radiative corrections to the standard model s. dawson tasi06, lecture 3

38
Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Upload: yasmin-tungate

Post on 14-Dec-2015

222 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Radiative Corrections to the Standard Model

S. Dawson

TASI06, Lecture 3

Page 2: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Radiative Corrections

• Good References:– Jim Wells, TASI05, hep-ph/0512342– K. Matchev, TASI04, hep-ph/0402031– M. Peskin and T. Takeuchi, Phys. Rev. D46,

(1992) 381– W. Hollik, TASI96, hep-ph/9602380

Page 3: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Basics

• SM is SU(2) x U(1) theory– Two gauge couplings: g and g’

• Higgs potential is V=-22+4

– Two free parameters

• Four free parameters in gauge-Higgs sector– Conventionally chosen to be

• =1/137.0359895(61)• GF =1.16637(1) x 10-5 GeV -2

• MZ=91.1875 0.0021 GeV• MH

– Express everything else in terms of these parameters

22

22

2

1282

WZ

WW

F

MMMM

gG

Page 4: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Example: parameter

• At tree level,

• Many possible definitions of ; use

...1cos22

2

WZ

W

M

M

1CC

NC

G

G

JJG

L CCCC

2

ZZNC

NC JJG

L2

At tree level GCC=GNC=GF

Page 5: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

parameter (#2)

22

)0()0(

Z

ZZ

W

WW

MM

Top quark contributes to W and Z 2-point functions

qq piece of propagator connects to massless fermions, and doesn’t contribute here

Page 6: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Top Corrections to parameter (Example)

• 2-point function of Z

• Shift momentum, k’=k + px

den

Tkdi

c

igNi

n

n

WcZZ

)2()(

42

2

])][([ 2222tt mpkmkden

nde

Tdx

kdi

c

igNi

n

n

WcZZ

1

0

2

2

)2()(

4

2222 ])1([ tmxxpknde

Nc=number of colors

n=4-2 dimensions

Page 7: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Top Corrections to parameter (#2)

)()()( PLPRmpkPLPRmkTrT tttttt

...162

14 2222

02

gmRLLRkT tttttp

•Shift momenta, keep symmetric pieces

•Only need g pieces

2

1 5P

Page 8: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Top Corrections to parameter (#3)

222

22221

0

2 162

14

)2(4)0(

t

ttttt

n

n

WcZZ

mk

mRLLRkdx

kd

c

gNi

22

2

2222

2

)2()1(

)1(4

16)()2( tt

n

n

mm

i

mk

kkd

• Only need answer at p2=0

• Dimensional regularization gives:

)1(4

16)(

1

)2( 2

2

2222

t

n

n

m

i

mk

kd

Page 9: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Top Corrections to parameter (#4)

• 2-point function of W, Z

22

222

2 4

32)0( tt

t

tW

cZZ LR

m

mc

Ng

2

114

32)0( 2

22

2

tt

cWW m

m

Ng

Lt=1-4sW2/3

Rt=-4sW2/3

2

2

222 82

)0()0(

W

tcF

Z

ZZ

W

WW

M

mNG

MM

Page 10: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Top quark doesn’t decouple

• Longitudinal component of W couples to top mass-- eg, tbW coupling:

• Decoupling theorem doesn’t apply to particles which couple to mass

tbM

mig

tM

pb

ig

tbig

W

t

W

W

)1(22

)1(22

)1(22

5

5

5

For longitudinal W’s: W

WL M

p

Page 11: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Why doesn’t the top quark decouple?

• In QED, running of at scale not affected by heavy particles with M >>

• Decoupling theorem: diagrams with heavy virtual particles don’t contribute at scales << M if – Couplings don’t grow with M – Gauge theory with heavy quark removed is still

renormalizable• Spontaneously broken SU(2) x U(1) theory violates both

conditions– Longitudinal modes of gauge bosons grow with mass

– Theory without top quark is not renormalizable• Effects from top quark grow with mt

2

Expect mt to have large effect on precision observables

Page 12: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Modification of tree level relations

rMG

WW

F

1

1

sin2 22

r is a physical quantity which incorporates 1-loop corrections

2

2

2

2

W

W

W

W

F

FSM M

M

s

s

G

Gr

Page 13: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Corrections to GF

• GF defined in terms of muon lifetime

• Consider 4-point interaction,with QED corrections

• Gives precise value:

• Angular spectrum of decay electrons tests V-A properties

2

2

2

3

52

701.6810.118

1192

1

m

mmGeF

2510)00001.016637.1( GeVGF

Page 14: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

GF at one loop

BVW

WW

BV

qWWW

W

F

Mv

Mq

iqi

M

gG

22

0

222

2

2

)0(1

2

1

)(182 2

Vertex and box corrections are small

(but 1/ poles don’t cancel without them)

)log(

2

476

4

41 22

2

22

2

2 WW

W

WWWBV c

s

s

sMs

Page 15: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Renormalizing Masses

• Propagator corrections form geometric series

2

02

22

02

)(V

VVV Mp

igpi

Mp

ig

)( 220

2 pMp

ig

VVV

2220, VVV MMM

)(Re 2VVV M

Page 16: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Running of , 1

(0)=1/137.0359895(61) (p2)= (0)[1+]

)()0()( 22 pp

)()( 222 ppp

ppBgppi )()( 22

Page 17: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Running of , 2

]))[((

)()(

)2()()()()(

222222

mpkmk

mpkmkTrkdiiepi

n

n

pk

k+p

2222

2221

0

2

)1(

...)1(12

)2(4

xxpmk

xxpmkn

g

dxkd

en

n

...)1(2

)1(

4)1(

22

21

0

2

gxxxxpm

dxpi

• Photon is massless:(0)=0

Calculate in n=4-2 dimensions

Page 18: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Running of , 3

)1(1log)1(

2)0()(

2

21

0

2 xxm

pxxdxp

2

22

15)0()( 22

m

pp

pm

Contributions of heavy fermions decouple:

2

2

2

22

3

5log

3)0()( 22

p

mO

m

pp

pm

Contributions of light fermions:

Page 19: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Running of , 4

2

2

2

22

3

5log

3)0()( 22

p

mO

m

pp

pm

00036.002761.0)(

)(Re

3)(

24

2

22

m Z

ZZ

hadronic

Mss

sRds

MM

031.0954.128)( 21 ZM

• From leptons: lept(MZ)=0.0315

• Light quarks require at low p2

•Strong interactions not perturbative

•Optical theorem plus dispersion relation:

)(

)()(

*

*

ee

hadronseesR

Page 20: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Have we seen run?

Langacker, Fermilab Academic Series, 2005

Page 21: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Final Ingredient is sW2

• sW is not an independent parameter

122

2

ZW

W

Mc

M

2

2

2

2

2

2

2

2

2

2

2

2

2

2

64 W

tc

W

W

W

W

Z

Z

W

W

W

W

M

mNg

s

c

M

M

M

M

s

c

s

s

Page 22: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Predict MW

• Use on-shell scheme:

r incorporates the 1-loop radiative corrections and is a function of , s, Mh, mt,…

2

22 1sin

Z

WW M

M

r

AM

W

W

1sin0

GeV

GA

F

28.372

0

2

2

2

2

W

W

W

W

F

FSM M

M

s

s

G

Gr

Page 23: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Data prefer light Higgs

• Low Q2 data not included– Doesn’t include atomic parity

violation in cesium, parity violation in Moller scattering, & neutrino-nucleon scattering (NuTeV)

– Higgs fit not sensitive to low Q2

data

• Mh< 207 GeV– 1-side 95% c.l. upper limit,

including direct search limit

Direct search limit from e+e-Zh

Page 24: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Logarithmic sensitivity to Mh

• Data prefer a light Higgs

2006

Page 25: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Understanding Higgs Limit

1118.0

)(085.0

1172

525.0102761.0

)(5098.0

100ln008.0

100ln0579.0364.80

2)5(

2

Zs

tZhad

hhW

M

GeV

MM

GeV

M

GeV

MM

MW(experiment)=80.404 0.030

Page 26: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Light Higgs and Supersymmetry?

• Adding the extra particles of a SUSY model changes the fit, but a light Higgs is still preferred

Page 27: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

How to define sin2W

• At tree level, equivalent expressions

• Can use these as definitions for renormalized sin2W

• They will all be different at the one-loop level

2

22 1sin

Z

WW M

M

WWZ

FM

G

222 cossin2

22

22sin

gg

gW

On-shell

Z-mass

SM

Effective sW(eff)

1

4

1)(2

eA

eV

W g

geffs

Page 28: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

sin2w depends on scale

• Moller scattering, e-e-e-e-

-nucleon scattering• Atomic parity violation

in Cesium

Page 29: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

S,T,U formalism

• Suppose “new physics” contributes primarily to gauge boson 2 point functions– cf r where vertex and box corrections are

small

• Also assume “new physics” is at scale M>>MZ

• Two point functions for , WW, ZZ, Z

Page 30: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

S,T,U, (#2)

• Taylor expand 2-point functions

• Keep first two terms• Remember that QED Ward identity requires

any amplitude involving EM current vanish at q2=0

...)0()0()( 22 ijijij qq

0)0(

Page 31: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

S,T,U (#3)

QQWQWW

Z

QQWQWWW

ZZ

WWW

QQ

ssc

e

sssc

e

s

e

e

23

2

43

23322

2

112

2

2

2

• Use JZ=J3-sW2JQ

Normalization of JZ differs by -1/2 from Lecture 2 here

Page 32: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

S,T,U (#4)• To O(q2), there are 6 coefficients:

• Three combinations of parameters absorbed in , GF, MZ

• In general, 3 independent coefficients which can be extracted from data

...)0()0(

...)0(

...)0()0(

...)0(

332

3333

32

3

112

1111

2

q

q

q

q

QQ

QQQQ

Page 33: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

S,T,U, (#5)

22

2

2

22

2

22

22

)0()(

4

)0()(

4

)0()0(

W

newWW

W

WnewWW

W

Z

newZZ

Z

ZnewZZ

WW

Z

newZZ

W

newWW

MM

MUS

s

MM

MS

cs

MMT

Advantages: Easy to calculate

Valid for many models

Experimentalists can give you model

independent fits

SM contributions in , GF, and MZ

Page 34: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Limits on S & T

• A model with a heavy Higgs requires a source of large (positive) T

• Fit assumes Mh=150 GeV

T

Page 35: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Higgs can be heavy in models with new physics• Specific examples of heavy Higgs bosons in Little Higgs and

Triplet Models• Mh 450-500 GeV allowed with large isospin violation

(T=) and higher dimension operators

We don’t know what the model is which produces the operators which generate large T

Page 36: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Compute S,T, U from Heavy Higgs

0

log12

3

log12

1

20

2

2

20

2

U

M

M

cT

M

MS

h

h

W

h

h

• SM values of S, T, U are defined for a reference Mh0

Page 37: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Using S,T, & U

• Assume new physics only contributes to gauge boson 2-point functions (Oblique corrections)

• Calculate observables in terms of SM contribution and S, T, and U

U

s

scTcSM

sc

cSMMM

W

WWWZ

WW

WWW 2

2222

22

222

42

1)(

Page 38: Radiative Corrections to the Standard Model S. Dawson TASI06, Lecture 3

Conclusion

• Radiative corrections necessary to fit LEP and Tevatron data

• Radiative corrections strongly limit new models