randomization and repeatability in time-lapse marine ... · source position (m) recording time (s)...

40
University of British Columbia SLIM Haneet Wason, Felix Oghenekohwo, and Felix J. Herrmann Randomization and repeatability in time-lapse marine acquisition Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2014 SLIM group @ The University of British Columbia.

Upload: others

Post on 31-May-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

University  of  British  ColumbiaSLIM

Haneet  Wason,  Felix  Oghenekohwo,  and  Felix  J.  Herrmann

Randomization and repeatability in time-lapse marine acquisition

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).Copyright (c) 2014 SLIM group @ The University of British Columbia.

Page 2: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

conventional jittered recovered `1

(no overlap)

t  (s)

x  (m)

periodic–sparse–no overlap

aperiodiccompressedoverlappingirregular

periodic & dense

Randomized sampling in marine [SEG 2013]

Page 3: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Motivation

What  are  the  implications  of  randomization  in  time-­‐lapse  seismic?

Page 4: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Motivation

Should  we  repeat  in  randomized  marine  acquisition?

What  are  the  implications  of  randomization  in  time-­‐lapse  seismic?

Page 5: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Disclaimer

Assumptions:‣ you  are  a  believer  in  randomized  acquisition  &  sparse  recovery‣ seismic  data  &  time-­‐lapse  signal  both  permit  sparse  representations‣ there  are  no  calibration  errors  but  there  can  be  additive  noise‣ degree  of  repetition  refers  to  percentage  of  a  survey  that  is  repeated  exactly

All  observations  are  based  on  synthetic  ocean  bottom  data...

Page 6: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Time-lapse seismic

Current  acquisition  paradigm:‣ repeat  expensive  dense  acquisitions  &  “independent”  processing‣ compute  differences  between  baseline  &  monitor  survey(s)‣ hampered  by  practical  challenges  to  ensure  repetition

Felix Oghenekohwo, Ernie Esser, and Felix J. Herrmann, “Time-lapse seismic without repetition: reaping the benefits from randomized sampling and joint recovery”, in EAGE Annual Conference Proceedings, 2014.Haneet Wason, and Felix J. Herrmann, “Time-jittered ocean bottom seismic acquisition”, in SEG Technical Program Expanded Abstracts, 2013, p. 1-6.Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann, “Randomized marine acquisition with compressive sampling matrices”, Geophysical Prospecting, vol. 60, p. 648-662, 2012

Page 7: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Time-lapse seismic

Current  acquisition  paradigm:‣ repeat  expensive  dense  acquisitions  &  “independent”  processing‣ compute  differences  between  baseline  &  monitor  survey(s)‣ hampered  by  practical  challenges  to  ensure  repetition

New  compressive  sampling  paradigm:‣ cheap  subsampled  acquisition,  e.g.  via  time-­‐jittered  marine  subsampling‣ may  offer  possibility  to  relax  insistence  on  repeatability‣ exploits  insights  from  distributed  compressed  sensing

Felix Oghenekohwo, Ernie Esser, and Felix J. Herrmann, “Time-lapse seismic without repetition: reaping the benefits from randomized sampling and joint recovery”, in EAGE Annual Conference Proceedings, 2014.Haneet Wason, and Felix J. Herrmann, “Time-jittered ocean bottom seismic acquisition”, in SEG Technical Program Expanded Abstracts, 2013, p. 1-6.Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann, “Randomized marine acquisition with compressive sampling matrices”, Geophysical Prospecting, vol. 60, p. 648-662, 2012

Page 8: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Compressed sensing paradigm

Find  representations  that  reveal  structure‣ transform-­‐domain  sparsity  (e.g.,  Fourier,  curvelets,  etc.)

Sample  to  break  the  structure‣ randomized  acquisition  (e.g.,  jittered  sampling,  time  dithering,  encoding,  etc.)‣ destroy  sparsity

Recover  structure  by  promoting‣ sparsity  via  one-­‐norm  minimization

Felix J. Herrmann, Michael P. Friedlander, and Ozgur Yilmaz, “Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology”, Signal Processing Magazine, IEEE, vol. 29, p. 88-100, 2012Felix J. Herrmann, “Randomized sampling and sparsity: Getting more information from fewer samples”, Geophysics, vol. 75, p. WB173-WB187, 2010

Page 9: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Baseline Monitor 4-D signal

time samples: 512receivers: 100sources: 100

samplingtime: 4.0 msreceiver: 12.5 msource: 12.5 m

Source position (m)Ti

me

(s)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Time-lapse data

[10 X]

Page 10: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Sparse structure via curveletssignificant correlation between the vintages

Page 11: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Key  idea:‣ use  the  fact  that  different  vintages  share  common  information‣ invert  for  common  components  &  differences  w.r.t.  the  common  components  with  sparse  recovery

Distributed compressed sensing– joint recovery model (JRM)

common  component

differences

vintages

x2 = z0 + z2

Az }| {A1 A1 0A2 0 A2

�zz }| {2

4z0z1z2

3

5=

bz }| {b1

b2

�x1 = z0 + z1

baseline

monitor

Dror Baron, Marco F. Duarte, Shriram Sarvotham, Michael B. Wakin, Richard G. Baraniuk, “An Information-Theoretic Approach to Distributed Compressed Sensing” (2005)

Page 12: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

z1

z0

z2

x1

x2

x1 - x2

baseline

monitor

time-­‐lapse

common  component

“difference”

“difference”

} vintages

Sparse Joint Recovery Model (JRM)

Page 13: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

z1

z0

z2

x1

x2

x1 - x2

baseline

monitor

time-­‐lapse

common  component

“difference”

“difference”

} vintages

Sparse baseline, monitor & time-lapse signals

Page 14: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Time-lapse – w/ & w/o repetition

In  an  ideal  world‣ JRM  simplifies  to  recovering  the  difference  from‣ expect  good  recovery  when  difference  is  sparse‣ but  relies  on  “exact”  repeatability...

In  the  real  world  ‣ no  absolute  control  on  surveys‣ calibration  errors‣ noise...

Question:  To  repeat  or  not  to  repeat?

(A1 = A2)(b2 � b1) = A1(x2 � x1)

(A1 6= A2)

Page 15: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Context

Acquire  randomized  subsamplings  for  the  baseline  and  monitor  surveys  

Aim:  recovery  of  both  vintages  &  time-­‐lapse  signal  from  incomplete  data

Questions:

‣ Process/recover  independently  or  jointly  to  exploit  common  features  of  surveys?‣ Should  we  repeat  the  surveys  when  doing  randomized  subsampling?

Page 16: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Stylized experiments

Page 17: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Stylized experiments!

Conduct*many*CS*experiments*to*compare*‣ joint*vs*parallel.recovery*of*signals*and*the*difference*‣ recovery*with*completely*independent**‣ random*acquisition*with*different*numbers*of*samples**

A1, A2

n n

N N

A1 A2n = 10

b1 = A1x1 b2 = A2x2

same,  partially  or  completely  independent  matrices

run  2000  different  experiments  &  compute  probability  of  recovery

Page 18: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

z1

z0

z2

x1

x2

x1 - x2

baseline

monitor

time-­‐lapse

common  component

“difference”

“difference”

} vintages

Sparse signals

Page 19: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Vintages 4-D signal

Independent vs. joint recovery – 100% & 0% overlap in acquisition matrices

100% => “exact” repeatability(difficult to achieve in practice)

IRS  (100%)JRM  (100%)IRS  (0%)JRM  (0%)

IRS  (100%)JRM  (100%)IRS  (0%)JRM  (0%)

Page 20: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Joint recovery – varying % of overlap in acquisition matrices

Vintages 4-D signal

Page 21: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Observations

Stylized  synthetics  give  fundamental  insights  when  recovering  signals  in  4-­‐D  seismicThe  Joint  Recovery  Model  (JRM)  always  gives  superior  results  ‣ exploits  shared  information  between  the  vintages

Aim:  recovery  of  both  vintages  &  time-­‐lapse  signal  from  incomplete  data

Question:Process/recover  independently  or  jointly  to  exploit  common  features  of  surveys?‣ processing  jointly  leads  to  improved  recovery  of  both  vintages  &  time-­‐lapse  signal

Page 22: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Time-jittered marine acquisition

Synthetic seismic case study

Page 23: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Method‣ Velocity  and  density  model  provided  by  BG  Group,  taken  as  baseline

‣ High  permeability  zone  identified  at  a  depth  of  ~  1300m

‣ Fluid  substitution  (gas/oil  replaced  with  brine)  simulated  to  derive  monitor  velocity  model

‣ Wavefield  simulation  to  generate  synthetic  time-­‐lapse  data

‣ scales  to  11733300  x  114882048

x (m)

z (m

)

baseline

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

x (m)

z (m

)

monitor

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

Velocity (m/s)

1500 2000 2500 3000 3500 4000 4500 5000

Baseline Model Monitor Model

x (m)

z (m

)

baseline

1400 1600 1800 2000 2200

1200

1300

1400

x (m)

z (m

)

monitor

1400 1600 1800 2000 2200

1200

1300

1400

x (m)

z (m

)

4D (difference)

1400 1600 1800 2000 2200

1200

1300

1400−200

0

200

Page 24: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Simulated time-lapse data– time-domain finite differences

Baseline Monitor 4-D signal

time samples: 512receivers: 100sources: 100

samplingtime: 4.0 msreceiver: 12.5 msource: 12.5 m

Source position (m)Ti

me

(s)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Page 25: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Time-jittered marine acquisition

continuous  recording  START

continuous  recording  STOP

irregularly  sampled  spatial  grid

Page 26: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

200 400 600 800 1000 1200

50

100

150

200

250

300

350

400

450

Source position (m)

Rec

ordi

ng ti

me

(s)

Array 1Array 2

200 400 600 800 1000 1200

50

100

150

200

250

300

350

400

450

500

Source position (m)

Rec

ordi

ng ti

me

(s)

Array 1Array 2

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800

900

Source position (m)

Rec

ordi

ng ti

me

(s)

Array 1Array 2

Conventional vs. time-jittered sources– subsampling ratio = 2, 2 source arrays

jittered acquisition 1(baseline)conventional

jittered acquisition 2(monitor)

“unblended” shot gathersnumber of shots = 100 (per array)shot record length: 10.0 sspatial sampling: 12.5 mvessel speed: 1.25 m/srecording time = 100 x 10.0 = 1000.0 s

“blended” shot gathersnumber of shots = 100/2 = 50 (25 per array)spatial sampling: 50.0 m (jittered)vessel speed: 2.50 m/srecording time ≈ 1000.0 s/2 = 500.0 s

[BLENDING & SUBSAMPLING]spatial subsampling factor = 2

spatial sampling increase factor = 2[DEBLENDING & INTERPOLATION]

Page 27: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Measurements– subsampled and blended

Receiver position (m)

Rec

ordi

ng ti

me

(s)

0 500 1000

70

80

90

100

110

120

Receiver position (m)R

ecor

ding

tim

e (s

)

0 500 1000

70

80

90

100

110

120

Baseline Monitor

Page 28: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Monitor recovery – 100% overlap in acquisition matrices

IRS[11.6 dB]

IRS residual

JRM residual

JRM[12.1 dB]

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Page 29: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Monitor recovery – 50% overlap in acquisition matrices

IRS[11.0 dB]

IRS residual

JRM residual

JRM[15.8 dB]

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Page 30: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Monitor recovery – 25% overlap in acquisition matrices

IRS[10.3 dB]

IRS residual

JRM residual

JRM[18.4 dB]

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Page 31: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Original

4-D recovery – 100% overlap in acquisition matrices

IRS[10.2 dB]

JRM[12.5 dB]

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

[colormap scale: 10 X]

Page 32: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

4-D recovery – 50% overlap in acquisition matrices

Original IRS[-16.0 dB]

JRM[3.0 dB]

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

[colormap scale: 10 X]

Page 33: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

4-D recovery – 25% overlap in acquisition matrices

Original IRS[-18.5 dB]

JRM[-2.1 dB]

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

Source position (m)

Tim

e (s

)

0 250 500 750 1000

0.5

1

1.5

2

[colormap scale: 10 X]

Page 34: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Stacked sections

Baseline 4-D signal[10 X]

CMP (km)

Tim

e (s

)

1 1.5 2 2.5 3

0.5

1

1.5

2

CMP (km)

Tim

e (s

)

1 1.5 2 2.5 3

0.5

1

1.5

2

Page 35: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Stacked sections– 100% overlap in acquisition matrices

CMP (km)

Tim

e (s

)

1 1.5 2 2.5 3

0.5

1

1.5

2

CMP (km)

Tim

e (s

)

1 1.5 2 2.5 3

0.5

1

1.5

2

IRS JRM[23.6 dB][25.2 dB]

Page 36: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Stacked sections– 50% overlap in acquisition matrices

CMP (km)

Tim

e (s

)

1 1.5 2 2.5 3

0.5

1

1.5

2

CMP (km)

Tim

e (s

)

1 1.5 2 2.5 3

0.5

1

1.5

2

IRS JRM[17.1 dB][9.7 dB]

Page 37: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Stacked sections– 25% overlap in acquisition matrices

IRS JRM[16.0 dB][9.5 dB]

CMP (km)

Tim

e (s

)

1 1.5 2 2.5 3

0.5

1

1.5

2

CMP (km)

Tim

e (s

)

1 1.5 2 2.5 3

0.5

1

1.5

2

Page 38: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

overlap baselinebaseline monitormonitor 4-D signal4-D signal

IRS JRM IRS JRM IRS JRM

100% 25.6 ± 1.2 23.9 ± 1.0 25.7 ± 1.1 24.0 ± 1.0 25.0 ± 0.9 23.4 ± 0.8

50% 25.6 ± 1.2 30.9 ± 1.3 24.3 ± 0.9 30.6 ± 1.4 10.1 ± 1.4 18.1 ± 0.9

25% 25.6 ± 1.2 34.4 ± 0.9 23.5 ± 1.3 33.6 ± 0.8 8.5 ± 1.3 15.9 ± 0.7

SNR (dB)– average of 5 experiments

Page 39: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Observations

Stylized  synthetics  give  fundamental  insights  when  recovering  signals  in  4-­‐D  seismicSeismic  synthetics  show  that  we  do  not  necessarily  have  to  insist  on  full  repetition  depending  on  the  recovery  of  the  vintagesApproach  is  trivially  extendable  to  multiple  vintages  &  image  space*

Questions:Process/recover  independently  or  jointly  to  exploit  common  features  of  surveys?✓ processing  jointly  leads  to  improved  recovery  of  both  vintages  &  time-­‐lapse  signal

Should  we  repeat  the  surveys  when  doing  randomized  subsampling?✓ no,  as  long  as  one  samples  sufficiently  to  recover  both  vintages  jointly✓ yes,  if  recovery  of  vintages  fails  and  one  has  a  high  degree  of  repetition  then  the  only  hope  is  to  

recover  the  difference,  not  recommended

[*Felix  Oghenekowho,  “Randomized  sampling  without  repetition  in  time-­‐lapse  seismic  surveys”.  Wednesday  08:55  AM,  Room:  4EF]

Page 40: Randomization and repeatability in time-lapse marine ... · Source position (m) Recording time (s) Array 1 Array 2 200 400 600 800 1000 1200 50 100 150 200 250 300 350 400 450 500

Acknowledgements

This  work  was  in  part  financially  supported  by  the  Natural  Sciences  and  Engineering  Research  Council  of  Canada  Discovery  Grant  (22R81254)  and  the  Collaborative  Research  and  Development  Grant  DNOISE  II  (375142-­‐08).  This  research  was  carried  out  as  part  of  the  SINBAD  II  project  with  support  from  the  following  organizations:  BG  Group,  BGP,  BP,  CGG,  Chevron,  ConocoPhillips,  ION,  Petrobras,  PGS,  Statoil,  Total  SA,  Sub  Salt  Solutions,  WesternGeco,  and  Woodside.

Thank you for your attention!