rd50, cern nov 2009 h. f.-w. sadrozinski, uc santa cruz 1 interstrip characteristics of atlas07...

20
RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt, G. Bredeson, N. Dawson , J. G. Wright, H. F.-W. Sadrozinski Santa Cruz Institute for Particle Physics, Univ. of California Santa Cruz, CA 95064 USA Y. Unno, S. Terada, Y. Ikegami, T. Kohriki Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan K. Hara, H. Hatano, S. Mitsui, M. Yamada University of Tsukuba, Institute of Pure and Applied Sciences, Tsukuba, Ibaraki 305-9751, Japan A. Chilingarov, H. Fox 1

Upload: lionel-wilkerson

Post on 12-Jan-2016

216 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz1

Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors

S. Lindgren, C. Betancourt, G. Bredeson, N. Dawson , J. G. Wright, H. F.-W. SadrozinskiSanta Cruz Institute for Particle Physics, Univ. of California Santa Cruz, CA 95064 USA

Y. Unno, S. Terada, Y. Ikegami, T. Kohriki Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan

K. Hara, H. Hatano, S. Mitsui, M. YamadaUniversity of Tsukuba, Institute of Pure and Applied Sciences, Tsukuba, Ibaraki 305-9751, Japan

A. Chilingarov, H. FoxPhysics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom

1

Page 2: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz2

Need to start Large-Scale Production: HPK

2

• What are the operational characteristics of irradiated n-on-p FZ detectors?– Can adequate strip isolation

be achieved after irradiation?– Does it depend on specific

surface treatment? (p-spray, p-stop)

– Do detectors with better strip isolation have lower breakdown?

– Are complicated punch-through structures needed for adequate punch-through protection?

Silicon Detectors for the High Luminosity Upgrade

• Signal collection requires- High voltage operation

• Higher rate of particles requires- higher segmentation of detecting electrodes-acceptable data transfer rate

• N-strips in P-bulk wafer (n-in-p)- always depleting from strip side- lower cost- collecting electrons

Page 3: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz3

3

History of ATLAS07 Submissions @ HPK

X1: p-stop, p-spray+p-stop

Weak spots identified Mask modification

X2 ~

with modified mask

X3many doping

densities

S2p-stop, p-spray

90 wafers

S1p-stop, 30 wafers

Page 4: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz4

4

n-in-p Sensor

• Past Japanese studies– 4 inch (100 mm) wafers

• FZ<111> (~6k Ωcm)• MCZ<100> (~900 Ωcm)

– 6 inch (150 mm) wafers• FZ1<100>(~6.7k Ωcm)• FZ2<100>(~6.2k Ωcm)• MCZ<100>(~2.3k Ωcm)

– FZ, MCZ available at HPK

• ATLAS07 submission– 6 inch (150 mm) wafers

• FZ1<100>(~6.7k Ωcm)• (FZ2<100>(~6.2k Ωcm)

• Miniature sensors – 1cm x 1cm

• Irradiation studies

• Full size prototype sensors for Stave program– 9.75 cm x 9.75 cm

• 4 segments: two "axial" and two "stereo" (inclined) strips

• Short strips

Page 5: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz5

5

24 n-in-p Miniature Sensors

• Radiation damage study– Strip Isolation (Zone1, Zone2, Zone3)

• Structure: p-stop, p-spray, p-stop+p-spray• Density: 1x, 2x, 4x, 10x1012 ions/cm2, ...

– "Punch-through Protection" structures (Zone4)– Narrow metal effect (Zone5)– Wide pitch effect (Zone6)

Page 6: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz6

6

Evaluations• Irradiations

– 70 MeV protons at CYRIC (Tohoku Univ., Japan)– Reactor neutrons at Ljubljana (Slovenia)

• Measurements– Full-size sensors (see J. Bohm’s talk)

• C-V, i-V, single-strip measurements– Onset of Microdischarge

• I-V• Hot electron

– Charge collection efficiency (CCE) (a few slides by A. Affolder)• 90Sr beta ray

– Surface:• Interstrip resistance• Interstrip capacitance

– Punch-through Protection• Dynamic resistance with a constant bias voltage to the backplane

Interstrip resistance

Page 7: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz77

• Using the detectors DC-pads• The setup purpose is to measure the current in the test strip due to the applied voltage on the neighbors using a parameter analyzer. Measurement was done at different bias voltages.• Data taken is plotted as test current against the neighbor voltage

y = -3.55E-06x + 5.82E-08

y = -2.45E-06x + 7.16E-08

y = -1.64E-06x + 9.88E-08

y = -1.07E-06x + 1.33E-07

y = -3.33E-07x + 1.45E-07

-4.00E-06

-3.00E-06

-2.00E-06

-1.00E-06

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

-1.5 -1 -0.5 0 0.5 1 1.5

Curr

ent(

A)

Voltage (V)

I1 vs V2

5 volts

20 volts

50 volts

100 volts

300 volts

Interstrip Resistance Measurements

21int

2

dvdiR

Page 8: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz8

Interstrip Resistance Results

8

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1.0E+13

0 50 100 150 200 250 300

Res

ista

nce

(Oh

ms)

Bias Voltage (V)

Interstrip Resistance for Detectors from the 3rd Series

W46-BZ3-P1 (PRE RAD)

W46-BZ3-P1 (POST RAD)

W44-BZ2-P2 (POST RAD)

W40-BZ2-P2 (PRE RAD)

W40-BZ2-P2 (POST RAD)

W40-BZ3-P1 (PRE RAD)

W40-BZ3-P1 (POST RAD)

W33-BZ3-P1 (PRE RAD)

W33-BZ3-P1 (POST RAD)

W23-BZ3-P15 (PRE RAD)

W23-BZ3-P15 (POST RAD)

W02-BZ2-P2 (PRE RAD)

W02-BZ2-P2 (POST RAD)

W02-BZ4B-P10 (PRE-RAD)

W02-BZ4B-P10 (POST-RAD)

W02-BZ5-P11 (PRE-RAD)

W02-BZ5-P11 (POST-RAD)

Pre-rad

Total p-dose = 4*1012 cm-2

Total p-dose = 2*1012 cm-2

Total p-dose = 1*1012 cm-2

Φ = 1.14e13 neq

y = 1.43E+06e1.90E-12x

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

0 2E+12 4E+12 6E+12

Rin

t (O

hm

s)

Total P-Dose (1/cm^2)

Rint

Fit

(1/cm2)

Rin

t(Ω

)

1012

1011

109

108

107

106

2x1012 4x1012 6x1012

1010

Φ = 1e13 neq

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1.0E+13

1.0E+14

0 50 100 150 200 250 300

Res

ista

nce

(oh

ms)

Bias Voltage (V)

(filled = pre-rad, open squares = 1e12 neq , open diamonds = 1e13 neq)

W18-BZ4D-P22 (PRE-RAD)

W18-BZ4D-22 (POST-RAD)

W18-BZ4C-P16 (PRE-RAD)

W18-BZ4C-P16 (POS-RAD)

W18-BZ4B-P10 (PRE-RAD)

W18-BZ4B-P10 (POST-RAD)

W18-BZ4A-P4 (PRE-RAD)

W18-BZ4A-P4 (POST-RAD)

W18-BZ3-P18 (POST-RAD)

W18-BZ3-P15 (POST-RAD)

W18-BZ2-P17 (POST-RAD)

W18-BZ2-P14 (POST-RAD)

W17-BZ4D-P22 (PRE-RAD)

W17-BZ4D-P22 (POST-RAD)

W17-BZ4C-P16 (PRE-RAD)

W17-BZ4C-P16 (POST-RAD)

W17-BZ4B-P10 (PRE-RAD)

W17-BZ4B-P10 (POST-RAD)

W17-BZ4A-P4 (PRE-RAD)

W17-BZ4A-P4 (POST-RAD)

W17-BZ3-P9 (PRE-RAD)

W17-BZ3-P9 (POST-RAD)

W17-BZ3-P13 (PRE-RAD)

W17-BZ3-P13 (POST-RAD)

W17-BZ2-P2 (POST-RAD)

W17-BZ2-P14 (POST-RAD)

Series 1 Total P-Dose = 4*1012 cm-2 p-stop only

• To first order, interstrip resistance depends not on the specific zone, but depends on the total p-dose applied.• Higher total p-dose means better strip isolation after irradiation.• All Series 1 detectors exhibit a good post-rad Rint (>10^8 Ohms) behavior, even after being irradiated with protons up to 1e13 neq

Page 9: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz9

Interstrip Capacitance

9

450

500

550

600

650

700

750

800

0 500 1000

Ca

pa

cit

en

ce

(fF

)

Bias Voltage(V)

Interstrips capacitance for 3rd series (@1MHz)

W46-BZ3-P1(PRE RAD)

W46-BZ3-P1(POST RAD)

W40-BZ3-P1 (PRE RAD)

W40-BZ3-P1 (POST RAD)

W33-BZ3-P1 (PRE RAD)

W23-BZ3-P15 (PRE RAD)

W12-BZ3-P1 (PRE RAD)

W12-BZ3-P1 (POST RAD)

W02-BZ3-P1 (PRE RAD)

• AC pads are used.• 5 probes are used; one on the test strip, one on each neighbor, and two more to ground the next neighbors.

560

580

600

620

640

660

0 200 400 600 800 1000

Ca

pa

cit

en

ce

(fF

)

Bias Voltage(V)

Interstrips capacitance for 3rd series, wafer 1, 2 and 4 (@1MHz)

W02-BZ4B-P10 (POST RAD)

W02-BZ4A-P4 (POST RAD)

W02-BZ2-P2 (POST RAD)

W02-BZ1-P7 (POST RAD)

W02-BZ4C-P10 (POST RAD)

W02-BZ4D-P22 (POST RAD)

W44-BZ2-P2 (POST RAD)

Page 10: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz10

Rint vs. Cint

10

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

500 600 700 800 900

Res

ista

ce (

Ω)

Capacitance (fF)

W46-BZ3-P1W44-BZ2-P2W40-BZ3-P1 W35-BZ1-P19W35-BZ2-P17W35-BZ5-P11W33-BZ3-P1W31-BZ5-P11W25-BZ5-P11W12-BZ3-P1W02-BZ1-P7W02-BZ2-P2W02-BZ4A-P4W02-BZ4B-P10W02-BZ4C-P16W02-BZ4D-P22W1-BZ5-P11W1-BZ2-P17W1-BZ1-P19

Zone 5

Zone 4Φ = 1e13 neq

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1.0E+13

550 650 750

Re

sis

tac

e (Ω

)

Capacitance (fF)

Rint vs. Cint for the 3rd series

W46-BZ3-P1 (PRE RAD)

W46-BZ3-P1 (POST RAD)

W40-BZ3-P1 (PRE RAD)

W40-BZ3-P1 (POST RAD)

W33-BZ3-P1 (PRE RAD)

W33-BZ3-P1 (POST RAD)

W23-BZ3-P15 (PRE RAD)

W23-BZ3-P15 (POST RAD)

W12-BZ3-P1 (PRE RAD)

W12-BZ3-P1 (POST RAD)

W02-BZ3-P1 (PRE RAD)

W02-BZ3-P1 (POST RAD)

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000

Cu

rren

t (µA

)

Bias Voltage (V)

W02-BZ1-P7W02-BZ3-P1W02-BZ4A-P4W02-BZ4B-P10W02-BZ4C-P16W02-BZ4D-P22W02-BZ5-P11W12-BZ3-P1W23-BZ3-P15W33-BZ3-P1W44-BZ2-P2W46-BZ3-P1

Φ = 1e13 neq

• Helpful to make scatter plot between Rint and Cint

• Strip isolation is best in the upper left corner, and worst in the lower right.• Dependence of post-rad Cint on specific zone is seen.• Zone 5 (narrow metal) has the highest Post-rad Cint without providing better breakdown performance.

Page 11: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz11

Punch-Through Protection: (against large strip voltages)

11

Z4A Z4B

Z4C Z4D

• Zone 4 detectors include an additional punch-through structures.• Apply a voltage to DC pad and measure the induced current between DC pad and bias resistor.• The effective resistance is then

• Punch-through resistance is defined as

where Rbias is the resistance of the bias resistor.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-50 -25 0 25 50

Eff

ec

tiv

e R

es

ista

nc

e (M

Ω)

Test Voltage (Volts)

Z3Z4AZ4BZ4CZ4D

Φ = 1.2e13 neq

Total p-dose = 4e12 cm-2

p-stop only

RPT = Rbias

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-50 -40 -30 -20 -10 0

Eff

ecti

ve R

esis

tan

ce (M

Ω)

Test Voltage (Volts)

w42-bz2w42-bz4dw44-bz3w44-bz4dw25-bz3w33-bz3w02-bz3w11-bz4aw11-bz4bw11-bz4cw11-bz4d

1)/1/1( biaseffPT RRR

testtesteff dIdVR /

Page 12: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz12

Punch-Through Voltage

12

0

5

10

15

20

25

30

W42

-BZ

2-P

8

W42

-BZ

4D

-P22

W44

-BZ

3-P

21

W44

-BZ

4d-P

22

W02

-BZ

3-P

6

W11

-BZ

4A

-P4

W11

-BZ

4B

-P10

W11

-BZ

4C

-P16

W11

-BZ

4D-P

22

W25

-BZ

3-P

9

W33

-BZ

3-P

13

PT

Vo

ltag

e (V

olt

s)

Total p-dose = 2e12

Total p-dose = 4e12

Total p-dose = 4e12

Total p-dose = 2e12

Total p-dose = 4e12

p-spray only = p-spray + p-stop = p-stop only =

0

10

20

30

40

50

60

W43-

BZ

3-P

3

W43-

BZ

4A

-P4

W43-

BZ

4B

-P10

W43-

BZ

4C

-P16

W47-

BZ

3-P

9

W47-

BZ

4A

-P4

W47-

BZ

4B

-P10

W16-

BZ

3-P

6

W16-

BZ

4A

-P4

W16-

BZ

4B

-P10

W16-

BZ

4C

-P16

W16-

BZ

4D

-P22

W42-

BZ

3-P

6

W45-

BZ

4A

-P4

W45-

BZ

4B

-P10

W45-

BZ

4C

-P16

W45-

BZ

4D

W46-

BZ

3-P

6

W49-

BZ

4A

-P4

W49-

BZ

4B

-P10

W49-

BZ

4C

-P16

W49-

BZ

4D

-P22

PT

Vo

lta

ge

(Vo

lts

)

Total p-dose = 4e12

Total p-dose = 1e13 Total p-dose

= 1e13

Total p-dose = 2e13

Total p-dose = 2e12

Φ=1.2e13 neq

p-spray only = p-spray + p-stop = p-stop only =

0

2

4

6

8

10

12

14

16

18

20

pre-rad 1.35x1012 1.35x1012 1.18x1015

PT

Vo

ltag

e (V

olt

s)

Zone 3Total p-dose = 4e12 p-stop only

1.35x1012 1.20x1013 1.18x1015

• Punch-through Voltage is defined as the voltage where

• For Pre-rad detectors, the punch-through voltage is dependent on the wafer number (i.e. the total p-dose).• Dependence on the total p-dose is seen after irradiation, higher p-dose means lower PT Voltage.• Zone 3 exhibits similar PT voltage to Zone 4, without the having a complicated PT structure.• Further, Zone 3 shows adequate protection even at high fluences.

biasPT RR

Page 13: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz13

Comments on the Effective Resistance

13

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

-70 -60 -50 -40 -30 -20 -10 0

Eff

ecti

ve R

esis

tan

ce (Ω

)

Test Voltage (Volts)

W18-BZ3-P18 1e13neq

-20deg0deg20deg

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

-70 -60 -50 -40 -30 -20 -10 0

Eff

ecti

ve R

esis

tan

ce (

Ω)

Test Voltage (Volts)

W18-BZ3-P18 1e13neq

-20deg (Differential)

-20deg (Integral)

• Measurements at different temperatures reveal a clear temperature dependence on the effective resistance.• The temperature dependence seems to come mainly from the polysilicon bias resistor.• The value of the punch-through voltage does not depend on the temperature.

• The effective resistance can also be defined by taking the integral form of the equation given earlier.• This would have the advantage of incorporating the total current that can be drained from the strip to the bias rail and providing the effective resistance for charges to escape through.• The disadvantage to the integral form is that it is less sensitive to the onset of punch-through, so it is less suitable for defining the punch-through voltage.

Page 14: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz14

Charge Collection Studies with ATLAS07 n-on-p FZ Silicon Detectors

(compiled by A. Affolder)

A. A. Affolder, P. P. Allport, H. Brown ,G. Casse, A. Greenall, M. Wormaldt Physics Department, Liverpool University, Liverpool, United Kingdom

S. Lindgren, C. Betancourt, G. Bredeson, N. Dawson , J. G. Wright, H. F.-W. Sadrozinski

Santa Cruz Institute for Particle Physics, Univ. of California Santa Cruz, CA 95064 USA

- V. Cindro, G. Kramberger, I. Mandic, M. Mikuz- Josef Stefan Institute and University of Ljubljan, Slovenia

Y. Unno, S. Terada, Y. Ikegami, T. Kohriki Institute of Particle and Nuclear Study, KEK, Oho 1-1, Tsukuba, Ibaraki 305-

0801, Japan

K. Hara, H. Hatano, S. Mitsui, M. YamadaUniversity of Tsukuba, Institute of Pure and Applied Sciences, Tsukuba, Ibaraki 305-

9751, Japan

14

Page 15: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz15

Summary of Results from Different Sources

15

• HPK data shown from all sites (with annealing corrections, i.e. CCE reduced by -20%+/-10%). Pion irradiation measurements corrected for annealing during run

Is this systematically low

Are these variances large?

500 V

Page 16: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz16

Liverpool Only Data

• Remove normalization, annealing effects• Results look consistent

– Would assume variance due to slight systematic differences in normalizations/annealing corrections

16

Correction to remove annealing too strong at lower fluences

500 V

Page 17: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz17

Summary

• NIEL appears to work for charge collection with n-in-p FZ detectors• Micron and HPK consistent over measure fluence range

17

500 V

Page 18: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz1818

Conclusions• Good cooperation between ATLAS groups and HPK: 3 pre-series and 2 full series runs in about 2 years.• All HPK detectors have a breakdown voltage that exceeds 900V, exceeding the specifications.•To first order, the interstrip resistance does not depend on the specific zone, but instead depends on the total p-dose of p-impurities on the surface (p-stop + p-spray).• The interstrip capacitance shows little change after irradiation and is dependent on the specific zones.• Zone 5 (narrow metal) has the highest interstrip capacitance after irradiation (Don’t use narrow metal!).• The punch-through voltage depends on the total p-dose in all configurations (p-stop only, p-stop+spray, p-spray only). Wafers with the highest total p-dose have a higher punch-through voltage, which holds true even after irradiation.• After irradiation, Zone 3 detectors (Gap = 70 m) have a similar punch-through voltage as Zone 4 detectors, which are made with a specific punch-through protection structure (Gap = 30 m) . Needs explanation!• The acceptable punch-through voltage of the Zone 3 sensors with p-stops of 4*1012 cm-2 extends to proton fluences beyond 1015 p/cm2.

Page 19: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz1919

•We acknowledge the good collaboration with the Hamamatsu Photonics team.• The invaluable assistance of CYRIC and their staff in carrying out the radiation is acknowledged.

ATLAS Upgrade Silicon Strip Detector Collaboration:H. Chen, J. Kierstead, Z. Li, D. Lynn , Brookhaven National Laboratory

J.R. Carter, L.B.A. Hommels, D. Robinson, University of CambridgeK. Jakobs, M. Köhler, U. Parzefall, Universitat Freiburg

A. Clark, D. Ferrere, S. Gonzalez Sevilla, University of GenevaR. Bates, C. Buttar, L. Eklund, V. O'Shea, University of Glasgow

Y. Unno, S. Terada, Y. Ikegami, T. Kohriki, KEK A. Chilingarov, H. Fox, Lancaster University

A. A. Affolder, P. P. Allport, H. Brown ,G. Casse, A. Greenall, M. Wormald, University of LiverpoolV. Cindro, G. Kramberger, I. Mandic, M. Mikuz, Josef Stefan Institute and University of Ljubljana

I. Gorelov, M. Hoeferkamp, J. Metcalfe, S. Seidel, K. Toms, University of New MexicoZ. Dolezal, P. Kodys, Charles University in Prague

J.Bohm, M.Mikestikova, Academy of Sciences of the Czech RepublicC. Betancourt, G. Bredeson, N. Dawson, V. Fadeyev, M. Gerling, A. A. Grillo, S. Lindgren, P. Maddock, F. Martinez-McKinney, H.

F.-W. Sadrozinski, S. Sattari, A. Seiden, J. Von Wilpert, J. Wright, UC Santa CruzR. French, S. Paganis, D. Tsionou, The University of Sheffield

B. DeWilde, R. Maunu, D. Puldon, R. McCarthy, D. Schamberger, Stony Brook UniversityK. Hara, H. Hatano, S. Mitsui, M. Yamada, N. Hamasaki, University of Tsukuba

M. Minano, C. Garcia, C. Lacasta, S. Marti i Garcia , IFIC (Centro Mixto CSIC-UVEG) , and K. Yamamura, S. Kamada, Hamamatsu Photonics K.K.

Acknowledgments

Page 20: RD50, CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz 1 Interstrip Characteristics of ATLAS07 n-on-p FZ Silicon Detectors S. Lindgren, C. Betancourt,

RD50 , CERN Nov 2009 H. F.-W. Sadrozinski, UC Santa Cruz20

Results shown at Vilnius makes it unlikely that temperature is the sole cause.

RD50 Bet Oct 17, 2006

Proposal to pay off the bet in a communal way:

Bookie will forgo his usual proceeds (50% of total) and pay for drinks in the Bar tonight at 7 pm

“Will the "Kramberger effect" be traced to a temperature effect?”

Betting was heavily against (all in SFrs) Against ForMoll 5 Hartmut 5Vladimir Cindro 1000 Thor 40 krNoman 2 Panja 3.75Thor 5 Maurice 2Gregor 5 Elena 10KopekVladPad 5 VladPad 2Simon 5Alex? 10Uli 10

47 12.75Sum 59.75