O, C-O, .. )

point defects and clusters of defects

EK>25 eV

EK > 5 keV

V

I

I

I

V

V

Spatial distribution of vacancies created by a 50 keV Si-ion in silicon. (typical recoil energy for 1 MeV neutrons)

van Lint 1980

M.Huhtinen 2001

Michael Moll – Lausanne, 29. January 2007 -12-

RD50 Radiation Damage – Microscopic Effects

particle SiS Vacancy + Interstitial

point defects (V-O, C-O, .. )

point defects and clusters of defects

EK>25 eV

EK > 5 keV

V

I

Neutrons (elastic scattering) En > 185 eV for displacement En > 35 keV for cluster

60Co-gammasCompton Electrons with max. E 1 MeV (no cluster production)

ElectronsEe > 255 keV for displacementEe > 8 MeV for cluster

Only point defects point defects & clusters Mainly clusters

10 MeV protons 24 GeV/c protons 1 MeV neutronsSimulation:

Initial distribution of vacancies in (1m)3

after 1014 particles/cm2

[Mika Huhtinen NIMA 491(2002) 194]

Michael Moll – Lausanne, 29. January 2007 -13-

RD50 Primary Damage and secondary defect formation

Two basic defects

I - Silicon Interstitial V - Vacancy

Primary defect generation I, I2 higher order I (?) I -CLUSTER (?) V, V2, higher order V (?) V -CLUSTER (?)

Secondary defect generation

Main impurities in silicon: Carbon (Cs) Oxygen (O i)I+Cs Ci Ci+Cs CiCS

Ci+Oi CiOi

Ci+Ps CiPS

V+V V2 V+V2 V3

V+Oi VOi V+VOi V2Oi

V+Ps VPs

I+V2 V I+VOi Oi .......................

I

I

V

V

Damage?! (“V2O-model”)

Damage?!

Michael Moll – Lausanne, 29. January 2007 -14-

RD50 Example of defect spectroscopyExample of defect spectroscopy- neutron irradiated -- neutron irradiated -

50 100 150 200 250Temperature [ K ]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

DL

TS-

sign

al (

b 1)

[pF]

60 min 60 min170 days170 days

CiCs(-/0)CiCs(-/0)

VOi(-/0)VOi(-/0)

VV(--/-)VV(--/-)

Ci(-/0)Ci(-/0)

CiOi(+/0)CiOi(+/0)

H(220K)H(220K)

Ci(+/0)Ci(+/0)

E(40K)E(40K)E(45K)E(45K)

E(35K)E(35K)

? + VV(-/0) + ?? + VV(-/0) + ? Introduction RatesNt/eq:

Ci :1.55 cm-1

CiCs : CiOi : 0.40 cm-1 1.10 cm-1

Introduction rates of main defects 1 cm-1

Introduction rate of negative space charge 0.05 cm-1

example : eq = 11014 cm-2

defects 11014 cm-3

space charge 51012cm-3

Deep Level Transient Spectroscopy

Michael Moll – Lausanne, 29. January 2007 -15-

RD50 Impact of Defects on Detector properties

Shockley-Read-Hall statistics Shockley-Read-Hall statistics (standard theory) (standard theory)

  

Impact on detector properties can be calculated if all defect parameters are known:Impact on detector properties can be calculated if all defect parameters are known:n,pn,p : cross sections  : cross sections E : ionization energy NE : ionization energy Ntt : concentration : concentration

Trapping (e and h) CCE

shallow defects do not contribute at room

temperature due to fast detrapping

charged defects

Neff , Vdep

e.g. donors in upper and acceptors in lower half of band

gap

generation leakage current

Levels close to midgap

most effective

enhanced generation leakage current space charge

Inter-center chargeInter-center charge transfer model transfer model

(inside clusters only)(inside clusters only)

Michael Moll – Lausanne, 29. January 2007 -16-

RD50

d ep le ted zo n e

n eu tra l b u lk(n o e lec tric f ie ld )

Poisson’s equation

Reverse biased abrupt pReverse biased abrupt p++-n junction-n junction

Electrical Electrical charge densitycharge density

Electrical Electrical field strengthfield strength

Electron Electron potential energypotential energy

effNq

xdx

d

0

02

2

2

0

0 dNq

V effdep

effective space charge density

depletion voltage

Full charge collection only for VB>Vdep !

Positive space charge, Neff =[P](ionized Phosphorus atoms)

p a rtic le (m ip )

+ V < VB d ep + V > VB d ep

Michael Moll – Lausanne, 29. January 2007 -17-

RD50 Macroscopic Effects – I. Depletion Voltage

Change of Depletion Voltage Vdep (Neff)

…. with particle fluence:

before inversion

after inversion

n+ p+ n+

• “Type inversion”: Neff changes from positive to

negative (Space Charge Sign Inversion)

10-1 100 101 102 103

eq [ 1012 cm-2 ]

1

510

50100

5001000

5000

Ude

p [V

] (

d =

300

m)

10-1

100

101

102

103

| Nef

f | [

1011

cm

-3 ]

600 V

1014cm-2

type inversion

n-type "p-type"

[M.Moll: Data: R. Wunstorf, PhD thesis 1992, Uni Hamburg]

• Short term: “Beneficial annealing” • Long term: “Reverse annealing” - time constant depends on temperature: ~ 500 years (-10°C) ~ 500 days ( 20°C) ~ 21 hours ( 60°C) - Consequence: Detectors must be cooled even when the experiment is not running!

…. with time (annealing):

NC

NC0

gC eq

NYNA

1 10 100 1000 10000annealing time at 60oC [min]

0

2

4

6

8

10

N

eff [

1011

cm-3

]

[M.Moll, PhD thesis 1999, Uni Hamburg]

p+

Michael Moll – Lausanne, 29. January 2007 -18-

RD50 Radiation Damage – II. Leakage Current

1011 1012 1013 1014 1015

eq [cm-2]

10-6

10-5

10-4

10-3

10-2

10-1

I /

V

[A/c

m3 ]

n-type FZ - 7 to 25 Kcmn-type FZ - 7 Kcmn-type FZ - 4 Kcmn-type FZ - 3 Kcm

n-type FZ - 780 cmn-type FZ - 410 cmn-type FZ - 130 cmn-type FZ - 110 cmn-type CZ - 140 cm

p-type EPI - 2 and 4 Kcm

p-type EPI - 380 cm

[M.Moll PhD Thesis][M.Moll PhD Thesis]

Damage parameter (slope in figure)

Leakage current per unit volume and particle fluence

is constant over several orders of fluenceand independent of impurity concentration in Si can be used for fluence measurement

eqV

I

α

80 min 60C

Change of Leakage Current (after hadron irradiation)

…. with particle fluence:

Leakage current decreasing in time (depending on temperature)

Strong temperature dependence

Consequence: Cool detectors during operation! Example: I(-10°C) ~1/16 I(20°C)

1 10 100 1000 10000annealing time at 60oC [minutes]

0

1

2

3

4

5

6

(t)

[10

-17 A

/cm

]

1

2

3

4

5

6

oxygen enriched silicon [O] = 2.1017 cm-3

parameterisation for standard silicon [M.Moll PhD Thesis]

80 min 60C

…. with time (annealing):

Tk

EI

B

g

2exp

Michael Moll – Lausanne, 29. January 2007 -19-

RD50

Deterioration of Charge Collection Efficiency (CCE) by trapping

tQtQ

heeffhehe

,,0,

1exp)(

0 2.1014 4.1014 6.1014 8.1014 1015

particle fluence - eq [cm-2]

0

0.1

0.2

0.3

0.4

0.5

Inve

rse

trap

ping

tim

e 1

/ [n

s-1]

data for electronsdata for electronsdata for holesdata for holes

24 GeV/c proton irradiation24 GeV/c proton irradiation

[M.Moll; Data: O.Krasel, PhD thesis 2004, Uni Dortmund][M.Moll; Data: O.Krasel, PhD thesis 2004, Uni Dortmund]

Increase of inverse trapping time (1/) with fluence

Trapping is characterized by an effective trapping time eff for electrons and holes:

….. and change with time (annealing):

5 101 5 102 5 103

annealing time at 60oC [min]

0.1

0.15

0.2

0.25

Inve

rse

trap

ping

tim

e 1

/ [n

s-1]

data for holesdata for holesdata for electronsdata for electrons

24 GeV/c proton irradiation24 GeV/c proton irradiationeq = 4.5.1014 cm-2 eq = 4.5.1014 cm-2

[M.Moll; Data: O.Krasel, PhD thesis 2004, Uni Dortmund][M.Moll; Data: O.Krasel, PhD thesis 2004, Uni Dortmund]

where defectsheeff

N,

1

Radiation Damage – III. CCE (Trapping)

Michael Moll – Lausanne, 29. January 2007 -20-

RD50 Summary: Radiation Damage in Silicon Sensors

Two general types of radiation damage to the detector materials:

Bulk (Crystal) damage due to Non Ionizing Energy Loss (NIEL) - displacement damage, built up of crystal defects –

I. Change of effective doping concentration (higher depletion voltage, under- depletion)

II. Increase of leakage current (increase of shot noise, thermal runaway)

III. Increase of charge carrier trapping (loss of charge)

Surface damage due to Ionizing Energy Loss (IEL) - accumulation of positive in the oxide (SiO2) and the Si/SiO2 interface – affects: interstrip capacitance (noise factor), breakdown behavior, …

Impact on detector performance and Charge Collection Efficiency (depending on detector type and geometry and readout electronics!)

Signal/noise ratio is the quantity to watch Sensors can fail from radiation damage !

Same for all tested Silicon

materials!

Influenced by impurities

in Si – Defect Engineeringis possible!

Can be optimized!

Michael Moll – Lausanne, 29. January 2007 -21-

RD50 Outline

Motivation to develop radiation harder detectors

Introduction to the RD50 collaboration

Part I: Radiation Damage in Silicon Detectors (A very brief review) Microscopic defects (changes in bulk material) Macroscopic damage (changes in detector properties)

Part II: RD50 - Approaches to obtain radiation hard sensors Material Engineering Device Engineering

Summary and preliminary conclusion

Michael Moll – Lausanne, 29. January 2007 -22-

RD50 Approaches of RD50 to develop radiation harder tracking detectors

Defect Engineering of Silicon Understanding radiation damage

• Macroscopic effects and Microscopic defects• Simulation of defect properties and defect kinetics• Irradiation with different particles at different

energies Oxygen rich silicon

• DOFZ, Cz, MCZ, EPI Oxygen dimer enriched silicon Hydrogen enriched silicon Pre-irradiated silicon Influence of processing technology

New Materials Silicon Carbide (SiC), Gallium Nitride (GaN) Diamond: CERN RD42 Collaboration

Device Engineering (New Detector Designs) p-type silicon detectors (n-in-p) Thin detectors 3D and Semi 3D detectors Cost effective detectors Simulation of highly irradiated detectors

Scientific strategies:

I. Material engineering

II. Device engineering

III. Variation of detectoroperational conditions

CERN-RD39“Cryogenic Tracking Detectors”

Michael Moll – Lausanne, 29. January 2007 -23-

RD50

Influence the defect kinetics by incorporation of impurities or defects

Best example: Oxygen

Initial idea: Incorporate Oxygen to getter radiation-induced vacancies prevent formation of Di-vacancy (V2) related deep acceptor levels Observation: Higher oxygen content less negative space charge (less charged acceptors)

One possible mechanism: V2O is a deep acceptor O VO (not harmful at room temperature) V VO V2O (negative space charge)

Defect Engineering of Silicon

V2O(?)

Ec

EV

VO

V2 in clusters

Michael Moll – Lausanne, 29. January 2007 -24-

RD50 Spectacular Improvement of -irradiation tolerance

No type inversion for oxygen enriched silicon! Slight increase of positive space charge

(due to Thermal Donor generation?)

[E.Fretwurst et al. 1st RD50 Workshop] See also:- Z.Li et al. [NIMA461(2001)126]- Z.Li et al. [1st RD50 Workshop]

0 200 400 600 800 1000dose [Mrad]

0

50

100

150

200

250

Vde

p [V

]

0

10

20

30

40

Nef

f [10

11 c

m-3

]

CA: <111> STFZ CA: <111> STFZ CB: <111> DOFZ 24 hCB: <111> DOFZ 24 hCC: <111>DOFZ 48 hCC: <111>DOFZ 48 hCD: <111> DOFZ 72 hCD: <111> DOFZ 72 hCE: <100> STFZCE: <100> STFZCF: <100> DOFZ 24hCF: <100> DOFZ 24hCG: <100> DOFZ 48hCG: <100> DOFZ 48hCH: <100> DOFZ 72hCH: <100> DOFZ 72h

(a)(a)

Depletion Voltage

0 200 400 600 800 1000dose [Mrad]

0

500

1000

1500

I rev

[nA

]

CA: <111> STFZCA: <111> STFZCB: <111> DOFZ 24hCB: <111> DOFZ 24hCC: <111> DOFZ 48hCC: <111> DOFZ 48hCD: <111> DOFZ 78hCD: <111> DOFZ 78h

(b)(b)

CE: <100> STFZ CE: <100> STFZ CF: <100> DOFZ 24hCF: <100> DOFZ 24hCG: <100> DOFZ 48hCG: <100> DOFZ 48hCH: <100> DOFZ 72hCH: <100> DOFZ 72h

(b)

Leakage increase not linear and depending on oxygen concentration

Leakage Current

Michael Moll – Lausanne, 29. January 2007 -25-

RD50 Characterization of microscopic defects - and proton irradiated silicon detectors -

2003: Major breakthrough on -irradiated samples For the first time macroscopic changes of the depletion voltage and leakage current

can be explained by electrical properties of measured defects !

since 2004: Big steps in understanding the improved radiation tolerance of oxygen enriched and epitaxial silicon after proton irradiation

[APL, 82, 2169, March 2003]

Almost independent of oxygen content: Donor removal “Cluster damage” negative charge

Influenced by initial oxygen content: I–defect: deep acceptor level at EC-0.54eV (good candidate for the V2O defect) negative charge

Influenced by initial oxygen dimer content (?): BD-defect: bistable shallow thermal donor (formed via oxygen dimers O2i) positive charge

Levels responsible for depletion voltage changes after proton irradiation:

D-defectI-defect

[I.Pintilie, RESMDD, Oct.2004]

Michael Moll – Lausanne, 29. January 2007 -26-

RD50 Oxygen enriched silicon – DOFZ- proton irradiation -

• DOFZ (Diffusion Oxygenated Float Zone Silicon) 1982 First oxygen diffusion tests on FZ [Brotherton et al. J.Appl.Phys.,Vol.53,

No.8.,5720]

1995 First tests on detector grade silicon [Z.Li et al. IEEE TNS Vol.42,No.4,219]

1999 Introduced to the HEP community by RD48 (ROSE)

0 1 2 3 4 524 GeV/c proton [1014 cm-2]

0

2

4

6

8

10

|Nef

f| [

1012

cm-3

]

100

200

300

400

500

600

Vde

p [V

] (3

00 m

)

Carbon-enriched (P503)Standard (P51)

O-diffusion 24 hours (P52)O-diffusion 48 hours (P54)O-diffusion 72 hours (P56)

Carbonated

Standard

Oxygenated

[RD48-NIMA 465(2001) 60]

http://cern.ch/rd48

ROSERD48

First tests in 1999 show clear advantage of oxygenation

Later systematic tests reveal strong variations with no clear dependence

on oxygen content

0 2 4 6 8 1024GeV/c proton [1014 cm-2]

0123456789

10

|Nef

f| [10

12cm

-3]

100

200

300

400

500

600

700

Vde

p [V

] (3

00 m

)

SGS-30h-1200C ; Wacker <111>: SGS W316-T-A3-02 (7/99)

oxy - 2Kcm <111> W316-07 oxy - 2Kcm <111> W309-07oxy - 2Kcm <100> W319-08oxy - 2Kcm <100> W320-05oxy - 1Kcm <111> W301-3oxy - 2.2Kcm <100> W311-2oxy - 2.4Kcm <100> W320-2oxy - 2Kcm <111> W309-5oxy - 15 Kcm <111> W324-2

15 Kcm <111> - oxygenated

oxy - 15 Kcm <111> W317-3oxy - 1Kcm <111> W306-2oxy - 1Kcm <100> W305-2oxy - 2.2Kcm <111> W316-2 oxy - 2Kcm <100> W319-3

std - 1Kcm <100> W330-A2std - 1Kcm <111> W333 -B6std - 2Kcm <100> W335-C4std - 2 Kcm <111> W336-B6std - 15Kcm <111> W339-B4

15 Kcm <111> - standard

Standard material

Oxygenated material

[M.Moll - NIMA 511 (2003) 97]

However, only non-oxygenated diodes show a “bad” behavior.

Michael Moll – Lausanne, 29. January 2007 -27-

RD50 Silicon Growth Processes

Single crystal silicon

Poly silicon

RF Heating coil

Float Zone Growth

Floating Zone Silicon (FZ) Czochralski Silicon (CZ)

Czochralski Growth

Basically all silicon detectors made out of high resistivety FZ silicon

Epitaxial Silicon (EPI)

The growth method used by the IC industry.

Difficult to producevery high resistivity

Chemical-Vapor Deposition (CVD) of Si up to 150 m thick layers produced growth rate about 1m/min

Michael Moll – Lausanne, 29. January 2007 -28-

RD50

0 10 20 30 40 50 60 70 80 90 100Depth [m]

51016

51017

51018

5

O-c

once

ntra

tion

[1/c

m3 ]

SIMS 25 m SIMS 25 m

25 m

u25

mu

SIMS 50 mSIMS 50 m

50 m

u50

mu

SIMS 75 mSIMS 75 m

75 m

u75

mu

simulation 25 msimulation 25 msimulation 50 msimulation 50 msimulation 75msimulation 75m

Oxygen concentration in FZ, CZ and EPI

DOFZ and CZ silicon Epitaxial silicon

EPI: Oi and O2i (?) diffusion from substrate into epi-layer during production

EPI: in-homogeneous oxygen distribution

[G.Lindström et al.,10th European Symposium on Semiconductor Detectors, 12-16 June 2005]

DOFZ: inhomogeneous oxygen distribution DOFZ: oxygen content increasing with time

at high temperature

EPIlayer CZ substrate

0 50 100 150 200 250depth [m]

5

1016

5

1017

5

1018

O-c

once

ntra

tion

[cm

-3]

51016

51017

51018

5

DOFZ 72h/1150oCDOFZ 48h/1150oCDOFZ 24h/1150oC

Data: G.Lindstroem et al.

[M.Moll]

CZ: high Oi (oxygen) and O2i (oxygen dimer) concentration (homogeneous)

CZ: formation of Thermal Donors possible !

0 50 100 150 200 250depth [m]

5

1016

5

1017

5

1018

O-c

once

ntra

tion

[cm

-3]

51016

51017

51018

5

Cz as grown

DOFZ 72h/1150oCDOFZ 48h/1150oCDOFZ 24h/1150oC

Data: G.Lindstroem et al.

[M.Moll]

Michael Moll – Lausanne, 29. January 2007 -29-

RD50 Silicon Materials under Investigation by RD50

Material Symbol (cm) [Oi] (cm-3)

Standard FZ (n- and p-type) FZ 1–710 3 < 51016

Diffusion oxygenated FZ (n- and p-type) DOFZ 1–710 3 ~ 1–21017

Magnetic Czochralski Si, Okmetic, Finland (n- and p-type)

MCz ~ 110 3 ~ 51017

Czochralski Si, Sumitomo, Japan (n-type) Cz ~ 110 3 ~ 8-91017

Epitaxial layers on Cz-substrates, ITME, Poland (n- and p-type, 25, 50, 75, 150 m thick)

EPI 50 – 400 < 11017

Diffusion oxygenated Epitaxial layers on CZ EPI–DO 50 – 100 ~ 71017

DOFZ silicon - Enriched with oxygen on wafer level, inhomogeneous distribution of oxygen CZ/MCZ silicon - high Oi (oxygen) and O2i (oxygen dimer) concentration (homogeneous)

- formation of shallow Thermal Donors possible Epi silicon - high Oi , O2i content due to out-diffusion from the CZ substrate (inhomogeneous)

- thin layers: high doping possible (low starting resistivity) Epi-Do silicon - as EPI, however additional Oi diffused reaching homogeneous Oi content

standardfor

particledetectors

used for LHC Pixel

detectors

“new”material

Michael Moll – Lausanne, 29. January 2007 -30-

RD50 Standard FZ, DOFZ, Cz and MCz Silicon

24 GeV/c proton irradiation

Standard FZ silicon• type inversion at ~ 21013 p/cm2

• strong Neff increase at high fluence

Oxygenated FZ (DOFZ)• type inversion at ~ 21013 p/cm2

• reduced Neff increase at high fluence

CZ silicon and MCZ silicon no type inversion in the overall fluence range (verified by TCT measurements)

(verified for CZ silicon by TCT measurements, preliminary result for MCZ silicon) donor generation overcompensates acceptor generation in high fluence range

Common to all materials (after hadron irradiation): reverse current increase increase of trapping (electrons and holes) within ~ 20%

0 2 4 6 8 10proton fluence [1014 cm-2]

0

200

400

600

800

Vde

p (3

00m

) [V

]0

2

4

6

8

10

12

|Nef

f| [1

012 c

m-3

]

FZ <111>FZ <111>DOFZ <111> (72 h 11500C)DOFZ <111> (72 h 11500C)MCZ <100>MCZ <100> CZ <100> (TD killed) CZ <100> (TD killed)

Michael Moll – Lausanne, 29. January 2007 -31-

RD50 Epitaxial silicon

Layer thickness: 25, 50, 75 m (resistivity: ~ 50 cm); 150 m (resistivity: ~ 400 cm) Oxygen: [O] 91016cm-3; Oxygen dimers (detected via IO2-defect formation)

EPI Devices – Irradiation experiments

Only little change in depletion voltage

No type inversion up to ~ 1016 p/cm2 and ~ 1016 n/cm2

high electric field will stay at front electrode!reverse annealing will decreases depletion voltage!

Explanation: introduction of shallow donors is bigger than generation of deep acceptors

G.Lindström et al.,10th European Symposium on Semiconductor Detectors, 12-16 June 2005 G.Kramberger et al., Hamburg RD50 Workshop, August 2006

0 2.1015 4.1015 6.1015 8.1015 1016

eq [cm-2]

0

1014

2.1014

Nef

f(t0)

[cm

-3]

25 m, 80 oC25 m, 80 oC

50 m, 80 oC50 m, 80 oC

75 m, 80 oC75 m, 80 oC

23 GeV protons23 GeV protons

320V (75m)

105V (25m)

230V (50m)

CCE (Sr90 source, 25ns shaping): 6400 e (150 m; 2x1015 n/cm-2) 3300 e (75m; 8x1015 n/cm-2) 2300 e (50m; 8x1015 n/cm-2)

0 20 40 60 80 100eq [1014 cm-2]

0

2000

4000

6000

8000

10000

12000

Sign

al [

e]

150 m - neutron irradiated 75 m - proton irradiated 75 m - neutron irradiated 50 m - neutron irradiated 50 m - proton irradiated

[M.Moll]

[Data: G.Kramberger et al., Hamburg RD50 Workshop, August 2006]

Michael Moll – Lausanne, 29. January 2007 -32-

RD50 Advantage of non-inverting materialp-in-n detectors (schematic figures!)

Fully depleted detector(non – irradiated):

Michael Moll – Lausanne, 29. January 2007 -33-

RD50

inverted to “p-type”, under-depleted:

• Charge spread – degraded resolution

• Charge loss – reduced CCE

Advantage of non-inverting materialp-in-n detectors (schematic figures!)

Fully depleted detector(non – irradiated):

heavy irradiation

inverted

non-inverted, under-depleted:

•Limited loss in CCE

•Less degradation with under-depletion

non inverted

Be careful, this is a very schematic explanation, reality is more complex !

Michael Moll – Lausanne, 29. January 2007 -34-

RD50 Epitaxial silicon - Annealing

50 m thick silicon detectors:- Epitaxial silicon (50cm on CZ substrate, ITME & CiS) - Thin FZ silicon (4Kcm, MPI Munich, wafer bonding technique)

Thin FZ silicon: Type inverted, increase of depletion voltage with time Epitaxial silicon: No type inversion, decrease of depletion voltage with time

No need for low temperature during maintenance of SLHC detectors!

[E.Fretwurst et al.,RESMDD - October 2004]

100 101 102 103 104 105

annealing time [min]

0

50

100

150

Vfd

[V

]

EPI (ITME), 9.6.1014 p/cm2EPI (ITME), 9.6.1014 p/cm2

FZ (MPI), 1.7.1015 p/cm2FZ (MPI), 1.7.1015 p/cm2

Ta=80oCTa=80oC

[E.Fretwurst et al., Hamburg][E.Fretwurst et al., Hamburg]

0 20 40 60 80 100proton fluence [1014 cm-2]

0

50

100

150

200

250

Vde

p [V

]

0.20.40.60.81.01.21.4

|Nef

f| [1

014 c

m-3

]

EPI (ITME), 50mEPI (ITME), 50mFZ (MPI), 50mFZ (MPI), 50m

Ta=80oCTa=80oC

ta=8 minta=8 min

Michael Moll – Lausanne, 29. January 2007 -35-

RD50

Property Diamond GaN 4H SiC Si Eg [eV] 5.5 3.39 3.3 1.12 Ebreakdown [V/cm] 107 4·106 2.2·106 3·105 e [cm2/Vs] 1800 1000 800 1450 h [cm2/Vs] 1200 30 115 450 vsat [cm/s] 2.2·107 - 2·107 0.8·107 Z 6 31/7 14/6 14 r 5.7 9.6 9.7 11.9 e-h energy [eV] 13 8.9 7.6-8.4 3.6 Density [g/cm3] 3.515 6.15 3.22 2.33 Displacem. [eV] 43 15 25 13-20

New Materials: Epitaxial SiC “A material between Silicon and Diamond”

Wide bandgap (3.3eV) lower leakage current

than silicon

Signal:Diamond 36 e/mSiC 51 e/mSi 89 e/m

more charge than diamond

Higher displacement threshold than silicon

radiation harder than silicon (?)

R&D on diamond detectors:RD42 – Collaboration

http://cern.ch/rd42/

Michael Moll – Lausanne, 29. January 2007 -36-

RD50 SiC: CCE after neutron irradiation

CCE before irradiation 100 % with particles and MIPS

CCE after irradiation (example) material produced by CREE 55 m thick layer neutron irradiated samples tested with particles

Conclusion: SiC is less radiation tolerant than

expected

Consequence: RD50 will stop working on this topic

[F.Moscatelli, Bologna, December 2006]

0.1 1E14 1E15 1E160

1000

2000

3000

Before irradiation

Co

llect

ed

Ch

arg

e (

e- )

Fluence ((1MeV) n/cm2)

@ 950 V

Michael Moll – Lausanne, 29. January 2007 -37-

RD50 Outline

Motivation to develop radiation harder detectors

Introduction to the RD50 collaboration

Part I: Radiation Damage in Silicon Detectors (A very brief review) Microscopic defects (changes in bulk material) Macroscopic damage (changes in detector properties)

Part II: RD50 - Approaches to obtain radiation hard sensors Material Engineering Device Engineering

Summary and preliminary conclusion

Michael Moll – Lausanne, 29. January 2007 -38-

RD50

p-on-n silicon, under-depleted:

• Charge spread – degraded resolution

• Charge loss – reduced CCE

p+on-n

Device engineeringp-in-n versus n-in-p detectors

n-on-p silicon, under-depleted:

•Limited loss in CCE

•Less degradation with under-depletion

•Collect electrons (fast)

n+on-p

n-type silicon after high fluences: p-type silicon after high fluences:

Be careful, this is a very schematic explanation,reality is more complex !

Michael Moll – Lausanne, 29. January 2007 -39-

RD50

0 2 4 6 8 10fluence [1015cm-2]

0

5

10

15

20

25

CC

E (

103 e

lect

rons

)

24 GeV/c p irradiation24 GeV/c p irradiation

[M.Moll][M.Moll]

[Data: G.Casse et al., NIMA535(2004) 362][Data: G.Casse et al., NIMA535(2004) 362]

n-in-p microstrip detectors

n-in-p microstrip detectors (280m) on p-type FZ silicon Detectors read-out with 40MHz

CCE ~ 6500 e (30%) after 7.5 1015 p cm-2 at

900V

n-in-p: - no type inversion, high electric field stays on structured side - collection of electrons

no reverse annealing visible in the CCE measurement ! e.g. for 7.5 1015 p/cm2 increase of Vdep from

Vdep~ 2800V to Vdep > 12000V is expected !

0 100 200 300 400 500time at 80oC[min]

0 500 1000 1500 2000 2500time [days at 20oC]

02468

101214161820

CC

E (

103 e

lect

rons

)

800 V800 V

1.1 x 1015cm-2 1.1 x 1015cm-2 500 V500 V

3.5 x 1015cm-2 (500 V)3.5 x 1015cm-2 (500 V)

7.5 x 1015cm-2 (700 V)7.5 x 1015cm-2 (700 V)

M.MollM.Moll

[Data: G.Casse et al., to be published in NIMA][Data: G.Casse et al., to be published in NIMA]

Michael Moll – Lausanne, 29. January 2007 -40-

RD50 “3D” electrodes: - narrow columns along detector thickness,

- diameter: 10m, distance: 50 - 100m Lateral depletion: - lower depletion voltage needed

- thicker detectors possible- fast signal- radiation hard

3D detector - concepts

n-columns p-columnswafer surface

n-type substrate

Introduced by: S.I. Parker et al., NIMA 395 (1997) 328

p+

------

++++

++++

--

--

++

30

0

m

n+

p+

50 m

------

++ ++++++

----

++

3D PLANARp+

Michael Moll – Lausanne, 29. January 2007 -41-

RD50 “3D” electrodes: - narrow columns along detector thickness,

- diameter: 10m, distance: 50 - 100m Lateral depletion: - lower depletion voltage needed

- thicker detectors possible- fast signal- radiation hard

3D detector - concepts

n-columns p-columns wafer surface

n-type substrate

Simplified 3D architecture n+ columns in p-type substrate, p+ backplane operation similar to standard 3D detector

Simplified process hole etching and doping only done once no wafer bonding technology needed

Simulations performed Fabrication:

IRST(Italy), CNM Barcelona

[C. Piemonte et al., NIM A541 (2005) 441]

hole

hole metal strip

C.Piemonte et al., STD06, September 2006

Hole depth 120-150mHole diameter ~10m

First CCE tests under way

Michael Moll – Lausanne, 29. January 2007 -42-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices

In the following: Comparison of collected charge as published in literature

Be careful: Values obtained partly under different conditions irradiation temperature of measurement electronics used (shaping time, noise) type of device – strip detectors or pad detectors

This comparison gives only an indication of which material/technology could be used, to be more specific, the exact application should be looked at!

Remember: The obtained signal has still to be compared to the noise

Acknowledgements:

Recent data collections: Mara Bruzzi (Hiroschima conference 2006)

Cinzia Da Via (Vertex conference 2006)

Michael Moll – Lausanne, 29. January 2007 -43-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices

0 20 40 60 80 100 120eq [1014 cm-2]

0

1000

2000

3000

4000

sign

al [e

lect

rons

]

SiC, n-type, 55 m, (RT, 2.5s) [Moscatelli et al. 2006]

[M.Moll 2007]

4H-SiC layer, 55m, pad detector24 GeV/c protonsSr-90 source, 2.5 s shaping, room temperature mean values presented

sample:irradiation:

measurement:analysis:

Michael Moll – Lausanne, 29. January 2007 -44-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices

0 20 40 60 80 100 120eq [1014 cm-2]

0

1000

2000

3000

4000

5000

6000

sign

al [e

lect

rons

]

pCVD-Diamond, 500m, (RT, s) [RD42 2002]SiC, n-type, 55 m, (RT, 2.5s) [Moscatelli et al. 2006]

[M.Moll 2007]

polycrystal, 500m thick, strip24 GeV/c protonstestbeam, s shapingmost probable values

sample:irradiation:

measurement:analysis:

Michael Moll – Lausanne, 29. January 2007 -45-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices

0 20 40 60 80 100 120eq [1014 cm-2]

0

1000

2000

3000

4000

5000

6000

7000

sign

al [e

lect

rons

]

pCVD-Diamond, 500m, (RT, s) [RD42 2005]pCVD-Diamond, 500m, (RT, s) [RD42 2002]SiC, n-type, 55 m, (RT, 2.5s) [Moscatelli et al. 2006]

[M.Moll 2007]

polycrystal, 500m thick, strip24 GeV/c protonstestbeam, s shapingmost probable values

sample:irradiation:

measurement:analysis:

Michael Moll – Lausanne, 29. January 2007 -46-

RD50

0 20 40 60 80 100 120eq [1014 cm-2]

0

2000

4000

6000

8000

10000

sign

al [e

lect

rons

]

pCVD-Diamond, 500m, (RT, s) [RD42 2006]pCVD-Diamond, 500m, (RT, s) [RD42 2005]pCVD-Diamond, 500m, (RT, s) [RD42 2002]SiC, n-type, 55 m, (RT, 2.5s) [Moscatelli et al. 2006]

[M.Moll 2007]

polycrystal, 500m thick, strip24 GeV/c protonstestbeam, s shapingmost probable values

sample:irradiation:

measurement:analysis:

Comparison of measured collected charge on different radiation-hard materials and devices

Diamond quality increasing [2000-2006]

Michael Moll – Lausanne, 29. January 2007 -47-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices

0 20 40 60 80 100 120eq [1014 cm-2]

0

2000

4000

6000

8000

10000

sign

al [e

lect

rons

]

pCVD-Diamond, 500m, (RT, s) [RD42 2002-2006] (scaled)SiC, n-type, 55 m, (RT, 2.5s) [Moscatelli et al. 2006]

[M.Moll 2007]

polycrystal, 500m thick, strip24 GeV/c protonstestbeam, s shapingmost probable values

sample:irradiation:

measurement:analysis:

Michael Moll – Lausanne, 29. January 2007 -48-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices

0 20 40 60 80 100 120eq [1014 cm-2]

0

2000

4000

6000

8000

10000

12000

sign

al [e

lect

rons

] pCVD-Diamond, 500m, (RT, s), strip, [RD42 2002-2006] (scaled)n-epi Si, 150 m, (-30oC, 25ns), pad [Kramberger 2006]n-epi Si, 75 m, (-30oC, 25ns), pad [Kramberger 2006]SiC, n-type, 55 m, (RT, 2.5s), pad [Moscatelli et al. 2006]

[M.Moll 2007]

Michael Moll – Lausanne, 29. January 2007 -49-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices

0 20 40 60 80 100 120eq [1014 cm-2]

0

5000

10000

15000

20000

25000

sign

al [e

lect

rons

]

p-FZ Si, 280 m, (-30oC, 25ns), strip [Casse 2004]p-MCZ Si, 300 m, (-30oC, s), pad [Bruzzi 2006]n-epi Si, 150 m, (-30oC, 25ns), pad [Kramberger 2006]n-epi Si, 75 m, (-30oC, 25ns), pad [Kramberger 2006]pCVD-Diamond, 500m, (RT, s), strip, [RD42 2002-2006] (scaled)SiC, n-type, 55 m, (RT, 2.5s), pad [Moscatelli et al. 2006]

[M.Moll 2007]

Michael Moll – Lausanne, 29. January 2007 -50-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices

0 20 40 60 80 100 120eq [1014 cm-2]

0

5000

10000

15000

20000

25000

sign

al [e

lect

rons

]

3D FZ Si, 235 m, (laser injection, scaled!), pad [Da Via 2006]p-FZ Si, 280 m, (-30oC, 25ns), strip [Casse 2004]p-MCZ Si, 300 m, (-30oC, s), pad [Bruzzi 2006]n-epi Si, 150 m, (-30oC, 25ns), pad [Kramberger 2006]n-epi Si, 75 m, (-30oC, 25ns), pad [Kramberger 2006]pCVD-Diamond, 500m, (RT, s), strip, [RD42 2002-2006] (scaled)SiC, n-type, 55 m, (RT, 2.5s), pad [Moscatelli et al. 2006]

[M.Moll 2007]

Michael Moll – Lausanne, 29. January 2007 -51-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices

0 20 40 60 80 100 120eq [1014 cm-2]

0

5000

10000

15000

20000

25000

sign

al [e

lect

rons

]

3D FZ Si, 235 m, (laser injection, scaled!), pad [Da Via 2006]p-FZ Si, 280 m, (-30oC, 25ns), strip [Casse 2004]p-MCZ Si, 300 m, (-30oC, s), pad [Bruzzi 2006]n-epi Si, 150 m, (-30oC, 25ns), pad [Kramberger 2006]n-epi Si, 75 m, (-30oC, 25ns), pad [Kramberger 2006]sCVD-Diamond, 770m, (RT, s), [RD42 2006] (preliminary data, scaled)pCVD-Diamond, 500m, (RT, s), strip, [RD42 2002-2006] (scaled)SiC, n-type, 55 m, (RT, 2.5s), pad [Moscatelli et al. 2006]

[M.Moll 2007]

Michael Moll – Lausanne, 29. January 2007 -52-

RD50 Signal Charge / Threshold Do not forget: The signal has still to be compared to the noise (the threshold)

Michael Moll – Lausanne, 29. January 2007 -53-

RD50 Summary – Radiation Damage

Radiation Damage in Silicon Detectors Change of Depletion Voltage (type inversion, reverse annealing, …)

(can be influenced by defect engineering!) Increase of Leakage Current (same for all silicon materials) Increase of Charge Trapping (same for all silicon materials)

Signal to Noise ratio is quantity to watch (material + geometry + electronics)

Microscopic defects Good understanding of damage after -irradiation (point defects) Damage after hadron damage still to be better understood (cluster defects)

CERN-RD50 collaboration working on: Material Engineering (Silicon: DOFZ, CZ, EPI, other impurities,. ) (Diamond) Device Engineering (3D and thin detectors, n-in-p, n-in-n, …)

To obtain ultra radiation hard sensors a combination of material and device engineering approaches depending on radiation environment, application and available readout electronics will be best solution

Michael Moll – Lausanne, 29. January 2007 -54-

RD50 Summary – Detectors for SLHC At fluences up to 1015cm-2 (Outer layers of SLHC detector) the change of the depletion

voltage and the large area to be covered by detectors are major problems.

CZ silicon detectors could be a cost-effective radiation hard solution no type inversion (to be confirmed), use cost effective p-in-n technology

oxygenated p-type silicon microstrip detectors show very encouraging results: CCE 6500 e; eq

= 41015 cm-2, 300m

At the fluence of 1016cm-2 (Innermost layers of SLHC detector) the active thickness of any silicon material is significantly reduced due to trapping.

The two most promising options besides regular replacement of sensors are: Thin/EPI detectors : drawback: radiation hard electronics for low signals needed (e.g. 2300e at eq 8x1015cm-2, 50m EPI)

3D detectors : looks very promising, drawback: technology has to be optimized

SiC and GaN have been characterized and abandoned by RD50.

Further information: http://cern.ch/rd50/

Michael Moll – Lausanne, 29. January 2007 -55-

RD50

1014 1015 10160

5000

10000

15000

20000

25000

# el

ectr

ons

1 MeV n fluence [cm-2]

strips

pixels

1014 1015 10160

5000

10000

15000

20000

25000

# el

ectr

ons

Fluence [cm-2]

p FZ Si 280m; 25ns; -30°C [1] p-MCz Si 300m;0.2-2.5s; -30°C [2] n EPI Si 75m; 25ns; -30°C [3] n EPI Si 150m; 25ns; -30°C [3] sCVD Diam 770m; 25ns; +20°C [4] pCVD Diam 300m; 25ns; +20°C [4] n EPI SiC 55m; 2.5s; +20°C [5] 3D FZ Si 235m [6]

[1] G. Casse et al. NIM A (2004)[2] M. Bruzzi et al. STD06, September 2006 [3] G. Kramberger, RD50 Work. Prague 06[4] W: Adam et al. NIM A (2006)[5] F. Moscatelli RD50 Work.CERN 2005[6] C. Da Vià, "Hiroshima" STD06 (charge induced by laser)

Comparison of measured collected charge on different radiation-hard materials and devices

Line to guide the eye for planar devices

160V

M. Bruzzi, Presented at STD6 Hiroshima Conference, Carmel, CA, September 2006

Thick (300m) p-type planar detectors can operate in partial depletion, collected charge higher than 12000e up to 2x1015cm-2.

Most charge at highest fluences collected with 3D detectors

Silicon comparable or even better than diamond in terms of collected charge(BUT: higher leakage current – cooling needed!)

Michael Moll – Lausanne, 29. January 2007 -56-

RD50 Comparison of measured collected charge on different radiation-hard materials and devices