re-wetting and heat extraction at medium and high part

28
Re-wetting and heat extraction at medium and high part initial temperature B. Hernández-Morales and R. Cruces-Reséndez Depto. de Ingeniería Metalúrgica Facultad de Química Universidad Nacional Autónoma de México [email protected]

Upload: others

Post on 15-Jul-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Re-wetting and heat extraction at medium and high part

Re-wetting and heat extractionat medium and high part initial

temperatureB. Hernández-Morales and R. Cruces-Reséndez

Depto. de Ingeniería MetalúrgicaFacultad de Química

Universidad Nacional Autónoma de México

[email protected]

Page 2: Re-wetting and heat extraction at medium and high part

Outline

• Introduction

• Experimental

• Results and discussion

• Stainless steel (SS)

• Aluminum alloy (AA)

• Conclusion

• References

Índice

• Introducción

• Trabajo experimental

• Resultados y discusión

• Acero inoxidable (SS)

• Aleación de aluminio(AA)

• Conclusión

• Referencias

Page 3: Re-wetting and heat extraction at medium and high part

Introduction

• Cooling curve analysis is a useful technique based on acquiring the thermal response of a probe to estimate: cooling rate, wetting front velocity and the heat transfer boundary condition

Introducción

• El análisis de curvas de enfriamiento es una técnicabasada en la adquisición de la respuesta térmica de unaprobeta para estimar: la rapidez de enfriamiento, la velocidad del frente de mojado y la condición de frontera térmica

Page 4: Re-wetting and heat extraction at medium and high part

Introduction

• The standard probe is a flat cylinder with a single thermocouple but other geometries/thermocouple distributions are also used

• Hydrodynamic considerations are not always considered

Introducción

• La probeta estándar es un cilindro plano con un solo termopar pero otrasgeometrías o distribuciónde termopares también se usa

• La mayor parte de las vecesse ignoran las condicioneshidrodinámicas

Page 5: Re-wetting and heat extraction at medium and high part

Probe (probeta)

Materials:• AISI 304 stainless steel (SS)• Aluminum alloy (AA)

Materiales:• Acero inoxidable AISI 304 (SS)• Aleación de aluminio (AA)

Page 6: Re-wetting and heat extraction at medium and high part

Experimental apparatus (equipo experimental)

Quench medium:• Water at 60 °C• Velocity: 0.2 and 0.6 m/s

Initial probe temperature:• SS: 550 – 950 °C• AA: 450 – 550 °C

Page 7: Re-wetting and heat extraction at medium and high part

(a) (b) (c) (d) (e)

Thermal response (SS)

Page 8: Re-wetting and heat extraction at medium and high part

Wetting front velocity• Steps to estimate the wetting

front velocity:• To build a table: wetting

front position-time• To plot the values• To do a regression

Velocidad del frente de mojado• Pasos para estimar la velocidad

del frente de mojado• Construir una tabla: posición

del frente de mojado-tiempo• Graficar los valores• Aplicar una regresión

Page 9: Re-wetting and heat extraction at medium and high part

Wetting front (SS)• Wetting front location as a

function of time during quenchingin water at 60 °C, flowing at a velocity of 0.2 m/s: values(symbols), regression (lines)

• R2 values are large

• Constant values of the wettingfront

Frente de mojado (SS)• Posición del frente de mojado en

función del tiempo durante un temple en agua a 60°C, fluyendo a una velocidad de 0.2 m/s: valores (símbolos), regresión (líneas)

• Los valores de R2 son altos

• Valores constantes del frente de mojado 𝑧 = 0

Page 10: Re-wetting and heat extraction at medium and high part

Wetting front velocity (SS)• As the initial probe temperature

decreases or the water velocity increases the wetting front velocity increases.

• The latter effect is greater at low initial probe temperatures; thus, the energy content dominates at high initial temperatures

Velocidad del frente de mojado (SS)• Al disminuir la temperatura inicial de la

probeta o incrementar la velocidad del agua, aumenta la velocidad del frentede mojado.

• El segundo efecto es más pronunciadoa bajos valores de la temperaturainicial de la probeta; por tanto, el contenido de energía domina a altos valores de temperatura inicial

Page 11: Re-wetting and heat extraction at medium and high part

Surface heat flux

• The surface heat flux was estimated by solving the corresponding inverse heat conduction problem (IHCP)

• Characteristics:

• 1D Heat flow

• No phase transformation

• Software: WinProbe

Flux de calor superficial

• El flux de calor superficial se estimó resolviendo el problema inverso de conducción de calor (IHCP) correspondiente

• Características:

• Flujo de calor 1D

• Sin transformación de fase

• Software: WinProbe

Page 12: Re-wetting and heat extraction at medium and high part

Surface heat flux (SS)

• Surface heat flux history

• Water velocity: 0.2 m/s

• Initial probe temperature: 850 °C

Flux de calor superficial (SS)• Historia de flux de calor

superficial• Velocidad del agua: 0.2

m/s• Temperatura inicial de la

probeta: 850 °C

Page 13: Re-wetting and heat extraction at medium and high part

Surface heat flux (SS)

• Family of surface heat flux curves as a function of surface temperature

• Water velocity: 0.2 m/s

Flux de calor superficial (SS)

• Familia de curvas de flux de calor superficial comofunción de la temperaturade la superficie• Velocidad del agua: 0.2

m/s

Page 14: Re-wetting and heat extraction at medium and high part

Surface heat flux (SS)

• Family of surface heat flux curves as a function of surface temperature

• Water velocity: 0.6 m/s

Densidad de flujo de calor (SS)

• Familia de curvas de flux de calor como función de la temperatura de la superficie• Velocidad del agua: 0.6

m/s

Page 15: Re-wetting and heat extraction at medium and high part

Surface heat flux (SS)

• The maximum surface heat flux increases as the initial temperature increases or the water velocity decreases

Flux de calor superficial (SS)

• El flux de calor máximoaumenta al aumentar la temperatura inicial o disminuir la temperaturadel agua

950 °C, 0.2 m/s 950 °C, 0.6 m/s

Page 16: Re-wetting and heat extraction at medium and high part

Initial probe condition (condición inicial de la probeta)

950 °C, 0.2 m/s

950 °C, 0.6 m/s850 °C, 0.6 m/s750 °C, 0.6 m/s

750 °C, 0.2 m/s 850 °C, 0.2 m/s

Page 17: Re-wetting and heat extraction at medium and high part

(a) (b) (c) (d) (e) (f)

Thermal response (AA)

0

100

200

300

400

500

600

0 2 4 6 8 10

Te

mp

era

tura

, °C

Tiempo, s

TC1

TC2

TC3

b) c) d) e)f)

Page 18: Re-wetting and heat extraction at medium and high part

Cooling rate (AA)• The green curve (TC1) clearly

shows a double peak; the first one is due to the high thermal conductivity of the aluminum alloy.

• The location of TC1 is not adequate

Rapidez de enfriamiento (AA)• La curva verde (TC1)

claramente muestra un doblepico; el primero se debe a la alta conductividad térmica de la aleación de aluminio.

• La posición de TC1 no esadecuada

Page 19: Re-wetting and heat extraction at medium and high part

Wetting front (AA)• Wetting front location as a

function of time during quenchingin water at 60 °C, flowing at a velocity of 0.6 m/s: values(symbols), regression (lines)

• R2 values are large

• Constant values of the wettingfront

Frente de mojado (AA)• Posición del frente de mojado en

función del tiempo durante un temple en agua a 60°C, fluyendo a una velocidad de 0.6 m/s: valores (símbolos), regresión (líneas)

• R2 values are large

• Los valores del frente de mojado son constantes

𝑧 = 0

Page 20: Re-wetting and heat extraction at medium and high part

Wetting front (AA)• As the initial probe

temperature decreases the wetting front velocity increases

• There is little difference at relatively high initial temperature

Frente de mojado (AA)• A medida que la temperatura

inicial de la probeta disminuyela velocidad del frente de mojado aumenta

• Hay poca diferencia a valoresrealtivamente altos de temperatura inicial

Page 21: Re-wetting and heat extraction at medium and high part

Surface heat flux (AA)

• Surface heat flux history

• Water velocity: 0.6 m/s

• Initial probe temperature: 500 °C

Flux de calor superficial (AA)• Historia de flux de calor

superficial• Velocidad del agua: 0.6

m/s• Temperatura inicial de la

probeta: 500 °C

Page 22: Re-wetting and heat extraction at medium and high part

Surface heat flux (AA)

• The surface heat flux increases as the initial probe temperature increases

Water velocity: 0.2 m/s

Flux de calor superficial (AA)

• El flux de calor superficial aumenta al aumentar la temperatura inicial de la probeta

Velocidad del agua: 0.2 m/s

Page 23: Re-wetting and heat extraction at medium and high part

Surface heat flux (AA)

• The surface heat flux increases as the initial probe temperature increases

• Water velocity: 0.6 m/s

Flux de calor superficial (AA)

• El flux de calor superficial aumenta al aumentar la temperatura inicial de la probeta

• Velocidad del agua: 0.6 m/s

Page 24: Re-wetting and heat extraction at medium and high part

Surface heat flux (AA)

• The maximum surface heat flux decreases as the initial probe temperature or the water velocity decreases

Densidad de flujo de calor (AA)

• El flux de calor máximodisminuye al disminuir la temperatura inicial de la probeta o disminuir la velocidad del agua

0.05

0.06

0.07

0.08

0.09

400 450 500 550 600

Max

imu

m h

eat

flu

x, M

W m

-2

Initial temperature, °C

0.2 m/s

0.6 m/s

Page 25: Re-wetting and heat extraction at medium and high part

Initial probe condition (condición inicial de la probeta)

550 °C, 0.2 m/s

550 °C, 0.6 m/s500 °C, 0.6 m/s450 °C, 0.6 m/s

450 °C, 0.2 m/s 500 °C, 0.2 m/s

Page 26: Re-wetting and heat extraction at medium and high part

Conclusion

• As the initial value of probe temperature increases the wetting front velocity decreases and the maximum surface heat flux increases

• The effect of the water velocity on the wetting front velocity is higher at low initial probe temperatures and the opposite is true regarding the maximum surface heat flux

• Heat transfer during submerging of the probe is critical

Conclusión• Al aumentar la temperatura

inicial de la probeta la velocidad del frente de mojado disminuye y el valor máximo del flux de calorsuperficial aumenta

• El efecto de la velocidad del agua sobre la velocidad del frente de mojado es mayor a bajos valores de la temperatura inicial de la probeta y lo opuesto ocurrecon respecto al valor máximodel flux de calor superficial

• La transfencia de calordurante el transporte de la probeta en el baño líquido escrítica

Page 27: Re-wetting and heat extraction at medium and high part

Conclusion

• The probe design is very good for cooling curve analysis of stainless steel

• TC1 location is not useful for cooling curve analysis of aluminum alloys

• There is work in progress directed towards studying the effect of probe geometry

Conclusión

• El diseño de la probeta esmuy bueno para el análisisde curvas de enfriamientode acero inoxidable

• La posición de TC1 no esútil para el análisis de curvas de enfriamiento de aleaciones de aluminio

• Hay trabajo en curso para estudiar el efecto de la geometría de la probeta

Page 28: Re-wetting and heat extraction at medium and high part

• Ch. R. Brooks, Principles of the Heat Treatment of Plain Carbon and Low Alloy Steels, ASM International, Materials park, OH, 1996.

• H. Tensi, A. Stich, and G. Totten “Fundamentals about quenching by submerging”. Proceedings of International Heat Treating Conference: Equipment and Processes. 1994, pp. 243-251.

• http://extra.ivf.se/smartquench/ (august 2016)

• B. Hernández-Morales, “Characterization of Heat Transfer during Quenching”, In ASM Handbook, Vol. 4A, Steel Heat Treating Fundamentals and Processes, pp. 158-175, J.L. Dossett and G.E. Totten, eds., ASM International, Materials park, OH, 2013.

• L. Meekisho, B. Hernández-Morales, J.S. Téllez-Martínez and X. Chen, “Computer-aided cooling curve analysis using WinProbe”, Int. J. Materials and Product Technology, vol. 24 (1-4), 2005, pp. 55-169.