reactions hydroxyl groups part-i

44
LECTURE 5 REACTIONS HYDROXYL GROUPS PART I

Upload: hakhanh

Post on 31-Dec-2016

244 views

Category:

Documents


9 download

TRANSCRIPT

Page 1: Reactions hydroxyl groups part-I

LECTURE  5  REACTIONS  HYDROXYL  GROUPS  PART  I    

Page 2: Reactions hydroxyl groups part-I

NOTHING  NEW  OR  MYSTERIOUS  

The  complica,ons  arise  only  because  of  there  are  so  many  of  them!!  

As  nucleophiles,  analog  to  non-­‐sugar  alcohols  

The  majority  of  the  chemistry  is  related  to  the  forma,on  of  esters  and  ethers.  

Page 3: Reactions hydroxyl groups part-I

Carboxylate  esters  Acetates  –O(CO)CH3  or  –OAc  Benzoates  –O(CO)C6H5  or  –OBz    

Sulfonate  esters  Tosylate  –O(SO2)  C6H4CH3  or  –OTs  Mesylate  –O(SO2)  CH3  or  –OMs  Triflate  –O(SO2)  CF3  or  –OTf    

Ethers  Benzyl  –OCH2C6H5  or  –OBn  Trityl  –OC(C6H5)3  or  –OTr  Trimethylsilyl  –OSi(CH3)3  or  –OTMS  Tert-­‐butyldimethylsilyl  –OSi(CH3)2(C(CH3)3)  or  –OTBS      or  –OSiMe2But  or  -­‐OTBDMS    Tert-­‐butyldiphenylsilyl  –OSi(C6H5)2(C(CH3)3)  or  –OTBS      or  –OSiPh2But  or  -­‐OTBDPS      

Page 4: Reactions hydroxyl groups part-I

O

HO

OH

OH

OH

HO

primary OH-6

O

HO

OH

OH

OH

HO

secondary OH-2,3,4

O

HO

OH

OH

OH

HO

anomeric OH-1

Page 5: Reactions hydroxyl groups part-I

The functionality at the anomeric center can react in two ways

as an alcohol or as an aldehyde

act  as  aldehyde  to  form  acetal  Effec,vely  protect  the  anomeric  center  and  prevents  further  reac,vity  

Page 6: Reactions hydroxyl groups part-I

Potential competing inter-conversion between α and β forms

Equilibrium of α- and β-hydroxyls at the anomeric position

inter-conversion between pyranose and furanose forms

Page 7: Reactions hydroxyl groups part-I

Solubility: very polar in nature

very soluble in polar solvents, especially with possible H-bonding

Insoluble in non-polar solvents for organic reactions, pdt purification and manipulation

Selective protection of particular hydroxyl groups allows the regioselctive rxn of those unprotected

Common starting point: protect the majority or even all of the free -OH

Page 8: Reactions hydroxyl groups part-I

AcetylaKon�  

Acetals�  

Ether�  

Ester ��

Nucleophilic  SubsKtuKon�

 

oxidaKon�  

ReducKon�  

Page 9: Reactions hydroxyl groups part-I

AcetylaKon�  

Acetals�  

Ether�

Ester � Nucleophilic  SubsKtuKon� oxidaKon�

ReducKon�

Page 10: Reactions hydroxyl groups part-I

Esters:  non-­‐nucleophilic  and  stable  to  a  wide  range  of    Condi,ons  Frequently  used  protect  groups  Less  polar  than  the  corresponding  alcohols  

Page 11: Reactions hydroxyl groups part-I

Acetyla,on    

SKrring  the  alcohol  with  aceKc  anhydride  and  a  base  

Most  commonly  used  esters  

Nucleophilic  catalysis  and  base  

Lewis  acid  catalysis  

Base  mop  up  the  aceKc  acid  generated,  and  catalyses  the  rxn  itself  

Uncatalysed  rxn  is  very  slow  at  rt  

But  with  possible  compeKng  process  of  mutarotaKon  

Page 12: Reactions hydroxyl groups part-I

1.  Acetyla,on  with  ace,c  anhydride/pyridine  

 O

HO

OH

OH

OH

HO Ac2O, pyridine

fast

OAcO

OAc

OAc

OAc

AcO

slow

OHO

OH

OH

OH

HO Ac2O, pyridine

fast

OAcO

OAc

OAc

OAc

AcO

+

Sugars  in  a  boYle  is  a    mixture  of  α  and  β.  /(py/fu)    

Ra,o  depends  on  par,cular  sugars  

Equal  propor,ons  as  solvents  

Page 13: Reactions hydroxyl groups part-I

2.    Acetyla,on  with  ace,c  anhydride/sodium  acetate    

OHO

OH

OH

OH

HO Ac2O, NaOAcfastO

AcO

OAc

OAc

OAc

AcO

slow

OHO

OH

OH

OH

HO

100oC

Rela,vely  weak  base,  sluggish  rxn  at  rt  

Carry  out  at  100°C,  usually  generate  β-­‐acetates  Mutarota,on  is  much  faster  than  the  acetyla,on  

β  Hydroxyl  is  more  nucleophilic  than  the  axial  α οne  

Page 14: Reactions hydroxyl groups part-I

β-­‐  occupies  a  less  hindered  equatorial  than    the  axial  of  α-

repulsive  effect  between  the  ring  oxygen  lone  pair  orbitals  and  the  lone  pair  orbitals  on  the  β-­‐anomeric  oxygen  atom

KineKc  anomeric  effect  

Page 15: Reactions hydroxyl groups part-I

3.  Acetyla,on  with  ace,c  anhydride/Lewis  acid  catalysis  

Strong  Lewis  acid  catalyses  the  equilibrium  of  α-­‐  and  β-­‐,  a^er  catalyses  the  rxn  

Thus  equilibrium  of  α-­‐  and  β-­‐acetates  will  occur  a^er  the  rxn    

Anomeric  effect  leads  us  α-­‐acetates  

Page 16: Reactions hydroxyl groups part-I

Protec,ng  groups  Sa,sfy  several  important  criteria  

1)  They  should  be  formed  in  good  yield,  

2)  they  should  be  stable  to  subsequent  rxn  condi,ons,  

3)  They  should  be  readily  removed  under  appropriate  condi,ons  

Page 17: Reactions hydroxyl groups part-I

AcetylaKon� Acetals� Ether�

Ester � Nucleophilic  SubsKtuKon� oxidaKon�

ReducKon�

Page 18: Reactions hydroxyl groups part-I

AcetylaKon� Acetals� Ether�

Ester � Nucleophilic  SubsKtuKon� oxidaKon�

ReducKon�

Page 19: Reactions hydroxyl groups part-I

Benzyl  ethers  (ROBn)    

BrRO-

SN2

RO

OBnO

OBnOMe

OBn

BnONaH, BnBrOHO

OHOMe

OH

HO

DMF

Tetrabutylammonium  iodide  

Page 20: Reactions hydroxyl groups part-I

O

OH

OMe

OHHO

HO Ph O CCl3

NH

CF3SO3H

O

OBn

OMe

OBnBnO

BnO

Page 21: Reactions hydroxyl groups part-I

Cleavage  

Palladium  on  carbon  (Pd/C)  

Palladium  hydroxide  (Pearlman’s  catalyst)    For  the  removal  of  sterically  inaccessible/mul,ple  benzyl  groups  

Cataly,c  hydrogena,on  

Heterogeneous  catalyst  

When the metal is distributed over finely-divided carbon, the surface area is larger and the catalyst is more reactive.

Page 22: Reactions hydroxyl groups part-I

OR

MeO

para-methoxybenzyl (PMB)

O

O

CN

CN

Cl

Cl

DDQ

Ceric  ammonium  nitrate  (CAN)  (NH4)2Ce(NO3)6  

2,3-­‐Dichloro-­‐5,6-­‐Dicyanobenzoquinone  

Single  electron  oxidising  reagent  

Page 23: Reactions hydroxyl groups part-I

Trityl  ethers    

etc. etc.

Resonance stabilisationof the trityl cation

Triphenylmethyl  ether  

Very  selec,ve  for  the  primary  hydroxyl  group  

Forma,on  via  an  SN1  type  process  

By  treatment  of  unprotected  sugar  

Page 24: Reactions hydroxyl groups part-I

OHO

OHOMe

OHOH

Pyridine

Ph3CCl O

HO

OH

OMe

OCPh3OH

NaH

BnBr

O

BnO

OBn

OMe

OCPh3OBn

AcOH O

BnO

OBn

OMe

OHOBn

Page 25: Reactions hydroxyl groups part-I

Silyl  ethers        

Si

R'

R''R'''ClR OH

-H+

Si

R'

R'' R'''

ClOR

'ate' complex

Si

R'

R''R'''

OR

NN HSi

Ph

But

But

Imidazole  acts  as  a  nucleophilic  catalyst  and  forms  intermediates,  e.g.    

Page 26: Reactions hydroxyl groups part-I

OHO

OH

OMe

OH

HO

Pyridine

Me3SiCl OMe3SiO

OSiMe3

OMe

OSiMe3

Me3SiO

O

HO

OH

OMe

OH

HO

imidazole

ButPh2SiCl O

HO

OH

OMe

O

HO

Si

Trimethylsilyl  (TMS)  

Tert-­‐Butyldimethylsilyl    (TBDMS  or  TBS)  

Page 27: Reactions hydroxyl groups part-I

cleavage  

Tetrabutylammonium  fluoride  (TBAF)  Rela,ve  rate  of  acid  hydrolysis  (stability  increase  in  order)  

R-OSiMe3

R-OSiMe2But

R-OSiPh2But

1

1E-3

1E-5

acid,  may  also  cause  removal  of  othe  racid  labile  protec,ng  groups  

Page 28: Reactions hydroxyl groups part-I

AcetylaKon� Acetals� Ether�

Ester � Nucleophilic  SubsKtuKon� oxidaKon�

ReducKon�

Page 29: Reactions hydroxyl groups part-I

O OR

= R---OBz

benzoyl ester

Removed  by  nucleophile  

Potassium  carbonate  in  methanol  

Sodium  methoxide  in  methanol  (zémplen  deacetyla,on)  

Acetate,  and    

Most  commonly  methoxide  in  trans-­‐esterifica,on  rxn  

In  both  cases,  methoxide  in  cataly,c  

Milder  condi,ons,  such  as  treatment  with  primary    amines,  are  also  effec,ve  for  the  removal  of  certain  esters,  and  can  do  selec,ve  deprotec,on  rxn  

Page 30: Reactions hydroxyl groups part-I

Sulfonate  esters  

ProtecKng  group  

Leaving  group  

S MeRO

O

O

mesylate

methanesulfonate

toluenesulfonate

SRO

O

O

tosylate

Me

trifluoromethanesuflonate

S CF3RO

O

O

triflate

O

OHOH

OMe

HO

HOSCl

O

O

pyridine, 0oC

O

OHOH

OMe

HO

TsO

Page 31: Reactions hydroxyl groups part-I

AcetylaKon� Acetals� Ether�

Ester � Nucleophilic  SubsKtuKon� oxidaKon�

ReducKon�

Page 32: Reactions hydroxyl groups part-I

Nucleophilic  subs,tu,on  RXN  

SN2  not  SN1   β-­‐oxygen  effect  

O

HO

LG

OMe

LG

HO

Nu

Retarded  by  the  presence  of  electron  withdrawing  oxygen  which  are  β  to  the  carbon  atom  at  which  the  displacement  is  taking  place  

Electron  withdrawing  effect  greatly  destabilises  any  carbonium  in  in  SN1  

Page 33: Reactions hydroxyl groups part-I

O

OTs

OMe

DMF

NaN3OO

PhO

N3

OMe

OO

Ph

OHO

HO O

O Ph3P

Imidazole, I2

OI

HO O

O

O

OH

OMe

OO

Ph

TsO

KOH O

OOMe

OO

Ph

Nu-

NaN3 or

LiAlH4

O

OH OMe

OO

PhNu

Nu = N3 or H

SN2  trans   trans  

Page 34: Reactions hydroxyl groups part-I

AcetylaKon� Acetals� Ether�

Ester � Nucleophilic  SubsKtuKon� oxidaKon�

ReducKon�

Page 35: Reactions hydroxyl groups part-I

Oxida,on  

O

HO O

O

O

O

diacetone glucose

PCC

O

O O

O

O

O

NaBH4

O

HO O

O

O

O

diacetone allosePh3P=CH2

O

O

O

O

O

BH3

then

NaOH, H2O2

O

O

O

O

O

HO

Page 36: Reactions hydroxyl groups part-I

PCC  Oxida,on  

Page 37: Reactions hydroxyl groups part-I

Pfitzner–Moffa`  oxidaKon  

Swern  oxidaKon  

Page 38: Reactions hydroxyl groups part-I

O

O

O

O

O

HODMSO

oxalyl chloride

O

O

O

O

O

O

H

RuCl3

NaIO4

O

O

O

O

O

O

OH

uronic  acid  

O

OH

OMe

OH

HOHO

Pt, O2O

OH

OMe

HO

HO

O

HO

SelecKve  oxidaKon  to  primary  hydroxyl  group  

Page 39: Reactions hydroxyl groups part-I

O

OH

OH

OH

HOHO

HNO3

COOH

OHH

HHO

OHH

OHH

COOH

aldaric  acid  

HO

HO

I

O

OO

-O O

O

I

O

HO

HO

-O

O

O

Sodium  periodate  

Page 40: Reactions hydroxyl groups part-I

O

OH

OH

OH

HO

OH

NaIO4O

OH

O

O

HO

OH

NaIO4

O

O

O

O

O

OH

+

Par,cularly  useful  for  cleavage  of  the  carbohydrate  backbone  at  a  specific  point  

Since  the  reagent  will  only  cleave  between  two  cis  alcohol  groups    

Also  useful  for  shortening  of  the  carbohydrate  chain  

Page 41: Reactions hydroxyl groups part-I

AcetylaKon� Acetals�Ether�  

Ester � Nucleophilic  SubsKtuKon� oxidaKon�

ReducKon�

Page 42: Reactions hydroxyl groups part-I

Reduc,on  to  prepare  deoxy  sugars  O

HO O

O

O

O CS2, NaOH

then MeI

O

O O

O

O

O

MeS

S

Bu3SnH

AIBN

O

O

O

O

O

Barton-­‐McCombie  deoxygenaKon  Xanthate  ester  

RO SMe

S

Bu3Sn

RO SMe

SBu3Sn

R H SnBu3

RH + Bu3Sn

product chain carrier regenerated

Page 43: Reactions hydroxyl groups part-I

Other  possible  ways  

Nucleophilic  displacement  of  leaving  groups,  e.g.  OMs  or  OTs,  with  hydride  from  reducing  agents  such  as  LiAlH4  is  not  generally  a  good  route  

Nucleophilic  subs,tu,on  is  much  slower  in  carbohydrates  due  to  the  β-­‐oxygen  effect  

Under  basic  condi,ons,  side  reac,ons  such  as  elimina,on  rxns  occur  preferen,ally  with  reducing  agents  

Hydrogenolysis  of  halides  in  the  presence  of  mild  base  is  prefered.  

Page 44: Reactions hydroxyl groups part-I

summary  Describe  the  three  types  of  hydroxyl  groups  found  in  sugars  

Remember  anomeric  center  acts  as  an  alcohol  or  aldehyde  

Describe  the  three  types  of  hydroxyl  groups  found  in  sugars  

Realize  the  importance  of  protec,on  to  allow  regioselec,ve  rxns  of  those  unprotected  

Explain  the  pdts  of  acetyla,ons  under  different  condi,ons  

Know  how  to  selec,vely  protect  the  primary  hydroxyl  group  

Recall  the  method  in  forming  and  cleaving  ethers  and  esters