reaching the extremes of planet formationmipse.umich.edu/files/stewart_presentation.pdf · 2015. 1....

51
Reaching the Extremes of Planet Formation Shockwave Experiments in the Giant Impact Regime Sarah T. Stewart Dept. Earth & Planetary Sciences, UC Davis

Upload: others

Post on 01-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Reaching the Extremes of Planet Formation Shockwave Experiments in the Giant Impact Regime

Sarah T. Stewart Dept. Earth & Planetary Sciences, UC Davis

Page 2: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Planet Formation

Art  by  NASA  

Page 3: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Giant Impacts

Art  by  Na*onal  Geographic  

Page 4: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

The Origin of the Moon

Lunar  transit  NASA  EPOXI    

Page 5: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

We don’t know how to make the Moon

Lunar  transit  NASA  EPOXI    

Page 6: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

A canonical giant impact simulation: Oblique Mars mass impact at escape velocity (Asphaug & Canup 2001; Canup 2004, 2008) Smoothed particle hydrodynamics (SPH) Iron cores, silicate mantles; phase changes included in equation of state Gravity-dominated events; no material strength

Page 7: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,
Page 8: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Accretion of the Moon from a Disk

Kokubo  et  al.  2010;  Salmon  &  Canup  2012,  2015  

Distance  (Roche  radii  ≈  3REarth)  

Timescale: 1 to 100’s yr Accretion efficiency is low:

10-50% Mdisk

Main problem: angular momentum out mass in

The calculated Moons are too small.

Page 9: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Earth and Moon are Isotopic Twins

Identical isotopes O volatile, large variations in solar nebula Ti refractory, nucleosynthetic anomalies W radiogenic (8.9 Ma), core formation Cr radiogenic (3.7 Ma), variations in nebula Si moderately refractory, core formation H volatile, large variations in solar nebula

Each  planetary  body  has  a  different  isotopic  signature.  Lugmair & Shukolyukov 1998, Wiechert et al. 2001, Georg et al. 2007, Zhang et al. 2011, Saal et al. 2013

W: Touboul et al. 2007 but now Touboul et al. LPSC 2014 & Kleine et al. LPSC 2014

Page 10: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

A Proposed Solution: Mix after the impact Pahlevan & Stevenson 2007

Page 11: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Why not reject the giant impact hypothesis for lunar origin?

Page 12: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

A Giant Impact with High Angular Momentum

Earth

2-3 hours

ImpactorMars-size or smaller20-30 km/son retrograde side

2 half-Earths Oblique, near Vesc

(Canup 2012)

Fast-spinning Earth Small, fast impactor, near head-on

(Ćuk & Stewart 2012)

Both have post-impact Earth with 2 to 3-hr spin period.

Earth

Moon

To SunAfter Moon formation, an orbital resonance transfers angular momentum to the Sun. (Ćuk & Stewart 2012)

Page 13: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,
Page 14: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,
Page 15: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

1000  km  

1000  km  

40  

20  

0  

-­‐20  

20   40  -­‐20  -­‐40  -­‐40  

15  10    1    

1    .01  

 .001  

 .0001  

 Density  [g/cm3]  

Page 16: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

1000  km  

1000  km  

40  

20  

0  

-­‐20  

20   40  -­‐20  -­‐40  -­‐40  

15  10    1    

1    .01  

 .001  

 .0001  

 Density  [g/cm3]  

Page 17: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

What was the physical state of the Earth and Lunar Disk?

Page 18: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Log

Pres

sure

Temperature

Solid Vapor

L

Supercritical Fluid

Hugoniot

Solid

L Vapor

Supercritical Fluid

Log

Pres

sure

Entropy

Hugoniot

Thermodynamics of Giant Impacts

Page 19: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Log

Pres

sure

Temperature

Solid Vapor

L

Supercritical Fluid

Hugoniot

Solid

L Vapor

Supercritical Fluid

Log

Pres

sure

Entropy

Hugoniot

Ambient Pressure

How much material melts or vaporizes?

Thermodynamics of Giant Impacts

Page 20: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Calculating Entropy on the Hugoniot with Static Data and Shock Temperatures

Log

Pres

sure

Temperature

Solid Vapor

L

Supercritical Fluid

Hugoniot

ΔS=

0

ΔV=0dET

+ PdVTdS=

SiO2 quartz Temperature (Hicks et al. 2006) à Entropy (Kraus et al. 2012)

Page 21: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Calculating Entropy on the Hugoniot with Static Data and Shock Temperatures

Log

Pres

sure

Temperature

Solid Vapor

L

Supercritical Fluid

Hugoniot

ΔS=

0

ΔV=0dET

+ PdVTdS=

SiO2 quartz Temperature (Hicks et al. 2006) à Entropy (Kraus et al. 2012)

Cri*cal  Point  SiO2  5130  K,  0.5  g/cm3,  0.13  GPa  

Triple  Point  SiO2:  1996  K,  ~3  Pa  

113  GPa  4800  K  

Other  Cri*cal  Points      MgO  (SESAME)    

7900  K  0.45  g/cm3  0.3  GPa    Fe  (Fortov  &  Lomonosov  2010)  

8800  K  2.2  g/cm3  

1.1  GPa    

Page 22: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Simple Equation of State Models Do Not Predict the Correct Entropy

New critical pressure for complete vaporization: 715 GPa (Kraus et al. 2012) Old value from M-ANEOS model: 1650 GPa (Melosh 2007) Onset of vaporization at impact velocities of only 7 km/s.

Melosh  2007  Kraus  et  al.  2012  

Page 23: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Log

Pres

sure

Temperature

Solid Vapor

L

Supercritical Fluid

Hugoniot

Solid

L Vapor

Supercritical Fluid

Log

Pres

sure

Entropy

Hugoniot

Ambient Pressure

How to measure the liquid-vapor curve?

Model Critical Points SiO2 5130 K, 0.5 g/cm3, 0.13 GPa MgO 7900 K, 0.45 g/cm3, 0.3 GPa

Fe 8800 K, 2.2 g/cm3, 1.1 GPa

Page 24: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

How to determine entropy when cannot measure shock temperature directly?

Log

Pres

sure

Temperature

Solid Vapor

L

Supercritical Fluid

Hugoniot

ΔS=

0ΔV=0

dET

+ PdVTdS=

A general technique is needed for opaque materials.

Page 25: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Planar Geometry Shock-and-Release Experiments

VISAR  For  transparent  targets:  

Flyer  Velocity  Target  shock  

 Releasing  material  Impacts  window  

Quartz  Shock  Velocity    

Pyrometry  For  transparent  targets:  Shock  Temperature  Release  Temperature  

Flyer  Plate  Veloci*es  >  several  km/s  

 Laser  drive    >100’s  J  

Technique development in Kraus et al. 2012. Gas gun: Boslough 1988, Stewart et al. 2008; Laser: Kraus et al. 2012; Z-machine: Kraus et al. revised

Page 26: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock-and-Release Experiments to Measure the Liquid-Vapor Boundary

Log

Pres

sure

Density

Vap Liq

Hugoniot

Isentrope

Liq+Vap Solid

Tim

e

Lagrangian Position

Vacuum

Unshocked

Shocked

Shock Wave

VaporizingMaterialStuck on

Liquid-Vapor Dome

B

A

A

B

Page 27: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock-and-Release Experiment

Al  Flyer  

Fe  Target  

Quartz  window  

(µm)  

18  km/s  

Page 28: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock-and-Release Experiment

(µm)  

Page 29: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock-and-Release Experiment

Log

Pres

sure

Density

V L

Hugoniot

Isentrope

L+V Solid

 Fe  liquid  branch  density  

Al  Flyer  

Quartz  window  

Measure emission temperature of liquid layer (e.g., Kraus et al. 2012)

(µm)  

Page 30: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock-and-Release Experiment

Log

Pres

sure

Density

V L

Hugoniot

Isentrope

L+V Solid

(µm)  

Page 31: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock-and-Release Experiment

Measure steady shock in quartz window. Solve for density of the liquid iron as in a reverse impact experiment.

(µm)  

 Fe  

Al  Flyer  

Quartz  window  

Page 32: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

First Shock-and-Release Density Measurements

Fundamental  Science  Program  at  the  Sandia  Z  Machine  &  NNSA  HEDLP    

Richard  G.  Kraus,  Seth  Root,  Raymond  W.  Lemke,    Sarah  T.  Stewart,  Stein  B.  Jacobsen,  and  Thomas  R.  Malsson  

Page 33: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock and Release in Entropy-Density Space

Solid+Vapor  

Solid  

Liquid  

Vapor  L+V  

S+L    +V  

MgO  

Kraus et al., in prep.

Page 34: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock and Release in Entropy-Density Space

389  GPa  

788  GPa  MgO  

Kraus et al., in prep.

Page 35: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

389  GPa  

788  GPa  

Isentropic  Release  

Shock and Release in Entropy-Density Space

MgO  

Kraus et al., in prep.

MgO  SESAME  7460  liquid-­‐vapor  curve  

Page 36: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Isentropic  Release  

Iron Shock and Release Density Data

490-­‐620  GPa  

Kraus et al., revised.

Page 37: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Iron Density Data Liquid Branch of Liquid-Vapor Curve

Log

Pres

sure

Density

V L

Hugoniot

Isentrope

L+V Solid

Kraus et al., revised.

200 400 600 8002

4

6

8

10

Liquid

Den

sity [

g/cm

3 ]

Shock Pressure [GPa]

Liquid Branch Densities

Page 38: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Post-­‐shock  densi*es  *e  the  1  bar  boiling  point  to  the  shock  state    

Shock  pressure  to  induce  vaporiza*on:  507  GPa  (13  km/s  impact  by  a  differen*ated  asteroid)  

Iron Liquid Branch Density Data Constrains Entropy on the Hugoniot

Log

Pres

sure

Density

V L

Hugoniot

Isentrope

L+V Solid1  bar  

200 400 600 8002

4

6

8

10

Liquid

Den

sity [

g/cm

3 ]

Shock Pressure [GPa]

Liquid Branch DensitiesBoiling Point Density (6.01 g/cm3)

Kraus et al., revised.

507  GPa  

Page 39: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Thermal State on the Hugoniot of an Opaque Material

Method  for  Hugoniot  entropy  is  completely  general.  Kraus et al., revised.

1000 1500 2000 2500 3000

200

400

600

800

1000

1200

1400

Entropy [J/kg/K]

Pres

sure

[GPa

]

Fe-ANEOSFe-21501-bar Boiling PointThis work

Page 40: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock-induced Phase Changes: A Planetary Process

Log

Pres

sure

Temperature

Solid Vapor

L

Supercritical Fluid

Hugoniot

Solid

L Vapor

Supercritical Fluid

Log

Pres

sure

Entropy

Hugoniot

Ambient Pressure

New  experimental  techniques  to  measure  states  of  the  liquid-­‐vapor  curve  

Impact-­‐induced  vaporiza*on  is  a  common  process  during  planet  forma*on.  

Page 41: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

What was the physical state of the Earth and Lunar Disk?

Log

Pres

sure

Temperature

Solid Vapor

L

Supercritical Fluid

Hugoniot

Solid

L Vapor

Supercritical Fluid

Log

Pres

sure

Entropy

Hugoniot

Ambient Pressure

Page 42: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Collision  of  2  half-­‐Earths  (Canup  2012)  

Page 43: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,
Page 44: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Reaching the Extremes of Planet Formation

Gas  Guns   Sandia  Z  Machine  LLNL  NIF  Laser  

Page 45: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

View  on  Oct  30  by  Chang’e  4  spacecrax  

Page 46: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,
Page 47: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Shock-and-Release Temperature Measurements

LLNL  Jupiter  Laser  Facility  User  Program  and  NNSA  SSGF    

R.  G.  Kraus,  S.  T.  Stewart,  D.  C.  Swix,  C.  A.  Bolme,  R.  F.  Smith,  S.  Hamel,  B.  D.  Hammel,  D.  K.  Spaulding,  D.  G.  Hicks,  J.  H.  Eggert,  and  G.  W.  Collins  

J.  Geophysical  Research  Planets,  2012  

Page 48: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Quartz Shock Vaporization Experiments

3

456789

10

Tem

pera

ture

[100

0K]

70006000500040003000Entropy [J/kg/K]

Liquid Vapor

HugoniotThis WorkLyzenga et al. 1983,Boslough 1988

116 GPa

318 GPa

Kraus  et  al.  2012  

Page 49: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

3

456789

10

Tem

pera

ture

[100

0K]

70006000500040003000Entropy [J/kg/K]

Liquid Vapor

Hugoniot

116 GPa

318 GPaThis WorkLyzenga et al. 1983,Boslough 1988

Quartz Shock Vaporization Experiments

Kraus  et  al.  2012  

Page 50: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Quartz Shock Vaporization Experiments This Work

Lyzenga et al. 1983,Boslough 1988

3

456789

10

Tem

pera

ture

[100

0K]

70006000500040003000Entropy [J/kg/K]

Liquid VaporPredicted post-shock temperatures for 100, 500, 1000 nm droplets

116 GPa

318 GPa

StreakedOptical

Pyrometer

ExpandingSilica Fluid

Vapor-Droplet Mixture

Kraus  et  al.  2012  

Silica Liquid

Page 51: Reaching the Extremes of Planet Formationmipse.umich.edu/files/Stewart_presentation.pdf · 2015. 1. 19. · Mars-size or smaller 20-30 km/s on retrograde side 2 half-Earths Oblique,

Quartz Shock Vaporization Experiments

3

456789

10

Tem

pera

ture

[100

0K]

70006000500040003000Entropy [J/kg/K]

Liquid Vapor

Hugoniot

116 GPa

318 GPaThis WorkLyzenga et al. 1983,Boslough 1988

Predicted temperatures

Cri*cal  point  for  SiO2:  5130  K  and  0.13  Gpa  Impact-­‐induced  vaporiza*on  starts  at  7  km/s  

 Kraus  et  al.  2012