radiative gas dynamics ii - cnrusers.ba.cnr.it/imip/cscpal38/erice/lectures/surzhikov-ii.pdf ·...

131
2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics 1 Radiative Gas Dynamics - II Sergey T. Surzhikov Institute for Problems in Mechanics Russian Academy of Sciences

Upload: others

Post on 04-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

1

Radiative Gas Dynamics - II

Sergey T. SurzhikovInstitute for Problems in Mechanics

Russian Academy of Sciences

Page 2: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

2

Radiative Gas Dynamics

Part ITheoretical basis and general definitions

Part IINumerical simulations of aerospace RGD

applications

Page 3: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

3

Outline

1. MHD/RGD governing equations2. Laser Plasma Aerodynamics3. 3D MHD numerical simulation of Hall plasma thruster

plume4. Safety rescue systems for astronauts and payload5. Non-equilibrium radiation of shock waves6. Entry and Re-Entry hypersonics7. Modern challenging problems of RGD and on-going

efforts

Page 4: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

4

Block-diagram of the Radiative Gas DynamicsRadiative Gas

Dynamics Radiation Heat Transfer

Optical model:Absorption coefficients, emission coefficients, scattering coefficients and scattering indicatrix

Cross-sections of the elementary radiative processes

Thermodynamics and Statistical Physics

Gas Dynamics Chemical Physics Radiative Model

Radiation Transfer Model

Methods for solving RHT

problems

Quantum mechanics and quantum chemistry

Physical kinetics

Page 5: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

5

MHD/RGD: Governing equations

pRM

T= 0 ρ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )4

,,

1, ; ; ,4

em

J s ts s J s t

s

J s t s p s J s t d

νν ν ν

ν ν νπ

∂κ σ

σ νπ ′

′Ω =

+ + =⎡ ⎤⎣ ⎦

′ ′ ′= + Ω∫

ΩΩ

Ω Ω Ω

,,

, ,

0divt

∂ρ ρ∂

+ =V

( ) ( ) [ ]0

1ediv grad p

t τ∂ρ ρ ρ ρ∂ µ

+ ⋅ = − − × + + +⎡ ⎤⎣ ⎦V V V J B F g E

( ) ( ) ( )

2 2 2

02 2 2m

Rad

ppe div et

div gradT div Aτ

∂ ρρ ρ∂ µ ρ ρ

λ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + + + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎣ ⎦= + + + ⋅ + ⋅

V B VV

W g V J E

Page 6: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

6

Laser Plasma Aerodynamics

Page 7: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

7

Objectives of the Laser Plasma Aerodynamics development

Study of steady-state and unsteady regimes of the Laser Supported Waves (basic physics)Laser supported rockets engines (LSRE, lightcrafts) Technological applications of laser plasma plumesUsing laser sparks and LSW for flow control in different aerophysic applications

Page 8: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

8

Laser impulse duration t>1-5 ms

Physics of the Laser Supported Waves (LSW)

Page 9: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

9

Physics of the Laser Supported Waves (LSW)

Initiation of the first electrons

Heating of electrons in the field of laser radiation

Collisional heating of neutral particles

Diffusion of electrons

Avalanche ionization of atoms and molecules

Thermo-conductive and radiative heating of cold gas

Gas movement

Page 10: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

10

Parameters of the Laser Rocket Engines (LRE) and Laser Supported Plasma Generators (LSPG) are very close to

powerful arc plasma generators !

Physics of the Laser Supported Waves (LSW)

Page 11: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

11

Approaches

• Unsteady Navier-Stokes equations for chemically reacting gases

• Radiation heat transfer equation for spectral, group and integral heat radiation

• Real thermophysic, transport and optical properties of gases (air, hydrogen, CO2+N2, Ar, etc.)

• The temperature region: Т = 300 – 30 000 К• The pressure region: р = 0.0001- 100 atm

Laser Plasma Aerodynamics

Page 12: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

12

Thermophysical properties (Capitelli’s sci. group)

10000 20000 30000Temperature, K

2

4

6

Cp, cal/(g K)

Air, p=1 atm

5000 10000 15000 20000T, K

50

100

150

200

250

Cp, J/(g*K)

H2, p=1 atm

Specific heat at constant pressure

Laser Plasma Aerodynamics

Page 13: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

13

10000 20000 30000Temperature , K

2

4

6

Cp, cal/(g K)

10000 20000 30000Temperature , K

2

4

6

Total thermal conductivity, W/(m*K)

10000 20000 30000Temperature , K

2

4

6

Cp, cal/(g K)

10000 20000 30000Temperature , K

5E-05

0.0001

0.00015

0.0002

0.00025

Vis cos ity coe fficient, kg/(m*s )

Air, p=1 atm

Laser Plasma Aerodynamics

Thermophysical properties (Capitelli’s sci. group)

Page 14: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

14

5000 10000 15000 20000T, K

2

4

6

8

10

12

14

16

18Thermal conductivity, W/(m*K)

H2, p=1 atm

5000 10000 15000 20000T, K

1E-05

2E-05

3E-05

4E-05

5E-05

6E-05

7E-05

8E-05

9E-05

0.0001Viscosity, kg/(m*sec)

Laser Plasma Aerodynamics

Thermophysical properties (Capitelli’s sci. group)

Page 15: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

15

Optical properties: spectral models

50000 100000 150000Wave numbe r 1/cm

10-5

10-4

10-3

10-2

10-1

100

101

102

103T= 6000. KP= 1.000 atmRo=.04436 kg/mN .15787O .32381E- .00020NO .00931N2 .50830O2 .00031N+ .00000O+ .00000N2+ .00000O2+ .00000NO+ .00020

Abs orption coe fficie nt, 1/cm

50000 100000 150000Wave numbe r 1/cm

10 -3

10 -2

10 -1

100

101

102 T=20000. KP= 1.000 atmRo=.00442 kg/mN .01604O .00683E- .49008NO .00000N2 .00000O2 .00000N+ .38168O+ .10537N2+ .00000O2+ .00000NO+ .00000

Abs orption coe fficie nt, 1/cm

Air, p=1 atm

Laser Plasma Aerodynamics

Page 16: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

16

Optical properties: spectral modelsH2, p=1 atm

25000 50000 75000 100000 125000 150000Wavenumber, 1/cm

10-10

10-8

10-6

10-4

10-2

100

Absorption coefficient, 1/cm

T = .200E+04Te = .200E+04P = .100E+01ABp = .555E-10Nom = 10000H2 = .100E+01H = .174E-02

Laser Plasma Aerodynamics

25000 50000 75000 100000 125000 150000Wavenumber, 1/cm

10-3

10-2

10-1

100

101

Absorption coefficient, 1/cm

T = .200E+05Te = .200E+05P = .100E+01ABp = .632E-01Nom = 10000E- = .485E+00H+ = .485E+00H2 = .298E-08H = .428E-01

Page 17: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

17

Optical properties: group models

50000 100000 150000Wave numbe r 1/cm

10-5

10-4

10-3

10-2

10-1

10 0

10 1

T= 6000. KP= 1.000 atmRo=.04436 kg/mN .15787O .32381E- .00020NO .00931N2 .50830O2 .00031N+ .00000O+ .00000N2+ .00000O2+ .00000NO+ .00020

Group abs orption coe fficie nt, 1/cm

50000 100000 150000Wave numbe r 1/cm

10-3

10-2

10-1

T=20000. KP= 1.000 atmRo=.00442 kg/mN .01604O .00683E- .49008NO .00000N2 .00000O2 .00000N+ .38168O+ .10537N2+ .00000O2+ .00000NO+ .00000

Group abs orption coe fficie nt, 1/cm

Air, p=1 atm

Laser Plasma Aerodynamics

Page 18: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

18

Optical properties: group models

50000 100000 150000Wavenumber, 1/cm

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

103

105

T= 2000. KP= .100E+01 atmRo= .120E-01 kg/m3

H .14447E-02E- .10003E-14H2 .99855E+00H+ .10198E-14H2+ .10034E-14H- .10000E-14

Group absorption coefficient, 1/cm

H2, p=1 atm

50000 100000 150000Wavenumber, 1/cm

10-3

10-2

10-1

100 T=20000. KP= .100E+01 atmRo= .310E-03 kg/m3

H .34608E-01E- .48447E+00H2 .54179E-08H+ .48092E+00H2+ .32272E-06H- .35571E-06

Group absorption coefficient, 1/cm

Laser Plasma Aerodynamics

Page 19: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

19

Radiative gas dynamic model of theLSPG (the laminar flow)

( ) 1 ( ) 0u r vt x r r

∂ρ ∂ ρ ∂ ρ∂ ∂ ∂

+ + =

43

u u u p uut x r x x x

∂ ∂ ∂ ∂ ∂ ∂ρ µ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞+ + = − + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

v

1 1 23

u rr rr r r r r x r x r∂ ∂ ∂ ∂ ∂ ∂µ µ µ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v v

put x r r

∂ ∂ ∂ ∂ρ∂ ∂ ∂ ∂

⎛ ⎞+ + = − +⎜ ⎟⎝ ⎠

v v vv

2

4 23

u rx r x x r r r r∂ ∂ ∂ ∂ ∂ ∂ µµ µ µ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v v v

2 1 2 1 2 1 ( )3 3 3 2

u u rrr r x r r r x r∂ ∂ ∂µ µ ∂ ∂µ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞− − + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

v v

Laser Plasma Aerodynamics

Page 20: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

20

Radiative gas dynamic model of theLSPG (the laminar flow)

pT T Tc ut x r

∂ ∂ ∂ρ∂ ∂ ∂

⎛ ⎞+ + =⎜ ⎟⎝ ⎠

v1T Tr Q

x x r r r∂ ∂ ∂ ∂λ λ∂ ∂ ∂ ∂ Σ

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

L HRQ Q QΣ = −

2

2 2expLL

b b

P rQR Rωµπ

⎛ ⎞= −⎜ ⎟

⎝ ⎠( , 0)L

LP x r Px ω

∂µ

∂= − =

,1

( )gN

HR g b g g gg

Q U Uκ ω=

= − ∆∑ ,1( ) ( )

3 g g b g gg

div gradU U Uκκ

= − − g=1,2,…,Ng

Laser Plasma Aerodynamics

Page 21: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

21

Laser Supported Plasma Generator

,0)(1)(=++

rvr

rxu

t ∂ρ∂

∂ρ∂

∂ρ∂

+−=++xp

ruv

xuu

tu

∂∂

∂∂

∂∂

∂∂ρ )( ++ )(1)(

34

rur

rrxu

x effeff ∂∂µ

∂∂

∂∂µ

∂∂

),(132)(1

rrv

xrxvr

rr effeff ∂∂µ

∂∂

∂∂µ

∂∂

+−=++rp

rvv

xvu

tv

∂∂

∂∂

∂∂

∂∂ρ )( ++ )()(

xv

xru

x effeff ∂∂µ

∂∂

∂∂µ

∂∂

−− 22)(134

r

vrvr

rreff

effµ

∂∂µ

∂∂

+−−r

vrx

urrr

effeff ∂

∂µ∂∂µ

∂∂ 1

32)(1

32 ),)(

21(

32

rrv

xu

reff

∂∂

∂∂µ

+

+=++ )()(xT

xrTv

xTu

tTc effp ∂

∂λ∂∂

∂∂

∂∂

∂∂ρ ,)(1

Σ+ QrTr

rr eff ∂∂λ

∂∂

Radiative gas dynamic model of the LSPG (the turbulent flow)

Page 22: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

22

HRL QQQ −=Σ , )exp( 2

2

2LL

LRr

RPQ −=

πµω , ,)0,( Prx

xP

=−= ωµ∂∂

),()3

1( ,)( ,,1

kkbkkk

kkkb

N

kk UUgradUdivUUQ

k−−=∆−= ∑

κωκ

,)()]([1 ρε∂∂

σµρ

∂∂

∂∂

σµρ

∂∂

∂∂ρ

−=−+−+ Pxkkv

xrkkur

rrtk

k

t

k

t

+−+ )]([1r

vrrrt

t∂∂ε

σµ

ρε∂∂

∂∂ρε

ε kCPC

xu

xt ερε∂∂ε

σµρε

∂∂

ε)()( 21 −=−

⎭⎬⎫

⎩⎨⎧ ++−

⎭⎬⎫

⎩⎨⎧ ++++= ]1[

32)(])()()[(2 2222

rru

rxvk

rv

xu

ru

xv

ruP tt ∂

∂∂∂µρ

∂∂

∂∂

∂∂

∂∂µ

,2 ⎟⎠⎞

⎜⎝⎛ +−

xp

xrp

rt

∂∂

∂∂ρ

∂∂

∂∂ρ

ρλ

tpttt ckC Pr/,/2 µλερµ µ ==

Laser Supported Plasma Generator

Radiative gas dynamic model of the LSPG (the turbulent flow)

Page 23: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

23

Temperature distribution inside cylindrical chamber of hydrogen LSPG at Uo=40 m/s, P=100 kWatt

X, cm0 2 4 6 8 100

0.5

1

1.5

2

T: 1.89E+03 3.29E+03 4.68E+03 6.08E+03 7.47E+03 8.86E+03 1.03E+04 1.17E+04 1.30E+04 1.44E+04 1.58E+04 1.72E+04 1.86E+04 2.00E+04 2.14E+04

R, cm

Laser Supported Plasma Generator

Page 24: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

24

Laser Supported Plasma Generator

Investigation of the laser plasma flows:

• Prediction of exit plasma flows• Instabilities of the plasmadynamic configurations• The instabilities supression

Page 25: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

25

Plasma instabilities in LSPG at Uo=30 m/s, P=100 kWatt

Air

Laser Supported Plasma Generator

Page 26: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

26

Prediction of Radiative Heating of Internal Surfaces of Hydrogen and Air Laser

Supported Plasma Generators

Laser Supported Plasma Generator

Page 27: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

27

Motivation:• Plasma temperature achieves T~20,000 K• There is a high-temperature tail of the plasma behind

LSW front at presence of internal gas flow. • Prediction of radiative heating of LSPG internal surfaces.

X, cm0 2 4 6 8 100

0.5

1

1.5

2

T: 1.89E+03 3.29E+03 4.68E+03 6.08E+03 7.47E+03 8.86E+03 1.03E+04 1.17E+04 1.30E+04 1.44E+04 1.58E+04 1.72E+04 1.86E+04 2.00E+04 2.14E+04

R, cm

Laser Supported Plasma Generator

Page 28: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

28

X, cm0 2 4 6 8 100

0.5

1

1.5

2

T: 1.89E+03 3.29E+03 4.68E+03 6.08E+03 7.47E+03 8.86E+03 1.03E+04 1.17E+04 1.30E+04 1.44E+04 1.58E+04 1.72E+04 1.86E+04 2.00E+04 2.14E+04

R, cm

Temperature distribution in LSPG at Uo=20 m/s, P=100 kWatt

Hydrogen

Laser Supported Plasma Generator

Page 29: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

29

X, cm0 2 4 6 8 100

0.5

1

1.5

2

T: 1.89E+03 3.29E+03 4.68E+03 6.08E+03 7.47E+03 8.86E+03 1.03E+04 1.17E+04 1.30E+04 1.44E+04 1.58E+04 1.72E+04 1.86E+04 2.00E+04 2.14E+04

R, cm

Temperature distribution in LSPG at Uo=30 m/s, P=100 kWatt

Hydrogen

Laser Supported Plasma Generator

Page 30: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

30

X, cm0 2 4 6 8 100

0.5

1

1.5

2

T: 1.89E+03 3.29E+03 4.68E+03 6.08E+03 7.47E+03 8.86E+03 1.03E+04 1.17E+04 1.30E+04 1.44E+04 1.58E+04 1.72E+04 1.86E+04 2.00E+04 2.14E+04

R, cm

Temperature distribution in LSPG at Uo=50 m/s, P=100 kWatt

Hydrogen

Laser Supported Plasma Generator

Page 31: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

31

X, cm0 2 4 6 8 100

0.5

1

1.5

2

T: 1.89E+03 3.29E+03 4.68E+03 6.08E+03 7.47E+03 8.86E+03 1.03E+04 1.17E+04 1.30E+04 1.44E+04 1.58E+04 1.72E+04 1.86E+04 2.00E+04 2.14E+04

R, cm

Temperature distribution in LSPG at Uo=60 m/s, P=100 kWatt

Hydrogen

Laser Supported Plasma Generator

Page 32: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

32

X, cm0 2 4 6 8 100

0.5

1

1.5

2

T: 1.89E+03 3.29E+03 4.68E+03 6.08E+03 7.47E+03 8.86E+03 1.03E+04 1.17E+04 1.30E+04 1.44E+04 1.58E+04 1.72E+04 1.86E+04 2.00E+04 2.14E+04

R, cm

Temperature distribution in LSPG at Uo=70 m/s, P=100 kWatt

Hydrogen

Laser Supported Plasma Generator

Page 33: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

33

Temperature distribution in LSPG at Uo=30 m/s, P=100 kWatt

Air; Laminar flow

x, cm0 5 1000.30.60.91.2

T: 1.93E+03 3.35E+03 4.78E+03 6.20E+03 7.63E+03 9.06E+03 1.05E+04 1.19E+04 1.33E+04 1.48E+04 1.62E+04 1.76E+04 1.90E+04 2.05E+04 2.19E+04

r, cm

Laser Supported Plasma Generator

Page 34: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

34

Temperature distribution in LSPG at Uo=30 m/s, P=100 kWatt

Air; Turbulent flow

x, cm0 5 1000.30.60.91.2

T: 1.93E+03 3.35E+03 4.78E+03 6.20E+03 7.63E+03 9.06E+03 1.05E+04 1.19E+04 1.33E+04 1.48E+04 1.62E+04 1.76E+04 1.90E+04 2.05E+04 2.19E+04

r, cm

Laser Supported Plasma Generator

Page 35: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

35

Discrete Ordinates Method (DOM): Radiation heat flux, W/cm**2

Distribution of integral radiation heat flux along internal cylindrical surface of the LSPG, W/cm2, at entrance velocity 30 m/s

Dependence of the radiation heat flux upon on the flow regime (laminar/turbulent)

AirX, cm

2 4 6 8 100

200

400

600

Turbulent flow, Uo=30 m/sLaminar flow, Uo=30 m/s

Integral radiative flux, W/cm2

Laser Supported Plasma Generator

Page 36: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

36

DOM: Radiation heat flux, W/cm**2

X,cm

Flux

onto

pw

all(

r=2

cm),

W/c

m2

0 5 100

100

200

300

400

500

600

700

800

900

1000

20 m/s30 m/s40 m/s50 m/s60 m/s70 m/s

Wavenumber, 1/cm50000 100000 15000010-4

10-2

100

102

104

106

Radiation flux distribution along cylindrical surface for different entrance velocities (DOM: S12)

Group Radiation flux distribution , Watt/cm2, at x=3 cm on the cylindrical surface

Hydrogen

Laser Supported Plasma Generator

Page 37: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

37

Laser Plasma Aerodynamics

Laser Supported Waves in Free Space

Page 38: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

38

Laser Plasma Aerodynamics

Laser Supported Waves in Free Space

Page 39: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

39

Laser Plasma Aerodynamics

Laser Plumes: Laser Impulse Interaction with Material

Page 40: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

40

Laser Plasma Aerodynamics

Laser Plumes: Schematic of the problem and numerical simulation

Page 41: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

41

Laser Plasma Aerodynamics

Laser Plumes: Schematic of the problem and numerical simulation

Page 42: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

42

Laser Supported Waves as the Late Stage of Laser Impulse/Material Interaction

Laser Plasma Aerodynamics

Page 43: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

43

Laser Plasma AerodynamicsR Laser beam =0.1 cm, P = 15 kW

Page 44: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

44

Laser Plasma AerodynamicsR Laser beam =0.5 cm, P = 25 kW

Page 45: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

45

Laser Plasma AerodynamicsR Laser beam =0.5 cm, P = 25 kW

Page 46: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

46

Laser Plasma AerodynamicsR Laser beam =1.0 cm, P = 60 kW

Page 47: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

47

Laser Plasma AerodynamicsR Laser beam =1.0 cm, P = 60 kW

Page 48: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

48

3D MHD of Plume of the Hall Plasma Thrusters at Ionospheric Conditions

Page 49: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

49

Problem statement

• Prediction of plasmadynamic and electro-dynamic characteristics of the Hall Plasma Thruster (HPT) or Pulsed Plasma Thruster (PPT) plumes

• Analysis of the possibility to use MGD codes (ideal and non-ideal) for describing interaction of the HPT/PPT plasma plumes with partially ionized rarefied atmosphere

• Creation 3D MGD/CFD codes as alternative for PIC/DSMC codes

Page 50: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

50

The governing equations

t∂∂ Σ+∇⋅ =U F Q

t x y z∂ ∂ ∂ ∂∂ ∂ ∂ ∂

+ + + =U f g h Q

Eu NS MGD VMGDΣ = + + +F F F F F i j kΣ = + +F f g h

Eu NS MGD VMGD= + + +f f f f f

Eu NS MGD VMGD= + + +g g g g g

Eu NS MGD VMGD= + + +h h h h h

Page 51: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

51

Initial conditions

9 3 4* *2.0 10 / , 4.49 10kg m p Paρ − −= ⋅ = ⋅

5 00 ^5 10 , 30B YB T α−= ⋅ =

inf

0inf 6.0 / , 30VW km s ϑ= − =

7 325 / , 2.0 10 / ,

20 , 0.03plume plume

plume exit

W km s kg m

p Pa R m

ρ −= − = ⋅

= =

6 , 70HPT simulationT s T sµ µ= =

Page 52: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

52

3D plasma plume: Numerical simulation results: t=3 µs

Page 53: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

53

3D plasma plume: Numerical simulation results: t=10 µs

Page 54: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

54

3D plasma plume: Numerical simulation results: t=20 µs

Page 55: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

55

3D plasma plume: Numerical simulation results: t=30 µs

Page 56: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

56

3D plasma plume: Numerical simulation results: t=40 µs

Page 57: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

57

3D plasma plume: Numerical simulation results: t=50 µs

Page 58: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

58

3D plasma plume: Numerical simulation results: t=60 µs

Page 59: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

59

3D plasma plume: Numerical simulation results: t=3 µs

Page 60: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

60

3D plasma plume: Numerical simulation results: t=20 µs

Page 61: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

61

3D plasma plume: Numerical simulation results: t=40 µs

Page 62: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

62

3D plasma plume: Numerical simulation results: t=60 µs

Page 63: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

63

3D Plasma plumes: Conclusions

• At distances ~0.5 m from HPT its plasma plume begins to interact with ambient ionospheric flow and frozen magnetic field

• High efficiency of the 3D code based on the splitting method is illustrated: Calculation time < 1.0 hour (Pentium-IV, f=3.2 GHz, mesh 100x100x100)

Page 64: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

64

Safety rescue systems for astronauts and payload

Radiative Gad Dynamics for Aerospace Applications

Page 65: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

65

Fireball generated at Challenger Fireball generated at Challenger catastrophe, January 1986catastrophe, January 1986

Numerical simulation of fireballs generated at probable explosions:

ARIANE-V, Zenith, Proton, Aurora

Safety rescue systems for astronauts and payload

Page 66: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

66

0 1000 2000 3000R, m

0

1000

2000

3000

P1.7661.7121.6581.6041.5501.4961.4421.3881.3341.2801.2261.1721.1181.0641.0100.9560.9020.8480.7940.7400.6860.6320.5780.5240.470

X, m

0 1000 2000 3000R, m

0

1000

2000

3000

X, m

ShockShock--wave structure at ARIANEwave structure at ARIANE--V explosion at altitudeV explosion at altitude 55 55 ккmmand at flight velocity V=2 and at flight velocity V=2 ккm/sm/s

Safety rescue systems for astronauts and payload

Page 67: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

67

PROTONPROTONRadiative Fireball above Radiative Fireball above launch padlaunch padFireball dynamics Fireball dynamics without without RHTRHT

Safety rescue systems for astronauts and payload

Page 68: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

68

PROTONPROTONRadiative Fireball above Radiative Fireball above launch padlaunch padFireball: Fireball: fullfull RGD modelRGD model

Safety rescue systems for astronauts and payload

Page 69: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

69

Safety rescue systems for astronauts and payload

PROTONPROTONRadiative Fireball above Radiative Fireball above launch padlaunch padFireball: Fireball: volume emission volume emission modelmodel (no (no reabsorbtionreabsorbtion))

Page 70: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

70

Numerical simulations of aerospace RGD applications

Non-equilibrium radiation of shock waves for entry and re-entry velocities

Page 71: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

71

Motivation• Creation of closed hierarchy theory of non-equilibrium

kinetic processes behind shock waves

• Prediction of real shock waves (air, CO2-N2) at velocities V=3-12 km/s and pressures ~0.1-1000 torr

• Comparison of numerical simulations (spectral radiation emissivity !) with experimental data and calculations of other authors

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 72: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

72

Physical-chemical processes included in the developed model

• Chemical reactions (thermal dissociation, neutral exchange reactions)

• Reactions involving charged particles (dissociative recombination reactions, associative ionization, electron-impact ionization, charge-exchange reactions, ion-molecule reactions)

• Excitation of CO2, N2, CO vibration modes during translational-vibrational (VT), and vibrational-vibrational (VV) energy exchange

• Nonequilibrium dissociation • Nonequilibrium radiation

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 73: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

73

Gas dynamic model:

0 0u uρ ρ= , 2 20 0 0p u p uρ ρ+ = + ,

2 20

02 2u uh h+ = + ,

where:

0

1, ,

N

i i i i Ai

R Tp nkT M x m NMρ µ µΣ

= = = =∑ ,

,2 3,0

,,1 exp( ) 1

V iNL Li j

p i i ji ji j

Rh C T x qM

T

θθ

+

= +−

∑ ∑ ,

320

1 1

5 32 2

LL

p l il i

RC x xM= = Σ

⎛ ⎞= + +⎜ ⎟⎝ ⎠

∑ ∑

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 74: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

74

( ) ( ), , , ,1 1 1

+ , 1,2,...,R

ij ijN N N

a bf rkk j k j j i k j k j j i

j i i

dX b a k X a b k X k Ndt = = =

⎡ ⎤= − − =⎢ ⎥

⎣ ⎦∑ ∏ ∏

[ ] [ ], ,1 1

, 1,2, ,fj

rj

kN N

i j i i j i Rki i

a X b X j N= =

⇔ =∑ ∑ …

expnj

Ek A TkT

±± ±±

⎡ ⎤= −⎢ ⎥⎣ ⎦

, ,1000lg j eq j eq jK A B

T= + ,

,i jni

ij w

e j

pK

p p=∏

Model of chemical kinetics

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 75: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

75

m m mmvT vv cv

de Q Q Qdt

= + + ,

10

1 ,

,N

m m m ivT m

im m i

e e xQ ττ τ

=

⎛ ⎞−= = ⎜ ⎟⎜ ⎟

⎝ ⎠∑ , , ,

VNmvv m n m n

nQ k F=∑ ,

( ) ( ), 1 exp 1r qq rn mm n n m m n

m

r q rF e e e eg T T

θ θ⎡ ⎤⎛ ⎞= + − − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦,

, ,( )cn

m n l m n ll

k x k=∑ , ( )1

1 RNm mcv mj m

j ji

dXQ e eX dt=

⎛ ⎞= − ⎜ ⎟⎝ ⎠

∑ ,

,

1

exp 1m

m

v m

e

=⎛ ⎞

−⎜ ⎟⎝ ⎠

Model of vibrational kinetics

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 76: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

76

21 , (50000 / )8 ( )VT V V

t V m

TN kT M

τ τ σ σσ π

′= + =

1/ 3exp ( ) 18.42VT VT VTp A T Bτ −⎡ ⎤= − −⎣ ⎦

1 1/ 3, 1/ 3 2 / 3

1 1, expm n VV VV VV VV VV VVk p A B C D TT T

τ τ− ⎛ ⎞= = + + +⎜ ⎟⎝ ⎠

Model of vibrational kinetics

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 77: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

77

Model of vibrational kinetics

1 /

exp 1 exp 1

m mmj

m m

F F

DeD

T T

θθ

= −⎛ ⎞ ⎛ ⎞

− −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

,

1 1 1 , 3Fm n

T U TT T U

= − − =

( ) ( ) ( )0, ,v vk T T k T Z T T=

( ) ( ) ( )( ) ( )

, Fv

v

Q T Q TZ T T

Q T Q U=

−, ( ) ( )

( )01 exp

1 expD T

Q TT

αα

αθ− −

=− −

, , , ;v F vT T T T U T Tα = − <

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 78: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

78

The electronic energy conservation model: 3

32

erg cm= ,sec

e e e e

ei ea ai ion ev

d duT n u T ndz dz

Q Q Q Q Q

⎛ ⎞ + =⎜ ⎟⎝ ⎠

⋅+ + + +

203 21,21 10 lne

ei e ie

T TQ X XT−

= ⋅ Λ

( )1

103,378 10 1 1 eea e a e e

a

TQ X X T T TT

⎡ ⎤⎛ ⎞⎢ ⎥= ⋅ − − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

( )1 1q q

q q

f rai q q a b e q q e a b

q qQ T k X X T k X Xα β +

= =

= −∑ ∑N, N O, O C, Cf f f

ion e e e e e eQ Tk X X Tk X X Tk X Xγ δ θ= − − −

16V , 1,0,V2 10ev e e V

VQ n n Pω−= ⋅ ⋅∑

, ,

2 2

,

1,44 1,44exp exp

1,44 1,441 exp 1 exp

e V e V

e v

e V e

e v

T T

T T

ω ω

ω ω

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪− −⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⋅ −⎨ ⎬⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪− − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎪ ⎪

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 79: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

79

Model of spectral radiation emissivity

10 ' "6

' "3.202 10 exp ( ')eel v v

eelv vvr v v

N S hcj E vQ B kTλ λ

− ⎡ ⎤= ⋅ − ⋅⎢ ⎥∆ ⎣ ⎦

∑∑

'' " 'exp ( )v

v v vr v

hc B BkT B

ω ω⎡ ⎤

⋅ − − +⎢ ⎥∆⎣ ⎦, W/(cm3⋅µm⋅sr)

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 80: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

80

Validation of the model

• Comparative analysis of calculated spectral radiation intensities with experimental data and theoretical predictions of other authors

– G.Thomas and W.Menard (AIAA Journal, 1966, Vol.4, No.2) – Calculations of C.Park, J.Howe, R.Jaffe, and G.Candler (J. of

Thermophysics and Heat Transfer, 1994, Vol.8. No.1)– the Kozlov-Losev-Ponomarenko experiments, Moscow State

University, 1998-1999

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 81: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

81

0.4 0.6 0.8W avelength, micron

10-1

100

101

102

103

104J, W /(cm**2*micron*sr)

Non-equilibrium radiation behind the shock wave for the Thomas-Menard experiments: p0=0.25 torr and Us=7620 m/s (9%CO2-90%N2-1%Ar). The radiative-collisional model for excited electronic levels is presumed. Comparison of the calculations (solid line)with the experimental data (diamonds)

0 .4 0 .6 0 .8W avelength, m icron

1 0 -2

1 0 -1

1 0 0

1 0 1

1 0 2

1 0 3

1 0 4J, W /(cm **2 *m icron*sr)

Non-equilibrium radiation behind the shock wave for the Thomas-Menard experiments: p0=0.25 torr and Us=7620 m/s(9%CO2-90%N2-1%Ar). The Boltzmann distribution of excited electronic levels is presumed.

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 82: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

82

0.4 0 .6 0.8W avelength, micron

10 -1

100

101

102

103

104J, W /(cm**2*micron*sr)

Non-equilibrium radiation behind the shock wave for the Thomas-Menardexperiments: p0=0.25 torr and Us=7620 m/s (30%CO2-70%N2). Theradiative-collisional model for excited electronic levels is presumed.Comparison of the calculations (solid line) with the experimental data(diamonds)

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 83: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

83

10-8 10-6 10-4 10-2 100

X, cm

103

104

TT(CO21)T(CO22)T(CO23)T(CO)T(N2)Te

Temperature, K

Temperature distributions behind the shock wave for the Thomas-Menardexperiments: p0=0.25 torr and Us=7620 m/s (30%CO2-70%N2). Theradiative-collisional model for excited electronic levels is presumed

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 84: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

84

0.2 0 .4 0 .6 0 .8W avelength, micron

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3J, W /(cm**2*micron*sr)

0.2 0.4 0.6 0.8W avelength, micron

10-3

10-2

10-1

100

101

102

103J, W /(cm**2*micron*sr)

Non-equilibrium radiation behind the shock wave for conditions of the Kozlov-Losev-Romanenko experiments:

p0=0.5 torr and Us=3750 m/s (4.8%CO2-0.15%N2-95.05%Ar).

The Boltzmann distribution of excited electronic levels is presumed.

The radiative-collisional model for excited electronic levels is presumed.

Comparison of the present calculations (solid line) with the experimental data (dotted line)

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 85: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

85

Resume (CO2+N2):

1. Two models of excitation of the electronic energy levels of diatomic molecules have been studied for conditions of the Thomas-Menard experiments, the Kozlov-Losev_Ponomarenko experiments, and for the Park-Howe-Jaffe-Candler calculations. The first model presumes the Boltzmann distribution of the excited levels, and the second one demands integration of equations of the radiative-collisional kinetic model.

2. Comparison of the present calculations with experimental and theoretical data permits to make a conclusion about acceptability of the model for prediction of the non-equilibrium radiation for spacecraft entering the Martian atmosphere at velocities between 3÷8 km/s. However, there is a need to develop and validate such theoretical models in comparisons with new experimental data.

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 86: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

86

Air:

V=12 km/s

H=70 km

10-4 10-3 10-2 10-1 100 101 102

X, cm10-10

10-8

10-6

10-4

10-2

100

NOE-N2O2NON2+O2+NO+N+O+

p /pi a

10-4 10-3 10-2 10-1 100 101 102

X, cm107

109

1011

1013

1015

1017

NOE-N2O2NON2+O2+NO+N+O+

n , 1/cm**3 b

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 87: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

87

Air:

V=12 km/s

H=70 km

10-4 10-3 10-2 10-1 100 101 102

X, cm102

103

104

105

TTv(N2)Tv(O2)Te

eTemperatures

10-4 10-3 10-2 10-1 100 101 102

X, cm

10-3

10-2

10-1

100

101

102 e-Ve-Ione-Atome-Ass/IonIonizationLaser

Heating of the electronic gasc

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 88: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

88

Air:

V=12 km/s

H=70 km

10-4 10-3 10-2 10-1 100 101 102

X, cm

10-3

10-2

10-1

100

101

102

e-Ve-Ione-Atome-Ass/IonIonizationLaser

Energy Losses

dT0 = .217D+03P0 = .520D+02U0 = .120D+07Ro0 = .839D-07H0 = .217D+10TEMPE = .217D+03Plaser = .100D+01-------------------------T1 = .703D+05P1 = .101D+06U1 = .201D+06Ro1 = .502D-06H1 = .702D+12

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 89: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

89

All test data and preliminary calculations show that the local thermodynamic equilibrium (LTE) is not realized in spatial zone (~3 cm) behind shock wave at shock wave velocity more than 9 km/s and P1=0.05-0.2 torr .

This effect should be studied and taken into account at determination of the ionization and radiation characteristics ofsuper-orbital shock layer.

Resume (air)

Prediction of Nonequilibrium Radiation From CO2-N2 and Air Shock Waves

Page 90: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

90

Numerical simulations of aerospace RGD applications

Entry and Re-Entry Hypersonics

Page 91: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

91

Radiative Gas Dynamics Radiation Heat Transfer

Optical model:Absorption coefficients, emission coefficients, scattering coefficients and scattering indicatrix

Cross-sections of the elementary radiative processes

Thermodynamics and Statistical Physics

Gas Dynamics Chemical Physics Radiative Model

Radiation Transfer Model

Methods for solving RHT

problems

Quantum mechanics and quantum chemistry

Physical kinetics

Entry and Re-Entry Hypersonics

Page 92: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

92

Code Verification

CFD codes Chemical kinetics

Physical kinetics

RHT codes

Opticalmodels

LTEapproach

Non LTEapproach

Grids &Calc. Domains

Laminar &Turbulent

1D, 2D, 3D problems

Data BaseOf

Chem. React. Velocities

Gas Phase

Surface Kinetics

Thermo destructionkinetics

Vibrational & Electronic

Kinetics

TransportProperties

Averaged on Rotational Structure Spectrum

Line-by-line models

Entry and Re-Entry Hypersonics

Page 93: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

93

General objective: Verification of gasdynamic, kinetic, radiative models for space vehicle aerothermodynamics

prediction

Model of Mars Sampler Return Orbiter (MSRO), postulated as the base model for TC3

Entry and Re-Entry Hypersonics

Page 94: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

94

TC3: MSRO Trajectory parameters

No. Time,s

Density, g/cm3

Pressure, erg/cm3

Velocity, m/s

Temperature,K

1 70 3.14·10-8 8.4 5687 140

2 115 2.93·10-7 78.7 5223 140

3 175 3.07·10-7 82.3 3998 140

4 270 2.82·10-7 7.6 3536 140

Entry and Re-Entry Hypersonics

Page 95: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

95

t x y∂ ∂ ∂

+ + =∂ ∂ ∂U E F G

1

2

...

N

uve

ρρρρρρ

ρ

=U1 1,

2 2,

,

( )

...

xx

xy

x

x

x

N N x

uuu pv

pu e q

u Ju J

u J

ρρ τρ τ

ρρ

ρρ

ρ

+ ++

+ +=

+

+

+

E

1 1,

2 2,

,

( )

...

yx

yy

y

y

y

N N y

vvu

vv p

pv e q

v J

v J

v J

ρρ τ

ρ τ

ρρ

ρ

ρ

ρ

+

+ +

+ +=

+

+

+

F1

2

000

...

N

Qϖϖ

ϖ

Σ=G

RadQ Q pdiv QαΣ = Φ + − +VN

i ii

q gradT hλ= − +∑ J , 1,2,...,i i iD grad i Nρ= − =J

Governing equations

Entry and Re-Entry Hypersonics

Page 96: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

96

0

, ,0

T

i p i iT

h c dT h= +∫0

, ,0

T

i v i iT

e c dT e= +∫N

i ii

p pe h hYρ ρ

= − = −∑

( )2 2 2 2

2223

v u v u v divr x r r x

µ⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Φ = + + + + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

V

223xx

u divx

τ µ µ∂= −

∂V

223yy

v divy

τ µ µ∂= −

∂V xy

u vy x

τ µ⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠

, ,, , , ,

1 1

( ') [ ] [ ]j l j lN N

i i i l i l f l j r l jl j j

M k X k Xν νϖ ν ν ′ ′′

= =

⎛ ⎞′′ ′= − −⎜ ⎟

⎝ ⎠∑ ∏ ∏ [ ]j j

j

X YMρ

= iiY ρ

ρ=

Rad RadQ div= W

Governing equations

Entry and Re-Entry Hypersonics

Page 97: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

97

( )grad div grad gradp pT pc c T T pt t

ρ ρ λ∂ ∂+ = + + +

∂ ∂V V

( ),1

grad gradsN

vib p i i ii

Q c D Y Tµ ρ=

+Φ + + ⋅∑1

divsN

R i ii

hϖ=

− −∑q

2 2 2

2 2 2r r xµ µ

⎡ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞Φ = + +⎢ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢⎣

v v u 2 223

u ux r x r r

⎤∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − + + ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎥⎦

v v v

Governing equations: Energy conservation equation

Entry and Re-Entry Hypersonics

Page 98: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

98

div div , 1, 2, ,ii i i si N

ρ ϖ∂

+ = − + =∂

V J …

( ),, ,div , 1, 2, ,mm m V

ee e m N

ρ∂

+ = =∂

V …vv v

( ) ( ) ( ) ( ),

,J

J jωω ω ωκ

∂+ =

∂r

r r rrΩ

Ω Ω

0, ,

, ( ) , ( )m m

m i m m i mm

e ee e wρ

τ−

= −v vv v ( )

0 ( ),

( ) ,exp 1m i m

mi m m V m

Re

M T

θ ρ

θ=

⎡ ⎤−⎣ ⎦v

( ) ( )4

d , dtot

R R Jωπ ω∆

= = Ω Ω∫ ∫q q z r Ω Ω

Governing equations

Entry and Re-Entry Hypersonics

Page 99: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

99

, ,1 1

, 1, 2, , ,s sN N

j n j j n j rj j

a X b X n N= =

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦∑ ∑ …

( ) ,, , ,

1

dd

ci n

Nj a

j f n j n j n jin

XW k b a X

t =

⎛ ⎞= = − −⎜ ⎟⎝ ⎠

∏( ) ,

, , , , ,1

ci n

Nb

r n j n j n i f j r ji

k a b X S S=

− − = −∏

( ), ( ),( ), ( ), expf r nn f r n

f r n f r nE

k A TkT

⎛ ⎞= −⎜ ⎟

⎝ ⎠

, ,n f n r nK k k=

Governing equations

Entry and Re-Entry Hypersonics

Page 100: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

100

Chemical Kinetics

Thermodynamic and transport properties

Radiation Heat Transfer (RHT)

Spectral Optical Properties Physical Kinetics

Radiative Gas Dynamics

Databases

Databases

DatabasesDatabases

Entry and Re-Entry Hypersonics

Page 101: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

101

Numerical simulation methods

• Time relaxation method• Flux-corrected methods for the Navier-Stokes equations • Implicit method with using SOR on lines for mass

conservation equations (for chemical species) • Implicit method with using SOR on lines for energy

conservation equation• P1-approximation of the spherical harmonics method

(SHM) for radiation heat transfer equation• Discreet Ordination Methods for radiation heat transfer

equation• Ray-tracing method was used for prediction of radiation

heating of MSRO surface• Monte-Carlo method was used for calculation of spectral

signature of MSRO

Entry and Re-Entry Hypersonics

Page 102: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

102

Validation of the RGD/CFD Model

z, cm

r,cm

0 1 2 3 4 5 6 7 8 9 10 11 120

1

2

3

4

5

6

7

8

9Vx

9.67E-019.32E-018.98E-018.63E-018.29E-017.94E-017.60E-017.25E-016.91E-016.56E-016.22E-015.87E-015.53E-015.18E-014.84E-014.49E-014.15E-013.80E-013.46E-013.11E-012.77E-012.42E-012.08E-011.73E-011.39E-011.04E-016.97E-023.52E-026.69E-04

-3.38E-02

Reduced model of Pathfinder studied in experiments, and numerically predicted flowfield.

Hollis B.R., and Perkins J.N., High-Enthalpy Aero-thermodynamics of a Mars Entry Vehicle. Part 2: Experimental Results, Journal of Spacecraft and Rockets, Vol.34, No.4, pp.449-456, 1997

Entry and Re-Entry Hypersonics

Page 103: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

103

Validation of the RGD/CFD Model

Hollis B.R., and Perkins J.N., High-Enthalpy Aero-thermodynamics of a Mars Entry Vehicle. Part 2: Experimental Results, Journal of Spacecraft and Rockets, Vol.34, No.4, pp.449-456, 1997

S/Rb

Qw

,W/c

m2

0 0.5 10

100

200

300

400

500

600

700

800

900

1000

Measured and numerically predicted (solid line) convective

heat flux

Entry and Re-Entry Hypersonics

Page 104: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

104

Validation of the RGD/CFD Model

Pathfinder:t=66 s

Numerically predicted flowfield

z, cm

r,cm

0 100 200 300 400 500 600 7000

100

200

300Vx

9.25E-018.70E-018.15E-017.60E-017.05E-016.50E-015.95E-015.40E-014.85E-014.30E-013.75E-013.20E-012.65E-012.10E-011.55E-011.00E-014.55E-02

-9.50E-03-6.45E-02-1.20E-01

Entry and Re-Entry Hypersonics

Page 105: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

105

Validation of the RGD/CFD Model

Milos F.S. and Chen Y.-K., et.al. Mars Pathfinder Entry Temperature Data,

Aerothermal Heating, and Heatshield Material Response, Journal of Spacecraft and Rockets.

Vol.36, No.3, 1999

Paterna D., Monti R., et.al. Experimental and Numerical Investigation of

Martian Atmosphere Entry, Journal of Spacecraftand Rockets. Vol.39, No.2, 2002

S, cm

Qw

,W/c

m**

2

0 25 50 75 1000

25

50

75

100

125

150

Present computation - Fully CatalyticPaterna et al. - Fully CatalyticMilos et al. - Fully CatalyticMilos et al. - Non CatalyticPaterna et al. - Non CatalyticPresent computation - Non Catalytic

Comparison of numerical results on convective heat

fluxes along the Mars Pathfinder forebody at

t = 66 s

Entry and Re-Entry Hypersonics

Page 106: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

106

Initial grid: MSRO

Z, cm

R,c

m

0 100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

Entry and Re-Entry Hypersonics

Page 107: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

107

Intermediate grid: MSRO

z, cm

r,cm

0 100 200 300 400 500 600 700 800 900 10000

200

400

600

Entry and Re-Entry Hypersonics

Page 108: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

108

Final grid: MSRO

z, cm

r,cm

0 100 200 300 400 500 600 700 800 900 10000

200

400

600

Entry and Re-Entry Hypersonics

Page 109: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

109

Numerical simulation results: MSRO, Point No.1

z, cm

r,cm

0 100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800 T7.00E+036.80E+036.61E+036.41E+036.21E+036.01E+035.82E+035.62E+035.42E+035.23E+035.03E+034.83E+034.64E+034.44E+034.24E+034.04E+033.85E+033.65E+033.45E+033.26E+033.06E+032.86E+032.66E+032.47E+032.27E+032.07E+031.88E+031.68E+031.48E+031.29E+031.09E+038.91E+026.94E+024.97E+023.00E+02

Temperature distribution. Trajectory point No.1.Pseudo-catalytic surface

z, cmr,

cm0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800 Pres1.00E+008.73E-017.63E-016.66E-015.82E-015.08E-014.44E-013.87E-013.38E-012.96E-012.58E-012.25E-011.97E-011.72E-011.50E-011.31E-011.15E-011.00E-018.73E-027.63E-026.66E-025.82E-025.08E-024.44E-023.87E-023.38E-022.96E-022.58E-022.25E-021.97E-021.72E-021.50E-021.31E-021.15E-021.00E-02

Pressure distribution. Trajectory point No.1.Pseudo-catalytic surface

Entry and Re-Entry Hypersonics

Page 110: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

110

Numerical simulation results: MSRO, Point No.2

Temperature distribution. Trajectory point No.2. Pseudo-catalytic surface

Pressure distribution. Trajectory point No.2. Pseudo-catalytic surface

z, cm

r,cm

0 100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800 T6.83E+036.64E+036.45E+036.26E+036.07E+035.88E+035.68E+035.49E+035.30E+035.11E+034.92E+034.73E+034.54E+034.35E+034.15E+033.96E+033.77E+033.58E+033.39E+033.20E+033.01E+032.82E+032.62E+032.43E+032.24E+032.05E+031.86E+031.67E+031.48E+031.29E+031.09E+039.04E+027.12E+025.21E+023.30E+02

z, cmr,

cm0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800 Pres1.00E+008.73E-017.63E-016.66E-015.82E-015.08E-014.44E-013.87E-013.38E-012.96E-012.58E-012.25E-011.97E-011.72E-011.50E-011.31E-011.15E-011.00E-018.73E-027.63E-026.66E-025.82E-025.08E-024.44E-023.87E-023.38E-022.96E-022.58E-022.25E-021.97E-021.72E-021.50E-021.31E-021.15E-021.00E-02

Entry and Re-Entry Hypersonics

Page 111: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

111

Numerical simulation results: MSRO, Point No.3

Temperature distribution. Trajectory point No.3. Pseudo-catalytic surface

Pressure distribution. Trajectory point No.3. Pseudo-catalytic surface

z, cm

r,cm

0 100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800 T4.78E+034.65E+034.52E+034.38E+034.25E+034.12E+033.99E+033.85E+033.72E+033.59E+033.46E+033.32E+033.19E+033.06E+032.92E+032.79E+032.66E+032.53E+032.39E+032.26E+032.13E+032.00E+031.86E+031.73E+031.60E+031.47E+031.33E+031.20E+031.07E+039.35E+028.02E+026.70E+025.37E+024.04E+022.72E+02

z, cmr,

cm0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800 Pres1.00E+008.73E-017.63E-016.66E-015.82E-015.08E-014.44E-013.87E-013.38E-012.96E-012.58E-012.25E-011.97E-011.72E-011.50E-011.31E-011.15E-011.00E-018.73E-027.63E-026.66E-025.82E-025.08E-024.44E-023.87E-023.38E-022.96E-022.58E-022.25E-021.97E-021.72E-021.50E-021.31E-021.15E-021.00E-02

Entry and Re-Entry Hypersonics

Page 112: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

112

Numerical simulation results: MSRO, Point No.4

Temperature distribution. Trajectory point No.4. Pseudo-catalytic surface

Pressure distribution. Trajectory point No.4. Pseudo-catalytic surface

z, cm

r,cm

0 100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800 T4.41E+034.29E+034.16E+034.04E+033.92E+033.80E+033.68E+033.55E+033.43E+033.31E+033.19E+033.06E+032.94E+032.82E+032.70E+032.58E+032.45E+032.33E+032.21E+032.09E+031.97E+031.84E+031.72E+031.60E+031.48E+031.35E+031.23E+031.11E+039.88E+028.66E+027.44E+026.21E+024.99E+023.77E+022.55E+02

z, cm

r,cm

0 100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800 Pres1.00E+008.73E-017.63E-016.66E-015.82E-015.08E-014.44E-013.87E-013.38E-012.96E-012.58E-012.25E-011.97E-011.72E-011.50E-011.31E-011.15E-011.00E-018.73E-027.63E-026.66E-025.82E-025.08E-024.44E-023.87E-023.38E-022.96E-022.58E-022.25E-021.97E-021.72E-021.50E-021.31E-021.15E-021.00E-02

Entry and Re-Entry Hypersonics

Page 113: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

113

Mass fraction of species

Non-catalytic surface Pseudo-catalytic surface

Entry and Re-Entry Hypersonics

Page 114: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

114

Numerical simulation results: MSRO, Point No.1, CO2 mass fraction

Non-catalytic surface

z, cm

r,cm

0 250 500 750 10000

100

200

300

400

500

600CO2

9.66E-019.32E-018.99E-018.65E-018.31E-017.97E-017.63E-017.30E-016.96E-016.62E-016.28E-015.94E-015.61E-015.27E-014.93E-014.59E-014.25E-013.91E-013.58E-013.24E-012.90E-012.56E-012.22E-011.89E-011.55E-01

Mass fraction of CO2. Trajectory point No.1. Non-catalytic surface

z, cm

r,cm

0 250 500 750 10000

100

200

300

400

500

600CO2

9.73E-019.46E-019.19E-018.92E-018.66E-018.39E-018.12E-017.85E-017.58E-017.31E-017.04E-016.77E-016.50E-016.24E-015.97E-015.70E-015.43E-015.16E-014.89E-014.62E-014.35E-014.08E-013.82E-013.55E-013.28E-01

Mass fraction of CO2. Trajectory point No.1. Pseudo-catalytic surface

Entry and Re-Entry Hypersonics

Page 115: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

115

Numerical simulation results: MSRO, Point No.2, CO2 mass fraction

Non-catalytic surface

Mass fraction of CO2. Trajectory point No.2. Non-catalytic surface

Mass fraction of CO2. Trajectory point No.2. Pseudo-catalytic surface

z, cm

r,cm

0 250 500 750 10000

100

200

300

400

500

600CO2

9.66E-019.32E-018.98E-018.64E-018.30E-017.96E-017.62E-017.28E-016.94E-016.60E-016.26E-015.93E-015.59E-015.25E-014.91E-014.57E-014.23E-013.89E-013.55E-013.21E-012.87E-012.53E-012.19E-011.85E-011.51E-01

z, cm

r,cm

0 250 500 750 10000

100

200

300

400

500

600CO2

9.72E-019.44E-019.16E-018.87E-018.59E-018.31E-018.03E-017.75E-017.47E-017.19E-016.91E-016.62E-016.34E-016.06E-015.78E-015.50E-015.22E-014.94E-014.66E-014.37E-014.09E-013.81E-013.53E-013.25E-012.97E-01

Entry and Re-Entry Hypersonics

Page 116: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

116

Numerical simulation results: MSRO, Point No.3, CO2 mass fraction

Non-catalytic surface

Mass fraction of CO2. Trajectory point No.3. Non-catalytic surface

Mass fraction of CO2. Trajectory point No.3. Pseudo-catalytic surface

z, cm

r,cm

0 250 500 750 10000

100

200

300

400

500

600CO2

9.71E-019.42E-019.13E-018.84E-018.56E-018.27E-017.98E-017.69E-017.40E-017.11E-016.82E-016.53E-016.25E-015.96E-015.67E-015.38E-015.09E-014.80E-014.51E-014.22E-013.94E-013.65E-013.36E-013.07E-012.78E-01

z, cm

r,cm

0 250 500 750 10000

100

200

300

400

500

600CO2

9.88E-019.75E-019.63E-019.50E-019.38E-019.26E-019.13E-019.01E-018.88E-018.76E-018.64E-018.51E-018.39E-018.26E-018.14E-018.02E-017.89E-017.77E-017.64E-017.52E-017.40E-017.27E-017.15E-017.02E-016.90E-01

Entry and Re-Entry Hypersonics

Page 117: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

117

Numerical simulation results: MSRO, Point No.4, CO2 mass fraction

Non-catalytic surface

Mass fraction of CO2. Trajectory point No.4. Non-catalytic surface

Mass fraction of CO2. Trajectory point No.4. Pseudo-catalytic surface

z, cm

r,cm

0 250 500 750 10000

100

200

300

400

500

600CO2

9.78E-019.56E-019.34E-019.13E-018.91E-018.69E-018.47E-018.25E-018.03E-017.82E-017.60E-017.38E-017.16E-016.94E-016.72E-016.51E-016.29E-016.07E-015.85E-015.63E-015.41E-015.19E-014.98E-014.76E-014.54E-01

z, cm

r,cm

0 250 500 750 10000

100

200

300

400

500

600CO2

9.94E-019.88E-019.82E-019.75E-019.69E-019.63E-019.57E-019.51E-019.45E-019.38E-019.32E-019.26E-019.20E-019.14E-019.08E-019.02E-018.95E-018.89E-018.83E-018.77E-018.71E-018.65E-018.58E-018.52E-018.46E-01

Entry and Re-Entry Hypersonics

Page 118: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

118

Numerical simulation results: convective heating

S, cm

Qw

,W/c

m**

2

0 100 200 300 40010-3

10-2

10-1

100

101

102

Convective heat flux along the MSRO surface for the 2nd trajectory point (non-catalytic surface); the

first mixture

S, cm

Qw

,W/c

m**

2

0 100 200 300 40010-3

10-2

10-1

100

101

102

Convective heat flux along the MSRO surface for the 2nd trajectory point (pseudo-catalytic surface); the first mixture

Entry and Re-Entry Hypersonics

X, cm

Y,c

m

0 50 100 150 2000

20

40

60

80

100

120

140

160

180

1

2

3

4

5

Page 119: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

119

Numerical simulation results: radiative heating

Point number

Qra

d,W

/cm

2

20 40 60 80 100 120 140 1600

0.5

1

1.5

2

2.5

3

1234

Point numberQ

rad,

W/c

m2

20 40 60 80 100 120 140 1600

0.5

1

1.5

2

2.5

3

1234

Total radiation flux on the MSRO surface. Trajectory point No.1-4. Non-catalytic (left) and pseudo-catalytic (right) surface.

Ng=91, Nm=100, Nθ=91, Nϕ=100

Entry and Re-Entry Hypersonics

Page 120: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

120

Numerical simulation results: MSRO Group radiation fluxes

Pseudo-catalytic surface

Wavenumber, 1/cm103 104 10510-7

10-6

10-5

10-4

10-3

10-2

12345

Spectral radiation flux, W*cm/cm**2

1: R1surf= 0.114E+02 Z1surf= 0.107E+022: R2surf= 0.235E+02 Z2surf= 0.128E+023: R3surf= 0.452E+02 Z3surf= 0.208E+024: R4surf= 0.122E+03 Z4surf= 0.647E+025: R5surf= 0.569E+01 Z5surf= 0.201E+03

Spectral radiation fluxes at some points of the MSRO surface. Trajectory point No.1. Pseudo-catalytic surface. Ng=91, Nm=100

Wavenumber, 1/cm103 104 10510-7

10-6

10-5

10-4

10-3

10-2

12345

Spectral radiation flux, W*cm/cm**2

1: R1surf= 0.114E+02 Z1surf= 0.107E+022: R2surf= 0.235E+02 Z2surf= 0.128E+023: R3surf= 0.452E+02 Z3surf= 0.208E+024: R4surf= 0.122E+03 Z4surf= 0.647E+025: R5surf= 0.569E+01 Z5surf= 0.201E+03

Spectral radiation fluxes at some point on the MSRO surface. Trajectory point No.2. Pseudo-catalytic surface. Ng=91, Nm=100

Entry and Re-Entry Hypersonics

Page 121: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

121

Numerical simulation results: MSRO Group radiation fluxes

Pseudo-catalytic surface

Spectral radiation fluxes at some points of the MSRO surface. Trajectory point No.3. Pseudo-catalytic surface. Ng=91, Nm=100

Spectral radiation fluxes at some point on the MSRO surface. Trajectory point No.4. Pseudo-catalytic surface. Ng=91, Nm=100

Wavenumber, 1/cm103 104 10510-7

10-6

10-5

10-4

10-3

10-2

12345

Spectral radiation flux, W*cm/cm**2

1: R1surf= 0.114E+02 Z1surf= 0.107E+022: R2surf= 0.235E+02 Z2surf= 0.128E+023: R3surf= 0.452E+02 Z3surf= 0.208E+024: R4surf= 0.122E+03 Z4surf= 0.647E+025: R5surf= 0.569E+01 Z5surf= 0.201E+03

Wavenumber, 1/cm103 104 10510-7

10-6

10-5

10-4

10-3

10-2

12345

Spectral radiation flux, W*cm/cm**2

1: R1surf= 0.114E+02 Z1surf= 0.107E+022: R2surf= 0.235E+02 Z2surf= 0.128E+023: R3surf= 0.452E+02 Z3surf= 0.208E+024: R4surf= 0.122E+03 Z4surf= 0.647E+025: R5surf= 0.569E+01 Z5surf= 0.201E+03

Entry and Re-Entry Hypersonics

Page 122: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

122

• Numerical simulation results on radiative heating of a surface of space vehicle MSRO at four trajectory points for opposite assumptions concerning surface catalicity are presented

• It is shown that radiation heat flux to back surface of enteringspace vehicle MSRO reaches value of ~ 1 W/cm2

• The radiation fluxes are formed generally by emissivity of CO2and CO molecules.

Entry and Re-Entry Hypersonics

Page 123: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

123

Aerothermodynamics of re-entry space vehicleH=59 km, V=10.6 km/s

X

Y

0 100 200 3000

100

Entry and Re-Entry Hypersonics

Page 124: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

124

Wavenumber, 1/cm

Spe

ctra

lrad

iatio

nflu

x,W

*cm

/cm

**2

50000 100000 15000010-5

10-4

10-3

10-2

10-1

100

101

500 000 spectral points

Line-by-line calculation of radiating heating:H=59 km, V=10.6 km/s

Entry and Re-Entry Hypersonics

Page 125: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

125

CFD-MODEL VERIFICATION BY DATA OF FLIGHT EXPERIMENT FIRE –II

FIRE II trajectory conditions

Time(sec)

Altitude(km)

Velocity(km/s)

Density(kg/m3)

T∞ (K)

1634 76.42 11.36 3.72 10-5 195

1637.5 67.05 11.25 1.47 10-4 228

1640.5 59.26 10.97 3.86 10-4 254

1643. 53.04 10.48 7.8 10-4 276

1645 48.37 9.83 1.32 10-3 285

Entry and Re-Entry Hypersonics

Page 126: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

126

CFD-MODEL VERIFICATION BY DATA OF FLIGHT EXPERIMENT FIRE –II

6.00 8.00 10.00 12.00Vs,km/s

40.00

50.00

60.00

70.00

80.00

H,k

m

Time(sec)

Altitude(km)

Velocity(km/s)

Density(kg/m3)

T∞(K)

1634 76.42 11.36 3.72 10-5 195

1637.5 67.05 11.25 1.47 10-4 228

1640.5 59.26 10.97 3.86 10-4 254

1643. 53.04 10.48 7.8 10-4 276

1645 48.37 9.83 1.32 10-3 285

The boundary of LTE disturbance on ionization for flight conditions (H-V coordinates).

Entry and Re-Entry Hypersonics

Page 127: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

127

CFD-MODEL VERIFICATION BY DATA OF FLIGHT EXPERIMENT FIRE –II

x, cm

T,K

1 2 3 4 50

5000

10000

15000

20000

25000

Wavenumber, 1/cm

Spe

ctra

labs

orpt

ion

coef

ficie

nt,1

/cm

103 104 10510-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

1

2

Spectral absorption coefficient (with atomic lines) in the point of maximal

temperature (1), and near to surface (2)

Entry and Re-Entry Hypersonics

Page 128: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

128

CFD-MODEL VERIFICATION BY DATA OF FLIGHT EXPERIMENT FIRE –II

x, cm

T,K

1 2 3 4 50

5000

10000

15000

20000

25000

Wavenumber, 1/cm

Spe

ctra

lrad

iatio

nhe

atflu

x,W

cm/c

m**

2

103 104 10510-4

10-3

10-2

10-1

100

101

Spectral radiation flux (with radiation of atomic lines) incident upon the streamlined surface

Entry and Re-Entry Hypersonics

Page 129: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

129

On-going efforts

• Development of numerical simulation methods for radiation heat transfer problems for 3D curvilinear geometry

• Development of quantum-mechanics and quasi-classical models for prediction of radiative properties of hot gases in non-equilibrium conditions

• Development of quantum-mechanics models for calculation parameters of atomic lines

• Development of RGDSV-2 model for prediction of radiative and convective heating of space vehicles at different assumptions concerning catalytic and ablative properties of SV heat protection material

• Further verification of all calculation data (TC1, TC2, TC3,TC4)

Entry and Re-Entry Hypersonics

Page 130: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

130

Acknowledgments

The author thanks my friends and colleagues M. Capitelliand D.Giordano for invitation to take part in thelecture course and for many useful discussions

Page 131: Radiative Gas Dynamics II - CNRusers.ba.cnr.it/imip/cscpal38/Erice/LECTURES/Surzhikov-II.pdf · Radiative Gas Dynamics -II Sergey T. Surzhikov Institute for Problems in Mechanics

2 August 2005 41st Course: Molecular Physics and Plasma in Hypersonics

131

Radiative Gas Dynamics

Part ITheoretical basis and general definitions

Part IINumerical simulations of aerospace RGD

applications