reactions of an aluminium(i) reagent with 1,2-, 1,3- and 1

72
doi.org/10.26434/chemrxiv.11400171.v1 Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1,5-Dienes: Dearomatisation, Reversibility, and a Pericyclic Mechanism Clare Bakewell, Martí Garçon, Richard Y Kong, Louisa O'Hare, Andrew J. P. White, Mark Crimmin Submitted date: 18/12/2019 Posted date: 23/12/2019 Licence: CC BY-NC-ND 4.0 Citation information: Bakewell, Clare; Garçon, Martí; Kong, Richard Y; O'Hare, Louisa; White, Andrew J. P.; Crimmin, Mark (2019): Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1,5-Dienes: Dearomatisation, Reversibility, and a Pericyclic Mechanism. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.11400171.v1 The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings. File list (2) download file view on ChemRxiv Cheletropic_18thDec.pdf (1.47 MiB) download file view on ChemRxiv _SI_Cheletropic_18thDec.pdf (2.18 MiB)

Upload: others

Post on 20-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

doi.org/10.26434/chemrxiv.11400171.v1

Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1,5-Dienes:Dearomatisation, Reversibility, and a Pericyclic MechanismClare Bakewell, Martí Garçon, Richard Y Kong, Louisa O'Hare, Andrew J. P. White, Mark Crimmin

Submitted date: 18/12/2019 • Posted date: 23/12/2019Licence: CC BY-NC-ND 4.0Citation information: Bakewell, Clare; Garçon, Martí; Kong, Richard Y; O'Hare, Louisa; White, Andrew J. P.;Crimmin, Mark (2019): Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1,5-Dienes:Dearomatisation, Reversibility, and a Pericyclic Mechanism. ChemRxiv. Preprint.https://doi.org/10.26434/chemrxiv.11400171.v1

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, toform aluminocyclopentene containing products. This mechanism has been interrogated by stereochemicalexperiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition followsa suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which thetransition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloadditionincludes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactionsoccur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienescomplementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and thehomoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways aredetermined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turnundergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fusedhydrocarbon rings.

File list (2)

download fileview on ChemRxivCheletropic_18thDec.pdf (1.47 MiB)

download fileview on ChemRxiv_SI_Cheletropic_18thDec.pdf (2.18 MiB)

Page 2: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

1

Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1,5-dienes: Dearomatisation, Reversibility, and a Pericyclic Mechanism

Clare Bakewell,†a,b Martí Garçon,†a Richard Y. Kong,†a Louisa O’Hare,a Andrew. J. P. White,a Mark R. Crimmina,*

† These authors contributed equally and are listed in alphabetical order

aMolecular Sciences Research Hub, Department of Chemistry, Imperial College London, 80 Wood Lane, White City, Shepherds Bush, London, W12 0BZ, UK.

bDepartment of Chemistry, University College London, 20 Gordon Street, Kings Cross, WC1H 0AJ, London, UK.

Abstract:

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of

1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to

form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical

experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows

a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the

transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition

includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions

occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes

complementary reactivity is observed; the orthogonal nature of the C=C p-bonds (1,2-diene) and the

homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are

determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn

undergo insertion of a further C=C p-bond leading to complex organometallic products that incorporate fused

hydrocarbon rings.

Page 3: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

2

Introduction

In the past few years there has been fierce interest in reactivity studies of aluminium(I) compounds.1-4

Aluminium is the most abundant metal in the Earth’s crust. It is widely available, and its compounds typically

display low toxicity. As such it is an attractive target for the development of sustainable methods in synthesis

and catalysis. The chemistry of aluminium compounds is still dominated by those in the +3-oxidation state.

There is however a growing realisation that both neutral and anionic aluminium compounds in the +1-

oxidation state show some remarkable reactivity.5-8 In some cases, the scope extends beyond the capabilities

of even the most reactive transition metal complexes.

In this contribution, we focus on reactions of aluminium(I) compounds with unsaturated and aromatic

hydrocarbons. Contemporary work in this area has been foreshadowed by vapour deposition studies

involving the co-condensation of aluminium atoms with ethylene, propene or 1,3-butadiene at low

temperature.9-11 The deuterolysis products of these reactions support the formation of direct Al–C s-bonds,

while EPR spectroscopy of the organometallic products led the authors to speculate that these reactions may

involve the formation of paramagnetic aluminocyclopropanes9 and aluminocyclopentenes.11 The latter

compound being derived from a cheletropic reaction of Al atoms with 1,3-butadiene.11 Schnöckel’s synthesis

of AlCl allowed the first direct translation of this reactivity to aluminium(I) compounds. Metal vapour

deposition of AlCl and 2,3-dimethylbutadiene leads to the formation of a cyclic oligomer and provides

unambiguous structural evidence for Al–C s-bond formation.12 A related cyclic dimer has been reported from

the reaction of a terphenyl stabilised gallium(I) compound with 2,3-dimethylbutadiene and has been

proposed to derive from the dimerization of a metallocyclopentene intermediate.13

Based on the synthetic accessibility of a number of new aluminium(I) complexes, there have been some

notable advances in this area in recent years. We have reported that 1, originally reported by Roesky and co-

workers,14 reacts reversibly with alkenes to form aluminocyclopropanes by a (2+1) cycloaddition,15,16 and in

a single instance non-reversibly with 1,3-cyclohexadiene to form a (4+1)17 cycloaddition product (Figure 1).18

Related reactions of 1 with alkynes are known to form aluminocyclopropenes.19,20 Theoretical studies on 1,

have led to the suggestion that this compound can undergo a (4+1) cycloaddition with benzene to form a

high-energy [2.2.1]aluminobicycloheptadiene moiety.21 Although this reaction is endergonic, there is

experimental support to suggest it is a tangible pathway. Harder and co-workers have shown that 1, benzene

and a cationic calcium complex react to form a bimetallic product in which the dearomatized benzene unit is

trapped between the two main group metals.22 Coles and co-workers have reported, an anionic aluminium(I)

complex that reacts with 1,3,5,7-cyclooctatetrene (COT) to yield a reduced planar COT2– complex which can

isomerise to the non-planar (4+1) cycloaddition product upon sequestration of the countercation.23

Page 4: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

3

Reactions of aluminium(I) compounds with conjugated and aromatic hydrocarbons are not limited to just

those involving the p-system. In the presence of either a palladium or calcium catalyst, 1 effects the C–H

activation of benzene, toluene and xylenes.24-26 In the absence of catalyst 1 is also capable of allylic C–H

activation.15 Anionic aluminium(I) compounds have also been reported to effect the C–H activation of

benzene in the absence of a catalyst.27,28 Remarkably, for one of these systems sequestration of the

potassium countercation generates an aluminium reagent capable of reversibly inserting into a C–C s-bond

of benzene, effecting its dearomatisation.29

Figure 1. Reaction of selected aluminium(I) compounds with unsaturated hydrocarbons. This emerging reactivity of low-valent group 13 compounds parallels that of group 14 reactive intermediates,

which have been the subject of some detailed mechanistic analysis. For example, photochemically or thermal

generated silylenes (R2Si) react with 1,3-dienes to give either 2-vinylsiliranes or silacyclopentenes depending

on the conditions of the experiment. There was originally some contention as to whether 2-vinylsiliranes are

intermediates in the formation of silacyclopentenes. The weight of evidence now suggests that under

thermal conditions the (2+1) addition of R2Si to 1,3-dienes may be reversible allowing equilibration to the

more stable (4+1) product over time.30-34 Expansion of the reactivity to germylenes (R2Ge) and stannylenes

(R2Sn) generally results in higher selectivity for the (4+1) cycloaddition.35 Stereochemical probe experiments

involving stereopure 1,3-diene or bis(allene) substrates are consistent with these reactions being defined as

cheletropic additions involving a pericyclic mechanism.36-38 Calculations based on semi-empirical (MNDO)39

and DFT methods40 support this concerted mechanism and the notion that the (2+1) cycloaddition may be

reversible and lead to a kinetic product.

In this paper we expand the reactivity of 1 to 1,2- 1,3- and 1,5-dienes along with p-extended aromatic

systems. Through a combination of DFT studies and stereochemical probe experiments, we show that 1,3-

Page 5: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

4

dienes react with 1 by a cheletropic and pericyclic mechanism. In certain cases, the reaction can lead to the

dearomatisation of benzene rings and be reversible.

Results and Discussion

1,2-Dienes: The reaction of 1 with 1,2-cyclononadiene in toluene solution proceeds rapidly to form

metallocyclopropane 2a at 25 °C as evidenced by an instant colour change from orange to red on mixing the

reagents (Scheme 1a). 2a is the product of a formal (2+1) cycloaddition. It contains an aluminocyclopropane

unit bearing an exocyclic alkene moiety as characterised by a diagnostic resonance for the vinylic proton at

d = 6.25 (ddd, 3JHH = 10.1, 5.7, 4JHH = 3.1 Hz) ppm. Coupling is observed to not only the diastereotopic protons

of the adjacent methylene group but also the methine proton of the aluminocyclopropane itself. The

exocyclic alkene group renders the aluminocyclopropane unit asymmetric and this is clear in the single crystal

X-ray diffraction data. 2a crystallises with 6 independent molecules within the unit cell, the metrics of each

are similar and discussion is limited to a single molecule. The Al–C(sp3) and Al–C(sp2) bond lengths take values

of 1.952(3) and 1.913(3) Å respectively. The C(sp2)–C(sp3) bond length is 1.564(5) Å, while the C(sp2)–Al–

C(sp3) angle is very acute at 47.7(1)°. Despite the introduction of the exocyclic alkene moiety, these data fall

within the range established for related compounds derived from alkenes.15 The oxidative addition of 1 to

this 1,2-diene parallels established reactivity between 1 and alkenes. The result is unsurprising, the

orthogonal p-orbitals in the allene fragment mean it behaves like two isolated C=C p-systems.

1,3-Dienes and Dearomatisation: In contrast, 1 reacts with a number of 1,3-dienes by a (4+1) cycloaddition

pathway. The reaction scope includes 2,3-dimethyl-1,3-butadiene (2b), 2,4-hexadiene (2c), 1,3-

cyclohexadiene (2d),18 styrene (2e), 1,1-diphenylethylene (2f) and anthracene (2g/2h). In the latter three

cases, either part, or all, of the 1,3-diene fragment is contained within an aromatic ring system and the (4+1)

cycloaddition occurs with a concurrent dearomatisation. Nevertheless, the scope includes both these

aromatic systems in which the 1,3-diene motif is locked into a s-cis geometry and simpler open chain 1,3-

dienes which are known to favour the s-trans configuration in solution (Scheme 1b).

The (4+1) cycloaddition generates an aluminocyclopentene in which the aluminium atom forms part of a five-

membered ring system. The reaction occurs with migration of C=C unsaturation within the hydrocarbon

fragment, consistent with a concerted cheletropic process. In all cases, analysis of the solid state data are

consistent with the assignment of 2a-h as aluminium(III) compounds. The Al–N bond lengths in this series

range from 1.887(2) to 1.9236(15) Å and the N–Al–N bite angle varies from 96.09(6) to 97.1(1) ° (Table 1).

From the perspective of 1, the reaction is an oxidative addition. Direct parallels can be drawn with the known

cheletropic reaction of SO2 with butadienes.41

Page 6: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

5

Scheme 1. Reaction of 1 with (a) 1,2-cyclononadiene and (b) 1,3-dienes, styrene, 1,1,-diphenylethylene and anthracene.

In the case of 2e-2h, 1 is a high enough energy species to effect the dearomatisation of a benzene ring. For

example, the formation of 2e-f occurs with dearomatisation due to the reactive 1,3-diene fragment forming

part of a phenyl substituent. 2f demonstrates a series of resonances in the 1H NMR spectrum in benzene-d6

at d = 5.81 (m, 1H), 5.97 (m, 1H), 6.56 (dd, 1H, 3JHH = 9.6 Hz, 3JHH = 3.5 Hz), 6.61 (d, 1H, 3JHH = 9.6 Hz) ppm

characteristic of the four proton spin system of the newly created 1,3-cyclohexadiene motif. There is a further

characteristic high-field proton at d = 2.65 (d, 1H, 5JHH = 8.4 Hz) ppm which can be assigned to the sp3 methine

heavily shielded and broadened due to the adjacent quadrupolar I = 5/2 aluminium atom. A related reaction

of 1 with benzophenone was recently reported by Nikonov and co-workers.42 The reaction of 1 with

anthracene yields a kinetic 1 : 0.4 mixture of (4+1) cycloaddition products 2g and 2h formed from reaction at

both the 1,4- and 9,10-positions of the hydrocarbon. Diagnostic resonances for the newly formed sp3 centres

could be observed in benzene-d6 for 2g and 2h at d = 3.81 (dd, 3JH-H = 4.7 Hz, 3.5 Hz) and 4.07 ppm

respectively.

Page 7: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

6

Compounds 2b-c and 2f-h were subject to single crystal X-ray diffraction experiments (Figure 3). 2b contains,

at its core, an aluminocyclopentene. The five-membered ring allows expansion of the C–Al–C bond angle to

94.10(8)°, a value consistent with a tetrahedral geometry at aluminium. The Al–C(sp3) bond lengths of

1.9634(19) and 1.9737(17) Å reveal a slight asymmetry to the ring system. The data are similar to a related

1,4-bis(trimethylsilyl)but-2-ene-1,4-diyl complex prepared through a salt-metathesis route.43 The structure

of 2c as determined by single crystal X-ray diffraction is very similar and this molecule crystallises as a 1 : 9

mixture of anti : syn isomers. The structures of 2f-h reveal the dearomatisation of benzene rings. For

example, in 2f the aluminocyclopentene moiety incorporates a dearomatised phenyl group as evidenced by

the formation of a sp3-centre and localised C–C and C=C bond lengths within the hydrocarbon ring. The Al–

C(sp3) bond lengths are asymmetric with the larger of 2.013(2) Å being that to the dearomatized system.

Although this bond is long it is still within the range established for a covalent Al–C s-bond. The Al–C(sp3)

bond lengths of 2g and 2h are similarly elongated and range from 2.047(2) to 2.056(2) Å. In addition, the C–

Al–C bond angles of 2f-h are more acute that in 2b. Both trends are indicators of stretched Al–C bonds in the

dearomatised compounds. The structure of 2g was determined by single crystal X-ray diffraction experiment

on a sample purified by fractional crystallisation of kinetic 1 : 0.4 mixture of 2g:2h. Although 2g crystallised

preferentially, the data were modelled as 96 : 4 mixture of 2g:2h.

114 2aa 2b 2c 2f Al–N 1.957(2) 1.889(2)

1.887(2) 1.9051(14) 1.9236(15)

1.9089(15) 1.9344(15)

1.9029(17) 1.9120(17)

N–Al–N 89.86(8) 97.1(1) 96.09(6) 95.94(6) 96.96(7) Al–C(sp3) 1.952(3) 1.9634(19)

1.9737(17) 1.985(2) 1.990(2)

1.981(2) 2.013(2)

Al–C(sp2) 1.913(3) – – C–Al–C 47.7(1) 94.10(8) 92.28(9) 89.03(9)

C=C 1.309(5) 1.336(3) 1.318(3) 1.357(3)

2gc 2h 3d 4a 4b Al–N 1.9053(18)

1.9089(18) 1.9108(12) 1.9134(12)

1.9260(17) 1.9252(16)

1.9111(18) 1.9081(17)

1.9381(16) 1.9212(17)

N–Al–N 96.28(8) 97.02(5) 96.15(7) 95.16(8) 95.93(7) Al–C(sp3) 2.047(2)

2.056(2) 2.0495(15) 2.0499(15)

1.994(6) 2.018(5)

– –

Al–C(sp2) – – – 1.964(2) 1.980(2) 1.983(2)

C–Al–C 78.35(9) 78.15(6) 82.8(2) – 91.37(8) C=C 1.342(3) – n.r. 1.326(3)

1.323(5) 1.331(3) 1.331(3)

Table 1. Selected bond lengths (Å) and angles (º) from single crystal X-ray diffraction data for 2a-c, 2f-h, 3, and 4a-b.

a molecule A, 1 of 6 in the asymmetric unit. b cocrystallised 9:1 mixture of syn-2C : anti-2c. ccocrystallised 96:4 mixture of 2g:2h with positional disorder of the anthracene unit. ddisordered across two sites.

Page 8: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

7

Figure 2. Structures from single crystal X-ray diffraction data for 2a,2b, 2f-h, 3, and 4a-b.

Formal [2+2+1] Cycloaddition of a 1,5-Diene: Attempts to expand the scope of reactivity to the non-

conjugated diene, 1,5-cyclooctadiene gave a remarkable ring-contraction product derived from reaction of

both C=C p-bonds. Heating a mixture of two equivalents of 1,5-cyclooctadiene to a solution of 1 in benzene-

d6 at 100 °C for 6 hours results in a characteristic colour change from red orange to bright yellow. 3 was

recrystallised by vapour diffusion of pentane into a concentrated toluene solution to afford 3 as bright yellow

blocks. The fused ring-system is disordered over two sites in a ca. 80:20 ratio and as such the data should be

treated with caution. The structure is reminiscent of 2d previously reported by our group.18 The average C–

C bond length of the cyclobutane ring is 1.55 Å while the average C–C–C angle approaches 90°. The protons

of the cyclobutane resonate at d = 1.21 – 1.27 (m, 2H), 2.19 – 2.25 (m, 2H) and 2.40 (m, 2H) ppm. The latter

Page 9: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

8

set of peaks are assigned to the bridgehead position. This ring contraction reaction of 1,5-cyclooctadiene

presents similarities to known homo Diels-Alder cycloadditions.44 While homo Diels-Alder [2+2+2]

cycloadditions of homoconjugated dienes can occur under transition metal catalysis or in the case of very

reactive dienophiles without a catalyst,45-47 cheletropic reactions with homoconjugated dienes are

extremely rare.

Scheme 2. Reaction of 1 with 1,5-cyclooctadiene to form 3.

Reversibility: We have previously reported that (2+1) cycloadditions of 1 with alkenes can, in certain

instances, be reversible.15 The equilibria between 1 + alkene ß à aluminocyclopropane has been probed

through variable temperature NMR spectroscopy and cross-over experiments. The equilibria are of note as

they represent reversible redox processes of a main group reagent. In this case involving interconversion

between the +1 and +3 oxidation state of aluminium.

A series of reactions were conducted to investigate reversibility in the reaction of 1 with dienes. Heating

samples of 2a for 18h at 100 °C in benzene-d6 resulted in the formation of 4a, the product of allylic sp3 C–H

activation. We have previously concluded that the interconversion of related aluminocyclopropane and

allylic C–H activation products occurs through a dissociative pathway involving reformation of 1. Compound

4a contains a 1,3-diene system metallated at the 2-position. In the solid-state, the Al–C(sp2) bond length of

1.964(2) Å is similar to that found in 2a. Although metallated dienes related to 4a have proven remarkably

adept in synthesis,48,49 in part due to their ease of access from the hydroalumination of 1,3-diynes, there are

limited examples of crystallographically characterised aluminium complexes of this type. Repeating this

reaction in the presence of an excess (10 equiv.) of 1,2-cyclononadiene results in the formation of 4b in 1h

at 100 °C. 4b is derived from the insertion of 1,2-cyclononadiene into the Al–C(sp3) bond of 2a. 4b contains

a 2,5-dimetallated hexa-1,5-diene motif. The two hydrocarbon fragments are joined through a trans-fused

ring junction. In the solid, state the Al–C(sp2) bond lengths are 1.980(2) and 1.983(2) Å and are again

reminiscent of those found in 2a and 3. Monitoring the reaction by 1H NMR spectroscopy reveals that 4b is

formed in remarkably high selectivity. Despite the possible loss of selectivity across multiple selectivity

determining events (see supporting information, Scheme S4) 4b is formed in 75 % yield by NMR spectroscopy

and in 65 % isolated yield. 1,2-Cyclononadiene is known to undergo a symmetry allowed thermal [2+2]

cycloaddition. Although this dimerisation was observed to occur in parallel to the formation of 4b, a control

Page 10: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

9

reaction between the dimerised hydrocarbon fragment and 1 did not result in the formation of 4b (see

supporting information, Scheme S2). In combination, the experiments suggest that the formation of 2a is

reversible in the absence of additional substrate but undergoes insertion chemistry in the presence of

exogeneous substrate.

Although heating samples of 2b-d in benzene-d6 gave no evidence for reversibility in the (4+1) cycloaddition

step, the ratio of 2g and 2h proved to be dependent on the reaction conditions. Data are consistent with an

equilibrium between the two isomers being in operation at high temperatures. Hence, heating of 1 : 0.4

mixtures of 2g : 2h in benzene-d6 to 100 °C for 3 days results in slow, but practically quantitative equilibration

to 2h, ultimately to form a 2 : 98 mixture. 2h is the thermodynamic product of the reaction and the

implication is that at higher temperatures the (4+1) cycloaddition to form 2g is reversible while that to form

2h may be non-reversible. This hypothesis was confirmed by a cross-over experiment between a 1 : 0.4

mixture of 2g : 2h and H2 after 2 days between 80 – 100 °C this reaction led to exclusive consumption of 2g

to form the aluminium(III) dihydride 1-H2. 2h remained unreacted. A further cross-over reaction with 2g : 2h

and C6F6 led to the reformation of anthracene and a known C-F alumination compound (compound S1, see

supporting information for details. Similarly, heating samples of 2f in the presence of an excess (10 equiv.)

of C6F6 at 100 °C showed complete conversion of 2f to the same C-F aluminated product (supporting

information). These experiments demonstrate the reversibility of the reaction between 1 and 1,1-

diphenylethylene and anthracene.

Scheme 3. Reversibility in the reactions of 1 with 1,2-cyclononadiene and anthracene

A Pericyclic Mechanism: A series of DFT calculations and stereochemical probe experiments were conducted

to gain insight into the reaction of 1 with 1,3- and 1,5-dienes. The potential energy surfaces for the reactions

Page 11: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

10

of 1 with 2,3-dimethylbutadiene, (E,E)-2,4-hexadiene and anthracene were explored using DFT calculations

(M06L, see SI for details). Dispersion effects were included via single point energy corrections and were

modelled using Grimme’s D3 correction. In all cases, concerted pathways were found in which a single

transition state connects starting materials to products. In the case of anthracene two competitive pathways

could be located for reaction at both the 1,4- and 9,10-positions of the aromatic hydrocarbon.

The (4+1) cycloadditions present high similarity to well-established cheletropic reactions. Cheletropic

reactions are a subclass of pericyclic reactions. Pericyclic reactions themselves involve a cyclic array of

overlapping orbitals. These concerted reactions are characterised by the cyclic nature and aromaticity of the

transition state and follow strict stereochemical course as defined by the Woodward-Hoffmann rules. The

reaction of 1 and 2,3-dimethylbutadiene was calculated to occur by isomerisation of the diene from the s-

trans to s-cis isomer prior to the cycloaddition (DG°298K = +2.7 kcal mol-1). Subsequent formation of Int-1b, an

encounter complex of 1 and the diene is endergonic (DG°298K = +7.4 kcal mol-1) and leads directly to TS-1b

(DG‡298K = +15.3 kcal mol-1). TS-1b is cyclic and concerted, albeit asynchronous. In TS-1b, the formation of the

two Al–C σ-bonds is accompanied by the disappearance of the two conjugated π-bonds and formation of the

new π-bond, as would be expected for a pericyclic [π4s + n2s] cheletropic cycloaddition (Figure 3a). The

formation of the product 2b is exergonic (DG°298K = –30.6 kcal mol-1) and the activation barrier for the reverse

process is unlikely to be surmountable with any appreciable rate constant under the conditions of the

reaction.

Figure 3. (a) Calculated mechanism for the concerted pericyclic reaction of 1 with 2,3-dimethylbutadiene to form 2b.

(b) Stereochemical probe experiments with a mixture of (E,E) and (E,Z)-2,4-hexadiene.

A similar reaction pathway was calculated for the reaction of 1 with (E,E)-2,4-hexadiene. Based on the orbital

symmetry, the thermally allowed [π4s + n2s] reaction pathway should involve suprafacial attack. The

corresponding transition state, TS-1c (DG‡298K = +20.3 kcal mol-1), reflects this and predicts exclusive

formation of the syn-isomer of the product (Figure 3b). Related transition states could be located for the

cheletropic reaction of 1 with both anthracene and benzene itself TS-1g/h and TS-1i respectively (supporting

Page 12: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

11

information). To further substantiate the classification of the reaction as pericyclic, NICS(0) calculations were

performed on these transition states.50 These showed the transition states for the cheletropic reaction to

be highly aromatic (NICS(0) = –10.6 to -–14.3), while the corresponding aluminocyclopentene products 2b,

2c were essentially non-aromatic (NICS(0) = –1.0 to –1.2).

Experimental support for a pericyclic mechanism was acquired from following the stereochemical course of

the reaction of 1 with 2,4-hexadiene to form 2c. A commercial sample (from Fluorochem) of 2,4-hexadiene

was analysed by 1H NMR spectroscopy and confirmed as a 1 : 1.7 mixture of (E,Z) : (E,E) isomers. The least

stable (Z,Z)-isomer could not be detected as part of the mixture. Reaction of the mixture of dienes with excess

(1.8 equiv.) 1 lead to a 1 : 1.7 mixture of anti : syn 2c. The experiment strongly suggests that reaction is

stereospecific with the (E,E) isomer leading exclusively to syn-2c (Figure 3c). Notably this ratio was not

preserved when running the reaction with an excess of 2,4-hexadiene as 1 reacts with the (E,Z)-isomer at a

faster rate than the (E,E)-isomer, and anti-2c was obtained preferentially. Subsequent heating of the product

mixture at 100 ºC for 3 days lead to no changes in the product ratio.

Curious as to whether a concerted process could also be in operation for the formation of the (2+2+1)

cycloaddition product 3 from 1,5-COD the reaction mechanism was studied by DFT calculations. In this

instance the concerted pathway would have to involve a [π2s + π2s + n2s] cycloaddition due to the spatial

separation of C=C p-systems. In some cases, related homo-Diels-Alder reactions have been shown to be

concerted pericyclic cycloadditions.51,52 In the current case, both concerted and stepwise pathways could be

identified by DFT calculations. The stepwise pathway has the lowest energy barriers and is a more likely

proposition than the concerted mechanism. Hence, reaction of 1 with a single alkene unit of 1,5-COD results

in formation of aluminocyclopropane Int-2 (DG°298K = +8.3 kcal mol-1). Approach of the second alkene unit to

aluminium results in the formation of Int-3 (DG°298K = +19.7 kcal mol-1). Int-3 can form the tricyclic scaffold

by insertion of the second alkene into the aluminocyclopropane moiety via TS-2 (DG‡298K = +21.2 kcal mol-1)

forming 3 (DG°298K = –15.6 kcal mol-1) in an exergonic process with control of the stereochemistry of the cis-

fused ring junction. The aluminocyclopropane intermediate is calculated to be unstable with respect to the

starting materials and products. Experimentally no intermediates were observed during the formation of 3.

Page 13: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

12

Figure 4. Calculated mechanism for stepwise reaction of 1 with 1,5-cyclooctadiene to form 3. Conclusions

In summary, we report the reactions of a monomeric aluminium(I) complex with a series of 1,2-, 1,3- and 1,5-

dienes. In the case of the non-conjugated dienes reactivity is defined by an initial (2+1) cycloaddition to form

an aluminocyclopropane. Subsequent insertion of C=C unsaturation into the strained three membered ring

can lead to the formation of more complex organometallic products. In the case of 1,3-dienes a concerted

(4+1) reaction occurs. This can proceed with the dearomatisation of the substrate due to the high-energy

nature of the aluminium(I) reagent. Stereochemical probe experiments and DFT calculations are consistent

with the (4+1) reaction being defined as a concerted pericyclic reaction, specifically a cheletropic reaction.

The definition parallels that known for the addition of group 14 reactive intermediates to 1,3-dienes (e.g.

silylenes, germylenes and stannylenes). The experimental and theoretical realisation of this reactivity in

simple, well-defined molecular systems may be a useful step toward the design of catalytic cycles. Especially

given the potential for reversibility in the [4+1] cycloaddition step. Moreover, the new aluminocycles we

report may be useful reactive organometallic building blocks in chemical synthesis allowing easy access to

complex ring systems from simple starting materials.

Acknowledgements

We are grateful to the European Research Council (FluoroFix:677367) and the Royal Society (UF090149). Pete

Haycock is gratefully acknowledged for assistance with NMR spectroscopy. M.G. thanks “la Caixa”

Foundation (ID 100010434) for a postgraduate scholarship (LCF/BQ/EU19/11710077). RK thanks the

President’s Scholarship scheme of Imperial College London.

Page 14: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

13

References (1) Roesky, H. W.; Kumar, S. S. Chemistry of Aluminium(I). Chem. Commun. 2005, 99 (32), 4027–4038.

(2) Weetman, C.; Inoue, S. The Road Travelled: After Main-Group Elements as Transition Metals. ChemCatChem

2018, 10 (19), 4213–4228.

(3) Chu, T.; Nikonov, G. I. Oxidative Addition and Reductive Elimination at Main-Group Element Centers. Chem.

Rev. 2018, 118 (7), 3608–3680.

(4) Dohmeier, C.; Loos, D.; Schnöckel, H. Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures and

Reactions. Angew. Chem. Int. Ed. 1996, 129–149.

(5) Liu, L. L.; Zhou, J.; Cao, L. L.; Stephan, D. W. Phosphaaluminirenes: Synthons for Main Group Heterocycles. J.

Am. Chem. Soc. 2019, 141 (42), 16971–16982.

(6) Weetman, C.; Bag, P.; Szilvási, T.; Jandl, C.; Inoue, S. CO2 Fixation and Catalytic Reduction by a Neutral

Aluminum Double Bond. Angew. Chem. Int. Ed. 2019, 58 (32), 10961–10965.

(7) Hofmann, A.; Pranckevicius, C.; Tröster, T.; Braunschweig, H. Aluminum(I)/Boron(III) Redox Reactions. Angew.

Chem. Int. Ed. 2019, 58 (11), 3625–3629.

(8) Chu, T.; Korobkov, I.; Nikonov, G. I. Oxidative Addition of s-Bonds to an Al(I) Center. J. Am. Chem. Soc. 2014,

136 (25), 9195–9202.

(9) Kasai, P. H.; McLeod, D. Aluminum Atom-Ethylene Molecular Complex. Matrix Isolation Electron Spin

Resonance Study. J. Am. Chem. Soc. 1975, 97 (19), 5609–5611.

(10) Skell, P. S.; Wolf, L. R. Reactions of Free Aluminum Atoms. Direct Syntheses of Organoaluminum Compounds.

J. Am. Chem. Soc. 1972, 94 (22), 7919–7920.

(11) Chenier, J. H. B.; Howard, J. A.; Tse, J. S.; Mile, B. An ESR Study of the Reaction of Aluminum Atoms with 1,3-

Butadiene: Cheleotropic Cycloaddition and Substituted Allyl Formation. J. Am. Chem. Soc. 1985, 107 (25), 7290–

7294.

(12) Dohmeier, C.; Mattes, R.; Schnöckel, H. Synthesis and Molecular Structure of the Cyclic Hexamer of 2,3-

Dimethylbutene Aluminium Monochloride. J. Chem. Soc., Chem. Commun. 1990, 14 (5), 358–359.

(13) Hardman, N. J.; Wright, R. J.; Phillips, A. D.; Power, P. P. Structures, Bonding, and Reaction Chemistry of the

Neutral Organogallium(I) Compounds (GaAr)n (n = 1 or 2) (Ar = Terphenyl or Related Ligand): an Experimental

Investigation of Ga−Ga Multiple Bonding. J. Am. Chem. Soc. 2003, 125 (9), 2667–2679.

(14) Cui, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Synthesis and Structure of a

Monomeric Aluminum(I) Compound [{HC(CMeNAr)2}Al] (Ar=2,6–iPr2C6H3): a Stable Aluminum Analogue of a

Carbene. Angew. Chem. Int. Ed. 2000, 39 (23), 4274–4276.

(15) Bakewell, C.; White, A. J. P.; Crimmin, M. R. Reversible Alkene Binding and Allylic C–H Activation with an

Aluminium(I) Complex. Chem. Sci. 2019, 10 (8), 2452–2458.

(16) Bakewell, C.; White, A. J. P.; Crimmin, M. R. Reactions of Fluoroalkenes with an Aluminium(I) Complex. Angew.

Chem. Int. Ed. 2018, 57 (22), 6638–6642.

(17) We use the (4+1) nomenclature to refer to the number of atoms involving in cycloaddition reaction. The precise

definition of the number of electrons is captured in the more precise description e.g. [π4s + n2s].

Page 15: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

14

(18) Kong, R. Y.; Crimmin, M. R. Reversible Insertion of CO Into an Aluminium–Carbon Bond. Chem. Commun. 2019,

55 (44), 6181–6184.

(19) Li, X.; Ni, C.; Song, H.; Cui, C. Formation of Aluminacyclobutenes via Carbon Monoxide and Isocyanide Insertion.

Chem. Commun. 2006, 130 (16), 1763–1765.

(20) Cui, C.; Köpke, S.; Herbst-Irmer, R.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Wrackmeyer, B. Facile

Synthesis of Cyclopropene Analogues of Aluminum and an Aluminum Pinacolate, and the Reactivity of LAl[h2-

C2(SiMe3)2] Toward Unsaturated Molecules (L = HC[(CMe)(NAr)]2, Ar = 2,6-i-Pr2C6H3). J. Am. Chem. Soc. 2001,

123 (37), 9091–9098.

(21) Jain, S.; Vanka, K. The Unusual Role of the Aromatic Solvent in Single Site Al(I) Chemistry: Insights From Theory.

Chem. Eur. J. 2017, 23 (56), 13957–13963.

(22) Harder, S.; Brand, S.; Elsen, H.; Langer, J.; Donaubauer, W. A.; Hampel, F. Facile Benzene Reduction by a

Ca2+/Al(I) Lewis Acid/Base Combination. Angew. Chem. Int. Ed. 2018, 57 (43), 14169–14173.

(23) Schwamm, R. J.; Anker, M. D.; Lein, M.; Coles, M. P. Reduction vs. Addition: the Reaction of an Aluminyl Anion

with 1,3,5,7-Cyclooctatetraene. Angew. Chem. Int. Ed. 2019, 58 (5), 1489–1493.

(24) Hooper, T. N.; Garçon, M.; White, A. J. P.; Crimmin, M. R. Room Temperature Catalytic Carbon–Hydrogen Bond

Alumination of Unactivated Arenes: Mechanism and Selectivity. Chem. Sci. 2018, 9 (24), 5435–5440.

(25) Chen, W.; Hooper, T. N.; Ng, J.; White, A. J. P.; Crimmin, M. R. Palladium-Catalyzed Carbon-Fluorine and Carbon-

Hydrogen Bond Alumination of Fluoroarenes and Heteroarenes. 2017, 56 (41), 12687–12691.

(26) Brand, S.; Elsen, H.; Langer, J.; Grams, S.; Harder, S. Calcium-Catalyzed Arene C-H Bond Activation by Low-

Valent AlI. Angew. Chem. Int. Ed. 2019, 58 (43), 15496–15503.

(27) Kurumada, S.; Takamori, S.; Yamashita, M. An Alkyl-Substituted Aluminium Anion with Strong Basicity and

Nucleophilicity. Nat. Chem. DOI: 10.1038/s41557-019-0365-z.

(28) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Synthesis, Structure and Reaction Chemistry of a Nucleophilic

Aluminyl Anion. Nature 2018, 557 (7703), 92–95.

(29) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Reversible, Room-Temperature C–C Bond Activation of

Benzene by an Isolable Metal Complex. J. Am. Chem. Soc. 2019, 141 (28), 11000–11003.

(30) Takeda, N.; Tokitoh, N.; Okazaki, R. A Novel Reaction Mode in the Cycloaddition of Thermally Generated

Silylenes with Conjugated Dienes. Chem. Lett. 2000, 622–623.

(31) Bobbitt, K. L.; Gaspar, P. P. 1-2-Adducts From Silylenes and 1,3-Butadiene. J. Organomet. Chem. 1995, 499, 17–

26.

(32) Zhang, S.; Conlin, R. T. Stable 2-Vinylsiliranes. J. Am. Chem. Soc. 1991, 113 (11), 4272–4278.

(33) Ishikawa, M.; Nakagawa, K. I.; Kumada, M. Photolysis of Organopolysilanes. the Reaction of

Trimethylsilylphenylsilene with Olefins and Conjugated Dienes. J. Organomet. Chem. 1979, 178, 105–118.

(34) Atwell, W. H.; Weyenberg, D. R. Silylene Chemistry. I. the Thermolysis of Methoxypolysilanes. J. Am. Chem. Soc.

1968, 90 (13), 3438–3443.

(35) Cotton, J. D.; Davidson, P. J.; Lappert, M. F. Subvalent Group 4B Metal Alkyls and Amides. Part II. the Chemistry

and Properties of Bis[Bis(Trimethylsilyl)Methyl]Tin(II) and Its Lead Analogue. J. Chem. Soc., Dalton Trans. 1976,

No. 21, 2275–2286.

(36) Ma, E. C.; Kobayashi, K.; Barzilai, M. W.; Gaspar, P. P. Stereochemistry of Dimethylgermylene Addition to E,E-

and E,Z-Hexadienes in the Gas Phase. J. Organomet. Chem. 1982, 224, C13–C16.

Page 16: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

15

(37) Schriewer, M.; Neumann, W. P. Chemistry of Heavy Carbene Analogues R2M (M = Si, Ge, Sn). 8. Germylenes:

Singlets or Triplets? [2+4] Cheletropic Cycloadditions of Dimethylgermylene and Diiodogermylene to

Conjugated Dienes. J. Am. Chem. Soc. 1983, 105 (4), 897–901.

(38) Marx, R.; Neumann, W. P.; Hillner, K. [2+4] Cheletropic Cycloadditions of Stannylenes R2Sn (R = Alkyl, Amino,

Halogen). Tet. Lett. 1984, 25 (6), 625–628.

(39) Dewar, M. J. S.; Friedheim, J. E.; Grady, G. L. Studies of Chemical Problems Using Quantum Mechanical

Molecular Models. Part 72. Stannylenes: an MNDO Investigation. Organometallics 1985, 4 (10), 1784–1787.

(40) Nag, M.; Gaspar, P. P. A Computational Study of the Mechanism of Addition of Singlet Carbene Analogues to

1,3-Butadiene to Form 1,1-Dimethylmetallacyclopent-3-enes [MMe2C4H6, M = Si, Ge, Sn] and Their Reverse

Retro-Addition Reactions. Organometallics 2009, 28 (19), 5612–5622.

(41) Mock, W. L. The Stereoelectronic Course of the Diene-Sulfur Dioxide Reaction. J. Am. Chem. Soc. 1966, 88 (12),

2857–2858.

(42) Dmitrienko, A.; Britten, J. F.; Spasyuk, D.; Nikonov, G. I. Adduct of NacNacAl with Benzophenone and Its

Coupling Chemistry. Chem. Eur. J. 2019, doi.org/10.1002/chem.201903719.

(43) Gardiner, M. G.; Raston, C. L.; Cloke, F. G. N.; Hitchcock, P. B. 1,4-Bis(Trimethylsilyl)but-2-Ene-1,4-Diyl

Complexes of Lithium, Magnesium, Aluminum, and Gallium. Organometallics 1995, 14 (3), 1339–1353.

(44) Petko, D.; Stratton, M.; Tam, W. Ruthenium-Catalyzed Bis-Homo-Diels-Alder Reaction: Searching for

Commercially Available Catalysts and Expanding the Scope of Reaction. Can. J. Chem. 2018, 96 (12), 1115–

1121.

(45) Lautens, M.; Edwards, L. G. Stereoselectivity in the Homo Diels-Alder Reaction. Tet. Lett. 1989, 30 (49), 6813–

6816.

(46) Fickes, G. N.; Metz, T. E. Scope of the Homo-Diels-Alder Reaction. J. Org. Chem. 1978, 43 (21), 4057–4061.

(47) Blomquist, A. T.; Meinwald, Y. C. Synthesis of Some Conjugated Cyclobutane Polyolefins and Their 1,2-

Cycloaddition to Tetracyanoethylene 1,2. J. Am. Chem. Soc. 1959, 81 (3), 667–672.

(48) Müller, D.; Alexakis, A. Formation of Quaternary Stereogenic Centers by Copper-Catalyzed Asymmetric

Conjugate Addition Reactions of Alkenylaluminums to Trisubstituted Enones. Chem. Eur. J. 2013, 19 (45),

15226–15239.

(49) Miller, J. A.; Zweifel, G. Hydroalumination of 1-(Trimethylsilyl-1,3-Diynes). Syntheses of Stereodefined Enynes

and Dienes. J. Am. Chem. Soc. 1983, 105 (5), 1383–1384.

(50) Schleyer, P. V. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Van Eikema Hommes, N. J. R. Nucleus-Independent

Chemical Shifts:  A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996, 118 (26), 6317–6318.

(51) Berson, J. A.; Olin, S. S. Geometry of the Transition State of the Retrograde Homo Diels-Alder Reaction.

Stereospecific Conversion of 1,3-to 1,4-Dienes. J. Am. Chem. Soc. 1969, 91 (3), 777–778.

(52) Khuong, K. S.; Houk, K. N. One-Bond, Two-Bond, and Three-Bond Mechanisms in Thermal Deazetizations of

2,3-Diazabicyclo[2.2.2]Oct-2-Enes, Trans-Azomethane, and 2,3-Diazabicyclo[2.2.1]Hept-2-Ene. J. Am. Chem.

Soc. 2003, 125 (48), 14867–14883.

Page 18: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S1

Supporting Information for:

ReactionsofanAluminium(I)Reagentwith1,2-,1,3-and1,5-dienes:

Dearomatisation,Reversibility,andaPericyclicMechanism

Clare Bakewell,†a,b Martí Garçon,†a Richard Y. Kong,†a Louisa O’Hare,a Andrew. J. P.

White,a Mark R. Crimmina,*

†Theseauthorscontributedequallyandarelistedinalphabeticalorder

*Correspondingauthor.E-mail:[email protected]

aMolecularSciencesResearchHub,DepartmentofChemistry,ImperialCollegeLondon,80WoodLane,

WhiteCity,ShepherdsBush,London,W120BZ,UK.

bDepartmentofChemistry,UniversityCollegeLondon,20GordonStreet,KingsCross,WC1H0AJ,London,

UK.

Page 19: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S2

Contents

1. Experimentaldetails.........................................................................................................................................S3

2. Syntheticprocedures........................................................................................................................................S4

3. Mechanisticinsights........................................................................................................................................S14

4. SingleCrystalDiffractionData..................................................................................................................S17

5. DFTcalculations................................................................................................................................................S23

6. XYZcoordinates.................................................................................................................................................S31

7. References............................................................................................................................................................S54

Page 20: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S3

1. Experimentaldetails

Unless otherwise specified, all manipulations were carried out using standard Schlenk and

glovebox techniques, under inert atmosphere (nitrogen or argon). A MBRAUN Labmaster

gloveboxwasemployedoperatingwithconcentrationsofH2OandO2below0.1ppm.Anhydrous

solventswereobtainedfromaGrubbstypeSPSsystemandstoredoveractivated3Åmolecular

sieves under inert atmosphere. Alternatively, they were dried using molecular sieves and

degassedbyfreeze-pump-thawprocedures.Stable liquidorganicreagentsweredriedover3Å

molecularsievesandfreeze-pump-thawdegassedbeforeuse.Allotherreagentswereobtained

fromcommercial suppliers (Sigma-Aldrich,AlfaAesar,Fluorochem)andusedwithout further

purification.DippBDIH,1andDippBDIAl(1)2werepreparedbyliteratureprocedures(DippBDI={2,6-

i-Pr2C6H3NC(Me)}2CH,Dippordipp=2,6-di-iso-propylphenyl).

1H-, 13C-,NMR spectra and two-dimensional experiments (COSY,NOESY,DOSY,HSQC,HMBC)

were conducted in J. Young’s NMR tubes on BRUKER 400 MHz or 500 MHz spectrometers.

Chemicalshifts(δ)werereferencedtointernalsolventresonances.Datawasprocessedusingthe

MestReNovaorTopSpin software.The coupling constants (J) are reported inHertz (Hz).The

following abbreviations are used to definemultiplicities: s (singlet), d (doublet), t (triplet), q

(quadruplet),sept.(septet),dd(doubletofdoublets),m(multiplet),brs(broadsignal).

SinglecrystalX-RaydatawasobtainedonAgilentDiffractionXcaliburPXUltraAandXcalibur3

Ediffractometers,andthestructureswererefinedusingtheSHELXTLandSHELX-2013program

systems.3

Page 21: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S4

2. Syntheticprocedures

Synthesisof2a:

In a glovebox, to a solution of 1 (10 mg, 0.022 mmol) dissolved in toluene (2 mL), 1,2-

cyclononadiene (10 μL, 12.5mg, 0.065mmol)was addedviamicropipette. An instant colour

changefromorangetodeep-redwasobserved.Thesolventwasremovedinvacuoandtheoily

redresiduewasdissolvedintheminimumamountofn-pentane.2awasrecrystallizedat–35°C

asredshardswhichwerewashedthreetimeswithcoldn-pentane(3x1mL)anddriedinvacuo.

The crystalswere crushedduring the dryingprocess to liberate co-crystallised solvent. Yield

(11mg,0.019mmol,86%).

2a:1HNMR(400MHz,benzene-d6,298K):0.74-0.88(m,1H,AlC3-H),1.01(d,3JHH=6.9Hz,3H,

CH(CH3)),1.02(d,3JHH=6.8Hz,3H,CH(CH3)),1.12(d,3JHH=6.9Hz,3H,CH(CH3)),1.15(d,3JHH=

6.9Hz,3H,CH(CH3)),1.26-1.67(m,br,overlapping,10H,C4-7-(H)(H’)),1.42(m,overlapping,1H,

C2-H),1.44(d,3JHH=3.0Hz,3H,CH(CH3)),1.45(d,3JHH=3.5Hz,3H,CH(CH3)),1.47(d,3JHH=7.1

Hz,1H,CH(CH3)),1.50(s,3H,(CH3C(CH)C(CH3)),1.55(s,3H,(CH3)C(CH)C(CH3)),1.56(d,3JHH=

6.5Hz,3H,CH(CH3)),1.48(m,overlapping,1H,C3-H’)2.01-2.09(m,1H,C3-H),2.18-2.27(m,1H,

C8-H), 2.49-2.61 (m, 1H, C8-H’), 3.30-3.52 (m, overlapping, 4H, 4x CH(CH3)2), 4.87 (s, 1H,

NC(CH)CN),6.25(ddd,3JHH=10.1,5.7,4JHH=3.1Hz,1H,C9-H),7.02-7.17(m,6H,Ar-H).

13C{1H}NMR (100MHz, benzene-d6, 298K): δ 22.3 (2x (CH3)C(CH)C(CH3), overlapping), 23.4

(CH2), 24.3 ((CH3)CH(CH3)), 24.3 ((CH3)CH(CH3)), 24.6 ((CH3)CH(CH3)), 24.7 ((CH3)CH(CH3)),

24.8 (2x(CH3)CH(CH3), overlapping), 25.0 ((CH3)CH(CH3)), 25.2 ((CH3)CH(CH3)), 28.2 (C3H2),

28.6 ((CH3)CH(CH3)), 28.7 ((CH3)CH(CH3)), 28.9 (CH2), 28.2 (CH2), 29.4 ((CH3)CH(CH3)), 30.5

(CH2),32.6(C8H2),33.6(CH2),40.0(C2H),96.7(NCCCN),124.2(ArC),124.4(ArC),124.9(ArC),

125.1(ArC),134.2(C2H),138.8(ArC),139.2(ArC),143.2(ArC),143.5(ArC),144.8(ArC),145.1

(ArC),167.3(C1),172.4(NCCCN),172.7(NCCCN).

Page 22: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S5

Synthesisof2b:

Inaglovebox,1(5mg,0.01mmol,1equiv.)and2,3-dimethyl-1,3-butadiene(11.3μL,0.1mmol,

10equiv.)weredissolvedinC6D6(0.6mL).Thereactionwasmonitoredby1HNMRspectroscopy

asa functionof timeusinga ferrocene internalstandardThecompleteconsumptionof1was

observedafter15minsinthe1HNMRspectrum,forming2bin98%yield(vs.internalferrocene

standard).ThevolatileswerethenremovedinvacuoandX-rayqualitycrystalswereisolatedfrom

aconcentratedsolutionn-hexane/tolueneat–35°C.

2b:1HNMR(400MHz,benzene-d6,298K):0.80(s,4H,Al(CH2)2(CMe)2),1.13(d,12H,CH(CH3),3JHH=6.8Hz),1.35(d,12H,CH(CH3),3JHH=6.8Hz),1.53(s,6H,CH3),1.78(s,6H,CH3),3.41(sept,

4H,CH(CH3)2,3JHH=6.8Hz),4.85(s,1H,C(CH3)CHC(CH3)),7.05-7.15(m,6H,ArH);

13C{1H}NMR(100MHz,benzene-d6,298K):18.3(Al(CH2)2(CMe)2),22.2(CH3),23.1(CH3),24.5

(CH(CH3)2),24.7 (CH(CH3)2),28.3 (CH(CH3)2),97.1 (C(CH3)CHC(CH3)),124.1 (CH),127.0 (CH),

132.6(CIV),140.3(CIV),144.0(CIV),170.0(C(CH3)CHC(CH3)).

Anal.Calc.(C35H51AlN2):C,79.80;H,9.76;N,5.32.Found:C,79.62;H,9.69;N,5.26.

N

NAl

dipp

dipp

Page 23: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S6

InSituGenerationof2c:

Inaglovebox,2,4-hexadiene(0.86μL,0.0075mmol,1equiv.)and1(6mg,0.013mmol,1.8equiv.)

weredissolvedinC6D6(0.7mL).Themixturewasleftat25oCfor16htoachievefullconversion

ofthe2,4-hexadieneandgeneratea1.7:1mixtureofsyn:anti2c.Thevolatileswerethenremoved

invacuotoobtainthecrudemixtureasproduct.Mostattemptstorecrystallizeitfailed.iTheNMR

ofthe1.7:1mixtureof2disreported.

1H-NMR(1.7:1mixtureofsyn:anti2c,400MHz,C6D6)δ(ppm):1.07–1.58(seriesofoverlapping

signals,AlCH,CH3,CH(CH3)2),3.24–3.41(m,CH(CH3)2),4.77(s,1H,MeCCHCMeanti-2c),4.87(s,

1H,MeCCHCMesyn-2c),5.83(d,3JH-H=1.4Hz,2H,HC=CHsyn-2c),5.95(d,3JH-H=1.4Hz,2H,HC=CH

anti-2c),6.98–7.13(seriesofoverlappingm,ArH).

Synthesisof2d:

2dwassynthesisedaspreviouslyreportedintheliterature.4

iAfewX-rayqualitycrystalswereobtainedinoneoccasionfromatoluene:hexanesolution.

Page 24: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S7

Synthesisof2e:

Inaglovebox,toasolutionof1(10mg,0.022mmol)intoluene(2mL),styrene(5μL,5.5mg,

0.053mmol)wasaddedviamicropipette.Aninstantcolourchangefromorangetobrightyellow-

orange was observed. The volatiles were removed in vacuo, the resultant orange oil was

resuspendedintheminimumamountofn-pentaneandtheproductwascrystallisedat–35°C.

Thebrightyellow-orangecrystalswerewashedthreetimeswithcoldn-pentane(3x0.2mL)and

driedinvacuo.Yield(11mg,0.02mmol,91%).

2e:1HNMR(400MHz,benzene-d6,298K):0.43(m,1H,AlCHHH),0.97(d,1H,AlCHHG,JHH=6.6

Hz),1.02(d,3H,CH(CH3),3JHH=6.8Hz),1.10(d,3H,CH(CH3),3JHH=6.8Hz),1.13(d,3H,CH(CH3),3JHH=6.8Hz),1.21(d,3H,CH(CH3),3JHH=6.8Hz),1.26(d,3H,CH(CH3),3JHH=6.8Hz),1.29(d,3H,

CH(CH3),3JHH=6.8Hz),1.33(d,3H,CH(CH3),3JHH=6.8Hz),1.49(d,3H,CH(CH3),3JHH=6.8Hz),

1.50(s,3H,CH3),1.53(s,3H,CH3),2.45(bs,1H,AlCHA),3.16(sept,2H,CH(CH3)2,3JHH=6.8Hz),

3.39(m,2H,CH(CH3)2),4.83(s,1H,C(CH3)CHC(CH3)),5.57(m,1H,CHF),5.77(m,1H,CHD),5.88

(m,1H,CHC),6.18(d,1H,CHE,3JHH=9.4Hz),6.35(dd,1H,CHB,3JHH=9.1Hz,3JHH=4.0Hz),7.06-

7.20(m,6H,ArH)

13C{1H}NMR(100MHz,benzene-d6,298K):10.5(AlCHGHH),23.1(CH3),23.6(CH(CH3)2),24.5

(CH(CH3)2), 24.6 (2 x CH(CH3)2), 24.7 (CH(CH3)2), 24.7 (CH(CH3)2), 25.1 (CH(CH3)2), 25.1

(CH(CH3)2), 27.6 (CH(CH3)2), 28.3 (CH(CH3)2), 29.0 (CH(CH3)2), 29.0 (CH(CH3)2), 35.0 (AlCHA),

97.8(C(CH3)CHC(CH3)),118.4(CHC),120.3(CHF),121.8(CHD),123.9(CH),124.1(CH),124.3(CH),

125.0(CH),127.2(CH),127.5(CH),128.6(CHE),134.8(CHB),139.9(CIV),140.7(CIV),141.1(CIV),

142.9(CIV),143.1(CIV),144.2(CIV),144.7(CIV),170.5(C(CH3)CHC(CH3)),170.6(C(CH3)CHC(CH3)).

Page 25: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S8

Synthesisof2f:

Inaglovebox,toasolutionof1(23mg,0.052mmol)intoluene(5mL),1,1-diphenylethylene(15

μL,0.082mmol)wasaddedviamicropipette.Animmediatecolourchangefromorange-redto

brightyellow-orangewasobserved.Thesolutionwasconcentratedinvacuoandrecrystallised

fromamixtureofn-pentane/toluene(10:1).Themother liquorwasdecanted fromthebright

orangesolid,andthesolidwaswashedthreetimeswithcoldn-pentane(3x0.5mL).Yield(18

mg,0.029mmol,55%).

2f:1HNMR(400MHz,benzene-d6,298K):0.86(dd,2JHH=14.8,5JHH=8.4Hz,1H,AlCHFH)1.01(d,

3H,CH(CH3),3JHH=6.8Hz),1.03(d,3H,CH(CH3),3JHH=6.8Hz),1.14(d,6H,CH(CH3)2,3JHH=6.8

Hz),1.20(d,3H,CH(CH3),3JHH=6.8Hz),1.23(d,1H,AlCHHG,2JHH=11.2Hz),1.28(d,3H,CH(CH3),3JHH=6.8Hz),1.29(d,3H,CH(CH3),3JHH=6.8Hz),1.48(s,3H,CH3),1.49(d,3H,CH(CH3),3JHH=6.8

Hz),1.53(s,3H,CH3),2.65(bd,1H,AlCHA,5JHH=8.4Hz),3.18(sept,2H,CH(CH3)2,3JHH=6.8Hz),

3.37(m,2H,CH(CH3)2),4.81(s,1H,C(CH3)CHC(CH3)),5.81(m,1H,CHD),5.97(m,1H,CHC),6.56

(dd,1H,CHB,3JHH=9.1Hz,3JHH=3.5Hz),6.61(d,1H,CHE,3JHH=9.6Hz),6.81(m,2H,ArH),6.94(m,

2H,ArH),7.05-7.18(m,6H,ArH),7.24(m,1H,ArH).

13C{1H} NMR (100 MHz, benzene-d6, 298 K): 20.3 (AlCHFHG), 23.0 (CH3), 23.2 (CH3), 23.7

(CH(CH3)2),24.3(CH(CH3)2),24.5(CH(CH3)2),24.6(CH(CH3)2),24.6(CH(CH3)2),24.6(CH(CH3)2),

25.2 (CH(CH3)2), 25.7 (CH(CH3)2), 27.5 (CH(CH3)2), 28.4 (CH(CH3)2), 28.9 (CH(CH3)2), 29.1

(CH(CH3)2), 37.5 (AlCHA),97.7 (C(CH3)CHC(CH3)), 118.5 (CHC), 122.8 (CHD),124.2 (CH),1243.

(CH),125.0(CHE),125.2(CH),127.1(CH),127.3(CH),127.6(CH),128.0(CH),128.5(CH),130.2

(CIV),133.3(CIV),135.0(CHB),139.8(CIV),141.0(CIV),142.8(CIV),143.1(CIV),144.3(CIV),145.8

(CIV),170.6((CH3)C(CH)C(CH3)),171.0((CH3)C(CH)C(CH3)).

Page 26: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S9

Synthesisof2g/2h

Inaglovebox,anthracene(4mg,0.02mmol,1equiv.)and1(10mg,0.02mmol,1equiv.)were

dissolved in C6D6 (0.7mL). Themixture was left at 25oC for 16h to ensure full conversion.ii

Monitoringthereactionby1HNMRspectroscopyshowedformationofa1:0.43mixtureof2g:2h.

Thisratiowaspreservedthroughoutthereactionuntilfullconversion.Thevolatileswerethen

removedinvacuoandthesolidsuspendedinn-hexane(0.5mL)andaminimalamountoftoluene

addeddropwiseuntildissolution.Theresultingsolutionwasleftat-35oCandafewX-rayquality

crystalsof2gwereobtained.iiiAlternatively,thecrudeproductcanbewashedwithsmallamounts

ofn-hexane(0.5mL)toenrichthemixturein2gtoaround1:0.22g:2h.Attemptstoobtainabulk

sampleofpure2gfailed.NMRcharacterisationdatawastakenfromthemixture,andthesignals

of2gassignedbycomparisonagainstpure2h(videinfra).

2g:1HNMR(400MHz,C6D6)δ(ppm):0.87(d,3JH-H=6.8Hz,6H,CH(CH3)2),1.05(d,3JH-H=6.8Hz,

6H,CH(CH3)2),1.35(s,3H,CH3),1.46(d,3JH-H=6.5Hz,6H,CH(CH3)2),1.46(s,3H,CH3),1.49(d,3JH-H=6.7Hz,6H,CH(CH3)2),3.07(sept,3JH-H=6.7Hz,2H,CH(CH3)2),3.20(sept,3JH-H=6.8Hz,2H,

CH(CH3)2),3.81(dd,3JH-H=4.7Hz,3J’H-H=3.5Hz,2H,AlCH),4.80(s,1H,MeCCHCMe),5.74(dd,3JH-

H=4.8Hz,3J’H-H=3.4Hz,2H,anthraceneCH),6.39–6.55(m,3H,ArH),6.78–7.14(overlappingm,

5H,ArH),7.25–7.30(m,2H,ArH),7.55–7.62(m,2H,ArH).

13C{1H}NMR(100MHz,C6D6)δ(ppm):23.5–24.8(seriesofoverlappingsignals,4xCH3,CHMe2,

Me),24.9(2xCH3),25.1(2xCH3),28.7(2xCH),28.9(2xCH),44.3(brs,2xCH),97.2(1xCH),117.4

(2xCH),122.5(2xCH),123.6(2xCH),124.7(2xCH),124.8(2xCH),126.9(2xCH),127.1(1xCH),

127.3(1xCH),132.0(2xC),139.6(1xC),142.0(2xC),142.5(2xC),143.7(1xC),145.2(2xC),171.1

(1xC),171.6(1xC).

iiHighconversionsareachievedwithin twohours.Dependingonthepurityof the1precursor,asmallexcessof1canbeaddedtoobtainanactual1:1ratio,sothatnoexcess1noranthraceneisleftafterthereactionwhichwouldhinderpurification.Nonetheless,thereactionperformanceandproductisolationareessentiallyunaffectedbythepurityof1.iiiThecrystalspresentedasmallamountofdisorderbetween2gand2h.

Page 27: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S10

Synthesisof2h

Inaglovebox,anthracene(3mg,0.02mmol,1equiv.)and1(10mg,0.02mmol,1.3equiv.)were

dissolvedinC6D6(0.7mL).Themixturewasleftat25oCfor16handthenheatedat100oCfor3

days.Thevolatileswerethenremovedinvacuoandthesolidsuspendedinn-hexane(0.5mL)and

aminimalamountoftolueneaddeddropwiseuntildissolution.Theresultingsolutionwasleftat

-35oC overnight and the product crystallised as colourless/pale yellow needles (11mg, 0.02

mmol,100%yield).

2h:1HNMR(400MHz,C6D6)δ(ppm):0.99(d,3JH-H=6.8Hz,12H,CH(CH3)2),1.30(s,6H,CH3),

1.53(d,3JH-H=6.8Hz,12H,CH(CH3)2),3.16(sept,3JH-H=6.8Hz,4H,CH(CH3)2),4.07(s,2H,AlCH),

4.74(s,1H,MeCCHCMe),6.60(dd,3JH-H=5.5Hz,3J’H-H=3.1Hz,4H,anthraceneArH),6.84–7.13

(seriesofoverlappingm,10H,ArH).

13C{1H}NMR(100MHz,C6D6)δ(ppm):23.9(4xCH3),24.2(2xCH3),24.4(4xCH3),28.6(4xCH),

46.4(brs,2xCH),97.5(1xCH),121.9(4xCH),122.4(4xCH),124.1(4xCH),127.0(2xCH),141.3

(2xC),141.7(4xC),143.2(4xC),171.9(2xC).

IR(ATR,cm-1):3060,2960,2870,1528,1439,1387,1316,1252,1100,1021,798.

AllattemptstoacquiresatisfactoryCHNanalysisfailed.

Page 28: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S11

Synthesisof3

Inaglovebox,1,5cyclooctadiene(10μL,0.08mmol)wasaddedtoasolutionof1(17mg,0.04

mmol)dissolvedinbenzene-d6(0.6mL)andthemixturewastransferredintoaYoung’stapNMR

tube.Themixturewasremovedfromthegloveboxandheatedat100°Cfor6h.Uponcompletion

of thereaction(asmonitoredbytheconsumptionof1by1HNMRspectroscopy), the J-Young

NMRtubewasreturnedtotheglovebox.Thebrightyellowsolutionwasdilutedwithtoluene(~2

mL)andconcentratedinvacuo(~0.5mL)andallowedtorecrystallizeat-35°C.Themotherliquor

was decanted from the yellow crystallinematerial and the crystalswerewashed thricewith

pentane(3x2mL)beforebeingdriedundervacuum.Yield(17mg,0.031mmol,77%).

3: 1HNMR(400MHz,benzene-d6,298K)δ0.69(m,2H,2xAl-CH),1.03(d, 3JHH=6.8Hz,6H,

(CH3)2CH),1.05(d,3JHH=6.8Hz,6H,(CH3)2CH),1.21–1.27(m,2H,C4,C4’-H’),1.38(d,3JHH=6.2

Hz,6H,(CH3)2CH),1.40(d,3JHH=6.4Hz,6H,(CH3)2CH),1.52(s,3H,(CH3)C(CH)C(CH3)),1.55(s,

3H,(CH3)C(CH)C(CH3)),1.90–1.99(m,2H,C1,C1’-H),2.19–2.25(m,2H,C4,C4’-H),2.40(m,2H,

C3,C3’-H),2.48(dq,J=8.2,6.0,5.1Hz,2H,C1,C1’-H’),3.35(hept,3JHH=6.8Hz,2H,2x(CH3)2CH),

3.46(hept,3JHH=6.8Hz,2H,2x(CH3)2CH),4.83(s,1H,(CH3)C(CH)C(CH3)),6.99-7.20(m,6H,Ar-

H).

13CNMR (101MHz, Benzene-d6, 298K) δ 19.3 (AlCH), 20.6 (C4,C4’), 21.6 (C1,C1’), 23.7 (2x

(CH3)CH),24.1((CH3)C(CH)C(CH3)),24.2(CH3)C(CH)C(CH3),25.3(2x(CH3)CH),28.6((CH3)CH),

28.6 ((CH3)CH), 36.8 (C3,C3’), 96.1 (CH3)C(CH)C(CH3), 124.3 (ArC), 124.3 (ArC), 141.8 (ArC),

142.0(ArC),144.2(ArC),144.3(ArC),171.2((CH3)C(CH)C(CH3)),171.3((CH3)C(CH)C(CH3)).

Anal.Calc.(C37H53AlN2):C,80.39;H,9.66;N,5.02.Found:C,80.40;H,9.75;N,5.10.

Page 29: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S12

Synthesisof4a

Inaglovebox,2a(10mg,0.018mmol)wasdissolvedinbenzene-d6andtransferredtoaJ-Young

NMRtube.Theresultantsolutionwasremovedfromthegloveboxandheatedat100°Cfor18h.

Thenowcolourlesssolutionwasreturnedtotheglovebox,dilutedwithtoluene(~1mL)andall

volatileswereremoved invacuo.Theresidue isanalyticallypurebutcanberecrystallizedby

dissolutioninpentaneat-35°C.Yield(9mg,0.016mmol,90%).

4a:1HNMR(400MHz,benzene-d6,298K)δ1.11(d,3JHH=6.8Hz,6H,(CH3)2CH),1.18(d,3JHH=

6.9Hz,6H,(CH3)2CH),1.17–1.31(m,6H,3xCH2),1.35(d,3JHH=6.8Hz,6H,(CH3)2CH),1.45(d,3JHH=6.7Hz,6H,(CH3)2CH),1.56(s,6H,{(CH3)C}2CH),1.66–1.73(m,2H,C4-H2),2.02–2.08(m,

2H,C8-H2),3.33(hept,3JHH=6.9Hz,2H),3.54(hept,3JHH=6.7Hz,2H),4.98(s,1H),5.14(dt,3JHH

=10.8,8.2Hz,1H,C9-H),5.32–5.37(m,1H,C2-H),5.49(td,3JHH=7.7,1.4Hz,1H,C3-H),7.07-

7.16(6H,Ar-H).

13C NMR (101 MHz, Benzene-d6, 298K) δ 23.2 (CH3C(CH)C(CH3)), 24.1 ((CH3)2CH), 24.5

((CH3)2CH), 24.8 ((CH3)2CH), 26.0 ((CH3)2CH), 26.7 (CH2), 27.2 (CH2), 28.4 ((CH3)2CH), 29.1

((CH3)2CH),29.6(C4-H2,CH2(overlapping)),31.1(C8-H2),97.7((CH3)C(CH)C(CH3)),124.0(Ar-C),

124.8(Ar-C),125.5(C3),127.3(Ar-C),135.6(C2),141.2(C9),143.3(Ar-C),144.2(Ar-C),145.2

(Ar-C),170.4(N=C).

Page 30: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S13

Synthesisof4b

Inaglovebox,toasolutionof1(17mg,0.038mmol)inbenzene-d6(0.600mL)nonallene(60μL,

~0.40mmol)wasaddedviamicropipetteresultinginanimmediatecolourchangefromorange

todeepred.ThemixturewastransferredtoaJ-YoungNMRtube,removedfromtheglovebox,and

heated for 1 hour at 100°C, atwhich point the reactionwas complete as shown by 1HNMR

spectroscopy.TheJ-YoungNMRtubewasreturnedtotheglovebox,dilutedwithtoluene(~1mL)

and concentrated in vacuo. 4b was recrystallized by vapour diffusion of pentane into a

concentratedtoluene(~0.1mL)solutionat-35°Cinthegloveboxfreezeraspaleyellowcrystals.

Themother liquorwasdecanted,and theresiduewaswashed thricewithpentane (3x1mL)

beforebeingdriedinvacuo.Yield(18mg,0.026mmol,68%).

4b:1HNMR(400MHz,Benzene-d6)δ0.80–0.91(m,2H,C3-H),1.00(m,2H,C4-H),1.13(d,3JHH=

6.7Hz,6H,(CH3)2CH),1.18(d,3JHH=6.7Hz,6H,(CH3)2CH),1.26(m,10H,2xC3-H’,2xC4-H’,3xCH2),

1.41 (d, 3JHH = 6.7 Hz, 6H, (CH3)2CH), 1.44 (d, 3JHH = 6.8 Hz, 6H, (CH3)2CH), 1.55 (s, 6H,

(CH3)C(CH)C(CH3)),1.65–1.75(m,4H,2xCH2),1.97–2.08(m,2H,C8-H’),2.28(m,2H,C8-H),

2.58–2.68(m,2H,C2-H),3.46(hept,3JHH=6.7Hz,2H,(CH3)CH(CH3)),3.63(hept,3JHH=6.7Hz,

2H,(CH3)CH(CH3)),4.86(s,1H,(CH3)C(CH)C(CH3)),6.23–6.33(m,2H,C9-H).

13C NMR (101MHz, Benzene-d6) δ 23.3 (CH2), 23.7 ((CH3)CH), 24.3 ((CH3)C(CH)C(CH3), CH2,

overlapping),24.6((CH3)CH),25.2((CH3)CH),25.6((CH3)CH),25.9(CH2),26.0(CH2),26.8(CH2),

28.2((CH3)CH),29.1((CH3)CH),29.6(C8),36.2(C3),50.5(C2),97.8((CH3)C(CH)C(CH3)),124.1

(ArC),124.5 (ArC),126.9 (ArC),140.3 (C9),142.4 (ArC),143.3 (ArC),144.2 (ArC),156.0 (C1),

170.8(C=N).

Page 31: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S14

3. Mechanisticinsights

3.1Commentonthemechanismofformationof4b

SchemeS1:Possiblestereochemicaloutcomesforinsertionof1,2-cyclononadieneintotheAl-(sp3)Cbondof2a.

A total of eight different isomers of 4b are possible through a series of different selectivity

determiningevents:

1. ApproachofthedienetoeithertheAl–(sp2)CorAl–(sp3)Cbond

2. Orientationofthedienetothecycloalkene

3. ApproachofthedienetoeitherthesynorantitotheC–Hbondofthe

metallocyclopropane

4. Approachofthedieneeitherendoorexotothecycloalkene

Wehaveomittedtheoutcomesforevent1and2fromSchemeS1forclarity.Thestereochemistry

ofthefusedringjunctionisdeterminedbyevents3and4.Approachoftheallenetoeitherface

ofthemetallocyclopropanering(notedhereeithersynorantitoH)aswellastheorientationof

thedieneringeitherendoorexotothecycloalkenefragmentdeterminesthestereochemistryof

the metallocyclopentane. Identical stereochemical outcomes to the syn – endo approach are

achievedwiththecomplementaryanti–exoapproach(analogouslytheanti–endoandsyn–exo

approachyieldthesameproducts).

Themajorandcrystallographicallycharacterisedproductoriginatesfromthesyn–endo/anti–

exoapproachoftheallenetothecycloalkene.Currently,webelievethemostlikelypathwayisthe

syn–endoastheapproachoftheallenesyntoC–Hbondofthemetallocyclopropaneistheleast

Page 32: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S15

stericallydemandingtrajectory,andthetransitionstatecorrespondingtotheendoapproachcan

bestabilisedbydispersioninteractionsbetweenthelargecycloalkanefragments.

Analternativepathway towards the formationof4bwasalsoconsidered:beginningwith the

thermal dimerisation of 1,2-cyclononadiene followed by a direct oxidative addition of 1 to

exclusively the sp2-sp2 C–C bond of the dimer. A control experiment was performed where

thermally-dimerisedallenewasreactedwith1anddidnotresultintheformationoftheproduct

4b.Thiscontrolexperimentexcludesthisalternativepathway.

SchemeS2:Alternativepathwaytowardstheformationof4b.

3.2Reversibilityexperiments

Reactionof2cwithC6F6.

Regarding the reversibility for the formation of 2c, the reaction between 2c and

hexafluorobenzenedidnotfurnishanyproductevenafter3daysat100oC.

Reactionof2fwithC6F6

SchemeS3:Reactionof2fwithC6F6.

Inaglovebox, toasolutionof2f (15mg,0.024mmol) inC6D6(0.600mL),C6F6(27.7μL,0.24

mmol)wasaddedviamicropipette.Thereactionwasmonitoredby1HNMRspectroscopywith

aninternalferrocenestandardinacapillary.Thereactionwasheatedat100°Cforthreehours,at

which point the complete consumption of 2f and formation S1 along with the concomitant

reformationof1,1-diphenylethylenewasobservedby1HNMRspectroscopy.NMRYield(88%).

Page 33: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S16

Reactionbetween2g:2handC6F6

Inordertoprovereversibilityofthereactionbetween1andanthracene,thekineticmixtureof

2g:2hwasreactedwithC6F6.Interestingly,only2greactedwithC6F6.

SchemeS4:Reactionofamixtureof2gand2hwithC6F6.

Inaglovebox,anthracene(3mg,0.02mmol,1equiv.)and1(10mg,0.02mmol,1.3equiv.)were

dissolvedinC6D6(0.7mL).Themixturewasleftat25oCfor16htogeneratethe1:0.43mixtureof

2g:2h.Hexafluorobenzene(7μL,0.06mmol,4equiv.)wasthenadded.Noreactionwasobserved

after 3h at 25oC. After 2 days at 100oC, clean and quantitative conversion of2g intoS1 was

observed.TheNMRdataareconsistentwiththosepreviouslyreported.52hremainedunreacted.

Reactionbetween2g:2handH2

SchemeS5:Reactionofamixtureof2gand2hwithH2.

Anthracene(2.2mg,0.012mmol,1equiv.)and1(7mg,0.016mmol,1.3equiv.)weredissolved

inC6D6(0.7mL).Themixturewasleftat25°Cfor16h.Themixturewasthenfrozenwithliquid

nitrogen,theatmosphereoftheJ.Young’sNMRtuberemovedinvacuoandrefilledwithH2gas(1

bar).Noapparentreactionoccurredat298K.After1dayat80°C,somereactivitywasobserved

andafteranotherdayat100°Ccleanandquantitativeconversionof2gintoS2wasobserved.The

NMRdataareconsistentwiththosepreviouslyreported.62hremainedunreacted.

Page 34: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S17

4. SingleCrystalDiffractionDataTheX-raycrystalstructureof2a

2awasfoundtocrystalliseinthespacegroupP-1(no.2)withsixindependentmoleculesinthe

unitcell.Anoverlay(allowingforinversionsymmetry)ofallsixindependentmolecules(Figure

S1) shows that the fragments are nearly equivalent with minor disorder throughout the

cyclononenering.

Theincludedsolventwasfoundtobehighlydisordered,andthebestapproachtohandling

thisdiffuseelectrondensitywasfoundtobetheSQUEEZEroutineofPLATON.7Thissuggesteda

totalof222electronsperunitcell,equivalentto111electronsperasymmetricunit.Beforethe

useofSQUEEZEthesolventclearlyresembledhexane(C6H14electrons),and2hexanemolecules

correspondsto100electrons,sothiswasusedasthesolventpresent.Asaresult,theatomlist

for the asymmetric unit is low by 2(C6H14) = C12H28 and that for the unit cell low by C24H56)

comparedtowhatisactuallypresumedtobepresent.

FigureS1:OverlayofindependentmoleculesintheX-raycrystalstructureof2a,allowingforinversionsymmetry.

Page 35: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S18

TheX-raycrystalstructureof2c

TheC31andC35atomsinthestructureof2cwerefoundtobedisordered,withthedisorder

correspondingtoaninversionofthestereochemistryatC31.Twoorientationswereidentifiedof

ca.90and10%occupancy,theirgeometrieswereoptimised,thethermalparametersofadjacent

atomswererestrainedtobesimilar,andonlythenon-hydrogenatomsofthemajoroccupancy

orientationwererefinedanisotropically(thoseoftheminoroccupancyorientationwererefined

isotropically).

TheX-raycrystalstructureof2g

The structure of 2g was found to be disordered with a ΔF map showing four small but

significantelectrondensitypeaksinpositionsconsistentwitha6-memberedarylringfusedto

theC32–C33bond.Thiswasinterpretedasanalternativetothe[C38,C39,C40,C41]6-membered

ringfusedtotheC37–C42bond,i.e.ascomplex2h,sothestructurewasmodelledasamixtureof

complexes2gand2hinaca.96:4ratio.(Thepossibilityoftheminorcomponentbeinga4-ring

systemwasdiscountedonchemicalgrounds.)Thegeometriesofthetwopartialoccupancyrings

andthethermalparametersoftherelevantatomswerebothrestrainedtobesimilar,andonly

thenon-hydrogenatomsofthemajoroccupancyorientationwererefinedanisotropically(those

oftheminoroccupancyorientationwererefinedisotropically).

TheC12andC15-basedisopropylgroupswerebothfoundtobedisordered.Ineachcasetwo

orientationswereidentified,ofca.85:15and67:33%occupancyrespectively.Thegeometriesof

each pair of orientations were optimised, the thermal parameters of adjacent atoms were

restrainedtobesimilar,andonlythenon-hydrogenatomsofthemajoroccupancyorientations

were refined anisotropically (those of the minor occupancy orientations were refined

isotropically).

TheX-raycrystalstructureof2h

The C15-based isopropyl group in the structure of2h was found to be disordered. Two

orientationswereidentifiedofca.55and45%occupancy,theirgeometrieswereoptimised,the

thermalparametersofadjacentatomswererestrainedtobesimilar,andonlythenon-hydrogen

atoms of the major occupancy orientation were refined anisotropically (those of the minor

occupancyorientationwererefinedisotropically).

Page 36: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S19

TheX-raycrystalstructureof3

3wasfoundtocrystalliseinthespacegroupP21/n(no.14).Thealkyl-fragment(C1-C8)bound

tothealuminiumwasfoundtobedisorderedacrosstwositesinca.80%and20%occupancy

respectively.ThedisorderedcomponentsarerelatedbyapproximateC2rotationaroundtheAl1-

C11axis.The thermalparametersofbothorientationswere restrained tobe similar, and the

bond-lengthsoftheminorcomponentwererestrainedtomatchthecorrespondingbond-lengths

in the major component. The geometries of both orientations were optimised and the non-

hydrogenatomsofthethoseinthemajorcomponentwererefinedanisotropically(thoseinthe

minororientationwererefinedisotropically).

TheX-raycrystalstructureof4a

4awasfoundtocrystalliseinthespacegroupP-1(no.2).ThecarbonatomsC3,C4andC6within

the1,3,-cyclononadieneunitwerefoundtobedisorderedovertwositesinaca.53%and47%

occupancy respectively. The bond lengths and thermal parameters of major and minor

componentswererestrainedtobesimilar.Distancerestraintswereusedtoenforceareasonable

geometry.Thegeometriesofbothorientationswereoptimisedandthenon-hydrogenatomsof

thethoseinthemajorcomponentwererefinedanisotropically(thoseintheminororientation

wererefinedisotropically).

TheX-raycrystalstructure4b

4bwasfoundtocrystalliseinthespacegroupP-1(no.2).Nodisorderwaslocatedinthestructure

of4b.Attemptsweremadetomodelaminorcomponentinvolvingacisfusedring-junctionatC2

andC10,howevernoconvincingmodelcouldbecreated.

Page 37: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S20

CrystalDataandRefinementParameters

data 2a 2b 2c 2f 2g 2h formula C38H55AlN2 C35H51AlN2 C35H51AlN2 C43H53AlN2 C43H51AlN2 C43H51AlN2 formula weight 566.82 526.75 526.75 624.85 622.83 622.83

colour, habit red irregular

colourless blocks

pale yellow blocks

orange blocky needles

pale yellow blocky needles

colourless needles

temperature / K 173(3) 173 173 173 173 173 crystal system triclinic triclinic monoclinic triclinic orthorhombic monoclinic space group P-1 (no. 2) P-1 (no. 2) P21/n (no. 14) P-1 (no. 2) Pbca (no. 61) C2/c (no. 15) a / Å 18.9833(5) 10.9458(6) 19.3343(9) 8.9435(4) 19.0842(5) 20.2375(3) b / Å 24.8880(8) 11.1000(6) 8.8706(3) 11.0919(6) 15.9120(4) 17.5700(2) c / Å 25.2937(7) 14.6441(6) 20.7377(10) 19.0764(11) 24.2695(7) 20.4568(3) α / deg 75.812(3) 87.894(4) 90 81.107(4) 90 90 β / deg 85.720(2) 77.621(4) 115.920(6) 78.514(4) 90 103.5496(15) γ / deg 89.998(2) 71.579(5) 90 83.946(4) 90 90 V / Å3 11551.3(6) 1647.90(15) 3198.9(3) 1826.73(16) 7369.9(3) 7071.41(18) Z 12 2 4 2 8 8 Dc / g cm–3 0.978 1.062 1.094 1.136 1.123 1.170 radiation used Cu-Kα Mo-Kα Mo-Kα Cu-Kα Cu-Kα Cu-Kα μ / mm–1 0.625 0.085 0.088 0.708 0.702 0.731 2θ max / deg 147 57 57 148 147 147 no. of unique reflns measured (Rint) 29318 6503 (0.0204) 6439 (0.0253) 6957 (0.0314) 7144 (0.0545) 6784 (0.0239) obs, |Fo| > 4σ(|Fo|) 2275 5097 4979 5176 4897 5589 no. of variables 2275 370 363 425 464 436 R1(obs), wR2(all) [a] 0.0774, 0.2497 0.0460, 0.1187 0.0525, 0.1287 0.0517, 0.1524 0.0508, 0.1369 0.0410, 0.1148

Page 38: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S21

data 3 4a 4b formula C44H61AlN2 C38H56AlN2 C47H69AlN2

formula weight 644.92 567.82 689.02

colour, habit yellow block

Pale yellow irregular

colourless block

temperature / K 173.00(14) 173 173 crystal system monoclinic triclinic triclinic space group P21/n (no. 14) P-1 (no. 2) P-1 (no. 2) a / Å 10.0030(5) 9.1447(10) 10.4251(6) b / Å 19.5781(9) 10.5223(12) 13.2534(7) c / Å 19.7926(13) 19.6487(16) 16.3496(8)

α / deg 90 95.077(8) 83.625(4) β / deg 90.15 92.609(8) 72.246(5) γ / deg 90 114.782(11) 75.641(5)

V / Å3 3876.2(4) 1702.7(3) 2082.7(2) Z 4 2 2

Dc / g cm–3 1.105 1.108 1.099 radiation used Mo-Kα MoKα Cu-Kα

μ / mm–1 0.084 0.087 0.657 2θ max / deg 56.836 56.626 147

no. of unique reflns measured

(Rint) 8016 (0.0303) 6752 (0.0288) 7882 (0.0355)]

obs, |Fo| > 4σ(|Fo|)

5666 5157 6023 no. of variables 473 397 461 R1(obs), wR2(all)

[a] 0.0581, 0.1361 0.0620, 0.1826 0.0563, 0.1662

TableS1:Crystaldata,datacollection,andrefinementparametersforthestructuresof2a,2b,2c,2f,2g,2h,3,4a,and4b.[a]R1=Σ||Fo|–|Fc||/Σ|Fo|;wR2={Σ[w(Fo2–Fc2)2]/Σ[w(Fo2)2]}1/2;w–1=σ2(Fo2)+(aP)2+bP.

Page 39: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S22

Aluminium-carbonbondlengths

FigureS2:Frequencyhistogramofstructurallycharacterisedaluminium-carbonbond-lengths.ObtainedfromtheCSD(November2018release).

Bond length (Å)

[1.6

29, 1

.636

1](1

.650

3, 1

.657

4](1

.671

6, 1

.678

7](1

.692

9, 1

.7]

(1.7

142,

1.7

213]

(1.7

355,

1.7

426]

(1.7

568,

1.7

639]

(1.7

781,

1.7

852]

(1.7

994,

1.8

065]

(1.8

207,

1.8

278]

(1.8

42, 1

.849

1](1

.863

3, 1

.870

4](1

.884

6, 1

.891

7](1

.905

9, 1

.913

](1

.927

2, 1

.934

3](1

.948

5, 1

.955

6](1

.969

8, 1

.976

9](1

.991

1, 1

.998

2](2

.012

4, 2

.019

5](2

.033

7, 2

.040

8](2

.055

, 2.0

621]

(2.0

763,

2.0

834]

(2.0

976,

2.1

047]

(2.1

189,

2.1

26]

(2.1

402,

2.1

473]

(2.1

615,

2.1

686]

(2.1

828,

2.1

899]

(2.2

041,

2.2

112]

(2.2

254,

2.2

325]

(2.2

467,

2.2

538]

(2.2

68, 2

.275

1](2

.289

3, 2

.296

4](2

.310

6, 2

.317

7](2

.331

9, 2

.339

](2

.353

2, 2

.360

3](2

.374

5, 2

.381

6](2

.395

8, 2

.402

9](2

.417

1, 2

.424

2](2

.438

4, 2

.445

5]

Num

ber o

f str

uctu

res

0

200

400

600

800

1000

1200

1400

1600

1800

Frequency of measured Al–C Bond Lengths

Page 40: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S23

5. DFTcalculations

5.1Methods

ThegeometriesofproductswereoptimisedwiththeMinnesotaM06LDFTfunctionalusingthe

Gaussian09 program package.8 Stationary points were characterised depending on their

imaginaryfrequencies(0forminimaand1forTSs).NBOanalysiswasperformedusingtheNBO

6.0versionprogram.9Non-covalentinteractionswereanalysedwiththeNCIPLOT3.0program.10

Dispersioneffectswere includedvia singlepointenergycorrectionsandweremodelledusing

Grimme’s D3 correction for M06L (EmpiricalDispersion=GD3).11 The default numerical

integrationgridwasalso improvedusingaprunedgridwith99radialshellsand590angular

pointspershell(int=ultrafine).Solventeffectswerenotincludedsincethereactionsarecarried

out in rather nonpolar solvents. The level of theory employed in this study (M06L/BS1 and

M06L/BS2)waspreviouslybenchmarkedbyourgroupanditwasshowntocorrelateaccurately

withexperimentalresults.12,4

Thebasissetemployed(BS1)wasbuiltasfollows.TheSDDeffectivecorepotentialwasusedfor

allmetals(SDDAll).Thesplit-valence6-31G*basissetwasusedforCandHatoms.Alargerbasis

setwithdiffusefunctionswasusedforheteroatoms,i.e.thetriple-ξ6-311+G*basisset.

Alternatively,BS2wasalsoused,providingverysimilarresults.BS2wasbuiltasfollows.TheSDD

effectivecorepotentialwasusedforallmetals(SDDAll).Thesplit-valence6-31G(d,p)basisset

wasusedforCandHatoms.The6-31+G(d,p)basissetwasusedforheteroatoms.

Page 41: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S24

5.2Cheletropicreactions

Thefullpathwaysforthereactionsbetween1andaseriesofdienes,ivi.e.2,3-dimethylbutadiene,

(E,E)-2,4-hexadiene, benzene and anthracene were inspected. All TSs were concerted and

aromatic,aswewouldexpectfromapericyclic[π4s+n2s]cheletropiccycloaddition.

SchemeS6:Computedpathwayforthereactionbetween1and2,3-dimethylbutadiene.Relativefreeenergyvalues(inkcal·mol-1)giveninparentheses.

SchemeS7:Computedpathwaysforthereactionbetween1and(E,E)-2,4-hexadiene.Relativefreeenergyvalues(inkcal·mol-1)giveninparentheses.

Thereactionof1with1,1-diphenylethenewasfoundtoproceedviaasinglelow-energytransition

stateTS-1f(M06L/BS-2).

SchemeS8:Computedpathwayforthereactionbetween1and1,1-diphenylethene.Relativefreeenergyvalues(inkcal·mol-1)giveninparenthesis.

ivCalculatedattheM06L/BS1leveloftheoryunlessotherwisespecified.

Page 42: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S25

Thereactionwithanthracenewasfoundtobeenergeticallyfavourable.Theisomer2hwasfound

tobe7.2kcalmol-1morestablethantheisomer2g,whichisconsistentwiththeexperimental

observationofathermalequilibrationtothethermodynamicallymorestableproduct.TheTSs

fortheformationofthesetwoisomersTS-1gandTS-1hareverycloseinenergy,althoughthe

kineticproduct2gwasfoundtohaveaslightlyhigherbarrier.Thesesmallenergydifferencesare

within the limits of the theoretical methods employed, but this inconsistency was further

analysedandtheeffectofdifferentDFTfunctionalswasevaluated.

SchemeS9:Computedpathwaysforthereactionbetween1andanthracene.Relativefreeenergyvalues(inkcal·mol-1)giveninparenthesis.

Thecheletropicreactionwithbenzenewasenergeticallydisfavoured.Despitethefactthatthe

transitionstateforbenzenehasbeenpreviouslyreportedintheliterature,13,14nocommentwas

madewhatsoeveronthenatureofthesereactionsandtheirpericycliccharacter.Hence,these

data provide strong evidence for the formulation of these reactions as pericyclic cheletropic

reactions.

Page 43: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S26

SchemeS10:Computedpathwayforthereactionbetween1andbenzene.Relativefreeenergyvalues(inkcal·mol-1)giveninparenthesis.

Page 44: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S27

5.2.1DFTfunctionaltesting

Therefore,thebarriersforthegenerationof2gand2hthroughTS-1gandTS-1h(videsupra)

werecalculatedusingdifferentDFTfunctionals.Dispersioneffectswereincludedassinglepoint

corrections.

TS-1g TS-1h ΔΔGǂ

WB97X 35.1 34.1 0.9

WB97XD 23.2 22.0 1.2

M06L 20.1 17.8 2.3

M06L-D3 16.4 13.8 2.7

B3PW91 43.1 43.8 -0.7

B3PW91-D3 22.8 19.9 2.8

TableS2:Barriers(relativeGibbsFreeEnergyinkcal·mol-1)forthecycloadditionof1andanthracenetogenerate2gand2h.

Only B3PW91 predicts correctly the lower barrier for2g, although the absolute barriers are

highly inaccurate. It is noteworthy that upon addition of dispersion corrections, the ΔΔGǂ

systematically increases,making2hmore favoured kineticallywhich is inconsistentwith the

experimental observations. It appears that inclusion of dispersion effects leads to an over-

stabilisationofTS-3b.AsωB97xandM06Laredesignedtoincludesomelong-rangeinteractions,

evenwithoutempiricaldispersioncorrectionsthetrendisnotcorrect.

InspectionofTS-1hshowsverysignificantcontactsbetweenthetwoexternalringsofanthracene

and the flanking aromatic rings of the diketiminate ligand, suggesting strong π-π stacking

interactions.NCI analysis confirms thepresence of theseπ-π interactions. The importanceof

thesenon-covalentinteractionsinthisTSmightofferanexplanationfortheover-stabilisationof

TS-3bduetoanoverestimationofthedispersioninteractions.

5.3Reactionswithnon-conjugatedcyclicdienes

Page 45: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S28

The reaction between 1 and 1,5-COD (COD = cyclooctadiene) was also investigated

computationally. The unexpected formation of product 3 can be explained by a stepwise

mechanismconsistingofaformal[2+1]cycloadditionbetweenAlandoneofthedoublebondsof

thediene.TheotherdoublebondtheninsertsintoanAl–Cbondtofurnishthefinalproduct.

SchemeS11:Computedpathwayforthereactionbetween1andanthracene.Relativefreeenergyvalues(inkcal·mol-1)giveninparenthesis.

Asecondpathwayinvolvingaconcerted[2+2+1]cycloadditionwasalsoconsidered,howeverit

wasfarhigherinenergythanthepathwayreportedinSchemeS9.

SchemeS12:Alternativepericyclicmechanism(M06L/BS2)towardstheformationof3.

Page 46: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S29

5.4Non-CovalentInteractions(NCI)analysis

TS-1h TS-1g

FigureS3:Non-covalentinteraction(NCI)plotsofTS-1handTS-1g.

5.5NBOanalysisandNICScalculations

NPA WBI Al Cα Cβ Cα-Al Cα-Cβ Cβ-Cβ

TS-1i 1.28 -0.35 - -0.59 -0.22 - -0.27 0.34 1.20-1.26 1.61-1.62 2h 2.07 -0.81 -0.03 - -0.05 0.35-0.38 1.04 1.3

TS-1h 1.14 -0.2 - -0.41 -0.03 - 0.06 0.16-0.25 1.23-1.31 1.19-1.20 2g 2.04 -0.81 -0.02- -0.28 0.36-0.39 1.05-1.06 1.20-1.78

TS-1g 1.27 -0.24 - -0.56 -0.02- -0.26 0.22-0.31 1.12-1.41 1.17-1.45 2b 2.04 -1.14 -0.02 0.45 1.04 1.78

TS-1b 1.14 -0.51- -0.63 -0.05- -0.07 0.24-0.29 1.50-1.59 1.23 2d 2.09 -0.9- -0.91 -0.23 - -0.24 0.39-0.41 1.05 1.88

TS-1d 1.27 -0.28 - -0.59 -0.29 0.29-0.41 1.32-1.52 1.36

TableS3:NPAchargesandWibergBondIndices(WBI)forselectedatomsandbondsinαandβtoAlforTS-1b,TS-1d,TS-1g,TS-1h,TS-1i,2b,2d,2g,2h.

Page 47: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S30

NICS(0)

TS-1b -10.56

TS-1d -10.66

TS-1g -11.55

TS-1h -14.3

TS-1i -14.11

TS-1f -9.39

2b -1.18

2d -0.99

2g -5.39

2h -3.47

2i -7.34

TableS4:NucleusIndependentChemicalShift(NICS)calculationsforTS-1b,TS-1d,TS-1f,TS-1g,TS-1h,TS-1i,TS5,2b,2d,2g,2h,2i.

Page 48: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S31

6. XYZcoordinates

anthracene.logSCF(wB97x)=-539.456499506E(SCF)+ZPE(0K)=-539.262161H(298K)=-539.251762G(298K)=-539.296929LowestFrequency=90.8156cm-1C-6.361623-2.128499-0.014375C-4.992350-2.127246-0.009524C-4.260427-0.906666-0.010214C-4.9915490.337232-0.016183C-6.4140120.291284-0.021127C-7.081066-0.904507-0.020249C-2.863212-0.872737-0.005333C-4.2823291.541619-0.016925C-2.8851141.575549-0.012044C-2.1539920.331650-0.006083C-0.7315280.377598-0.001153H-0.182590-0.5640750.003343C-0.0644741.573389-0.002028C-0.7839172.797381-0.007905C-2.1531902.796128-0.012751H-2.310074-1.813534-0.000829H-6.906814-3.070657-0.013756H-4.436407-3.064812-0.005016H-6.9629501.232957-0.025624H-8.169412-0.922709-0.024071H-4.8354662.482417-0.021430H1.0238721.5915910.001789H-0.2387263.739539-0.008522H-2.7091333.733695-0.017249benzene.logSCF(wB97x)=-232.208772846E(SCF)+ZPE(0K)=-232.108290H(298K)=-232.102938G(298K)=-232.135757LowestFrequency=410.6382cm-1C-0.0762820.000000-1.288213C-1.229695-0.353890-0.591674C1.0771320.353890-0.591674H-2.131217-0.630461-1.136125

H1.9786530.630461-1.136125C-1.229695-0.3538900.801449C1.0771320.3538900.801449H-2.131217-0.6304611.345900H1.9786530.6304611.345900C-0.0762820.0000001.497988H-0.0762820.0000002.586870H-0.0762820.000000-2.377095Int-1h.logSCF(wB97x)=-1780.65859405E(SCF)+ZPE(0K)=-1779.824671H(298K)=-1779.777182G(298K)=-1779.903316LowestFrequency=16.9737cm-1H0.462925-3.209996-1.804920C0.772981-2.719462-2.734293H1.565866-3.325558-3.193725H-0.090090-2.733280-3.413834C1.253777-1.284445-2.510101H0.453527-0.745175-1.966103C1.416438-0.587955-3.855405H1.8099900.430344-3.749817H0.447439-0.523324-4.365164C-1.568180-2.6617881.180167C-2.831087-3.3232391.657863H-3.150792-2.8693562.606319H-2.689767-4.3949321.824669H-3.660884-3.1795690.956868H-2.757685-3.593721-1.048984H-2.455157-3.562964-2.789395H-4.061884-3.142827-2.164959C-2.565307-1.581855-1.898369C-2.666029-0.936568-3.275843H-2.3947040.125182-3.241645H-3.676414-1.015577-3.698422C-4.536466-0.187281-1.129908H-4.923662-0.230554-2.147441C-5.2390500.519689-0.160488H-6.1737551.016466-0.416852C-4.7327430.6073741.128455H-5.2701191.1848531.881711C-3.539165-0.0268481.484630H-4.9062730.3601083.936987C-4.024295-0.2936723.946592H-3.590600-0.2390164.952659C-2.857266-0.7670420.501762

Page 49: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S32

C-3.333922-0.828161-0.827770H-1.504691-1.565655-1.605361H-2.120866-0.5158092.995132C-3.0037160.1323362.892742C-2.5501491.5728403.134267H-1.7854411.8759012.405890H-2.1306601.6878564.142041H-3.3970972.2672673.042393C-0.2519612.912560-1.485515C-0.7442833.489743-0.259157C0.1625603.7926470.760205C1.5289613.5244410.637207H-0.2109524.2284511.688979C1.1155642.653270-1.611630H1.4883242.205699-2.534987Al-0.026331-0.1167540.606994N-1.599299-1.3881180.783305H-4.379035-1.3194863.785313H-1.990248-1.441126-3.979025C-2.983766-3.051575-1.974213C-0.387365-3.4181351.182315H-0.471759-4.4488421.514907C0.862694-3.0220040.683062C1.916371-4.0831030.531839H1.525309-5.0744480.776584H2.779651-3.8833381.179242H2.304803-4.101173-0.494447H2.488473-1.8813222.353432C3.440604-1.3957062.098844C3.4133950.0072942.707401H2.5895050.6083212.298628H3.299191-0.0390823.798236H4.3456970.5448682.486503C4.563433-2.2274432.713955H4.634647-3.2258622.263478H4.401772-2.3544713.791159H5.541214-1.7442982.591303C3.537373-1.2971750.588946C2.410627-1.454664-0.242032C2.492647-1.214209-1.633291C2.0180062.925714-0.579951C3.739516-0.896268-2.176078H3.828722-0.722167-3.246814C4.868868-0.781069-1.372811H5.830503-0.527728-1.816779C4.758355-0.962173-0.002110H5.635686-0.8297110.631389N1.132939-1.7627900.326753H2.094846-1.138793-4.520683C-2.1451643.692260-0.115980C-3.0154133.339161-1.112597C-2.5298732.778416-2.322547H-4.0865813.478517-0.978643C-1.1861052.579861-2.505429

H-3.2358002.500785-3.104711H-0.8088862.141225-3.431075H-2.5146924.1182150.817267C2.4568813.7982151.680363C3.7834033.4836321.545012C4.2588992.8709410.356143H4.4789583.6908782.356923C3.4003592.605926-0.677561H5.3116392.6036660.271545H3.7584312.122866-1.587169H2.0857534.2549712.597926Int-1g.logSCF(wB97x)=-1780.65962204E(SCF)+ZPE(0K)=-1779.825431H(298K)=-1779.777928G(298K)=-1779.904908LowestFrequency=15.6797cm-1H-1.5486414.006680-3.024489C-1.4617823.008596-3.471196H-2.4141522.790159-3.971622H-0.6892613.054164-4.249264C-1.1159671.946628-2.430772H-0.1250292.191344-2.021175C-1.0140860.565736-3.079756H-0.720065-0.198646-2.344703H-0.2780760.563704-3.895549C2.6537802.2730320.428102C4.1048222.6647180.420935H4.6337152.2219751.275040H4.2285283.7503120.465486H4.6108682.288753-0.477178H2.8224092.241644-2.062163H2.2793101.816911-3.688006H3.9703741.551149-3.228484C2.5828030.085184-2.412544C2.532030-0.834652-3.626130H2.325299-1.873892-3.345273H3.474672-0.819520-4.189491C4.471429-1.387084-1.570215H4.613634-1.742268-2.589228C5.256847-1.915608-0.551694H6.013560-2.664684-0.779229C5.056379-1.5002380.756641H5.649407-1.9398991.558941C4.098895-0.5317541.070340H5.797169-0.7178543.361040C5.1473170.1620163.270255H4.9257860.5048754.288161C3.3374830.0220620.023761C3.489255-0.429702-1.307330H1.5624890.119718-1.987715

Page 50: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S33

H3.2185440.7292482.547258C3.857719-0.1646532.521059C3.097416-1.2918393.222717H2.147493-1.5067582.714009H2.878993-1.0303364.266052H3.690505-2.2170303.224872H2.265175-3.467779-1.645476C1.347793-3.405768-1.061039C1.386126-3.7187260.322899H2.332706-4.0051860.779559C0.247816-3.6417341.080569C-0.988396-3.2294460.509035H0.275967-3.8655322.147431C0.173397-3.021220-1.653730H0.139336-2.776884-2.717146Al0.4935040.1368310.566655N2.3150360.9866400.299240H5.7294540.9460192.769286H1.743274-0.509201-4.314999C2.9349651.504242-2.863844C1.7048283.2983140.542123H2.0925184.3080040.643214C0.3136023.1711620.419272C-0.5015484.4293190.332297H-1.3345714.4109731.045875H-0.9577814.526960-0.661597H0.1067595.3187590.518828H-1.1360111.9406022.614465C-2.2219521.7764042.565654C-2.5162700.4191103.203615H-2.006081-0.3901682.664749H-2.1869800.3997724.250557H-3.5929860.2013003.186330C-2.8998632.8985533.350608H-2.6919133.8860502.919914H-2.5574312.9070074.392871H-3.9904432.7717333.364901C-2.6323961.7876221.106852C-1.6992831.9332090.062123C-2.1104801.902556-1.286333C-3.4701681.756530-1.565483H-3.7984211.723998-2.605334C-4.4039481.625200-0.545863H-5.4586891.495211-0.781981C-3.9810451.6325880.775791H-4.7114171.5040701.575601N-0.2966631.9873540.352748H-1.9830210.259296-3.499445H-2.259196-2.245087-2.528813C-2.228393-2.475337-1.462431C-1.028147-2.914015-0.897450C-2.147127-3.0690671.272049C-3.339324-2.5966240.714672C-3.383717-2.298285-0.695950

C-4.606064-1.834291-1.256557C-5.720732-1.666432-0.478782C-5.673680-1.9449850.912136C-4.516313-2.3973551.489122H-2.113373-3.2903322.340611H-4.475778-2.6140972.557076H-6.566201-1.8004971.518940H-6.648639-1.309576-0.923451H-4.632085-1.605705-2.322865Int-1i.logSCF(wB97x)=-1473.40723912E(SCF)+ZPE(0K)=-1472.667014H(298K)=-1472.624443G(298K)=-1472.741680LowestFrequency=19.1707cm-1H1.382054-0.977400-3.582541C1.6975420.064687-3.708323H2.6905420.063250-4.178405H0.9960620.535878-4.409058C1.7231750.821421-2.378782H0.7300580.698292-1.921091C1.9269652.312087-2.626860H1.9626372.876828-1.687642H1.1003572.711338-3.228973C-1.808312-1.752521-1.244201C-3.105148-2.084266-1.929571H-3.847289-2.471751-1.220206H-2.961072-2.830998-2.715263H-3.551258-1.185908-2.374564H-1.7043880.266372-2.863033H-1.0875761.824677-3.428021H-2.8367461.544125-3.355219C-1.9129471.903246-1.418003C-1.9153453.425761-1.444303H-1.9658913.849495-0.434091H-2.7599473.826020-2.020819C-4.1925162.043347-0.312395H-4.2882893.055687-0.700207C-5.2144431.5134040.466364H-6.1040912.1051790.675067C-5.0843560.2382040.997861H-5.871099-0.1601251.638285C-3.954941-0.5427030.740585H-5.883608-2.2922991.956640C-5.073650-2.7344631.362724H-4.888252-3.7356891.769766C-2.946652-0.008514-0.086077C-3.0395621.307298-0.592614H-0.9675111.601306-0.927560H-3.009013-2.4499270.907119C-3.803164-1.8903051.419728

Page 51: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S34

C-3.350933-1.6923692.867362H-2.410479-1.1273112.917455H-3.199110-2.6570433.368288H-4.104063-1.1311793.436491H-0.3601244.1796812.220857C0.5486703.5794152.226877C0.8893742.8441783.359508H0.2455112.8681374.237029C2.0451842.0671533.364560C2.8642942.0279292.238630H3.7646811.4140132.233550H3.1779992.7418620.234344H2.3050791.4828604.246635C1.3690783.5440231.101112H1.1041854.1248790.216902Al-0.181097-0.1662350.805036N-1.758163-0.760834-0.351675H-5.447220-2.8505050.337149H-0.9989393.794879-1.920906C-1.8852481.347723-2.842255C-0.680814-2.508199-1.599292H-0.850212-3.347114-2.268277C0.652159-2.219750-1.283484C1.717993-3.105008-1.868785H1.296112-3.842823-2.557085H2.239141-3.643730-1.065253H2.487510-2.529824-2.396276H1.894035-2.6870491.216873C2.907007-2.3334901.459195C2.854433-1.7081082.853272H2.142955-0.8722782.885159H2.550988-2.4479723.604974H3.840984-1.3200413.144699C3.841462-3.5415761.444449H3.917452-3.9918060.446505H3.487277-4.3135602.138387H4.857955-3.2681921.756077C3.295669-1.2958390.426249C2.369303-0.777265-0.496398C2.7372750.232674-1.413705C2.5291182.7715121.108803C4.0635580.668603-1.420684H4.3700531.437369-2.129635C4.9951340.155319-0.524720H6.0229520.514257-0.539932C4.605745-0.8092110.395057H5.333131-1.1991701.108034N1.002310-1.200266-0.492196H2.8510472.519702-3.181904Int-1b.logSCF(wB97x)=-1475.77599807E(SCF)+ZPE(0K)=-1474.994177

H(298K)=-1474.948893G(298K)=-1475.072457LowestFrequency=15.4512cm-1N-2.144160-0.406618-0.439261N0.501876-1.258082-0.849739C-2.449058-1.522687-1.107022C-1.475599-2.342612-1.691351H-1.838077-3.191020-2.264677C-0.087180-2.235157-1.550247C-3.885707-1.940709-1.246114H-4.364050-2.026964-0.262699H-3.975720-2.898801-1.765106H-4.467451-1.191679-1.798674C0.755097-3.300071-2.195679H1.226459-3.944599-1.442012H1.577235-2.858014-2.771253H0.157749-3.932755-2.857946C-3.2091990.3371770.168398C-3.4413480.1913511.549813C-4.4443220.9666722.139020H-4.6362330.8606403.207320C-5.1908051.8667551.392616H-5.9658772.4639971.869810C-4.9393692.0080600.032614H-5.5189142.725036-0.548069C-3.9526571.253955-0.603741C-2.648999-0.7709802.414871H-1.921176-1.2907921.773204C-1.865106-0.0224533.492122H-1.1641750.6958133.045043H-1.288203-0.7188694.113771H-2.5364030.5376894.156327C-3.547299-1.8368783.040192H-4.100412-2.4025502.280350H-4.285369-1.3899433.719277H-2.952972-2.5504153.625142C-3.6539221.472221-2.074608H-3.1246820.585608-2.451264C-4.9112181.646928-2.921325H-5.6240890.825887-2.772958H-4.6531281.682438-3.986449H-5.4349592.582775-2.688972C-2.7137222.665573-2.248014H-1.7806322.526287-1.683297H-3.1839243.586976-1.879669H-2.4556722.815595-3.304154C1.915177-1.362107-0.625884C2.809892-0.588825-1.387386C4.177252-0.701836-1.117232H4.881521-0.103969-1.697308C4.650460-1.552591-0.129473H5.720188-1.6306100.059957C3.751536-2.2993100.626012

Page 52: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S35

H4.126554-2.9563901.409368C2.377308-2.2148370.401115C2.3506640.348729-2.485517H1.2563340.272332-2.563163C2.6895581.798470-2.143040H2.2612302.091582-1.175512H2.3043972.480926-2.911320H3.7770701.946009-2.083901C2.935590-0.043691-3.841502H2.677522-1.073813-4.117445H4.0310800.031039-3.840635H2.5629310.619835-4.631534C1.400371-2.9655041.287486H0.496394-3.1827650.699581C1.937402-4.2973401.799603H2.310867-4.9297040.984498H1.148031-4.8503902.322018H2.757376-4.1613522.516110C0.970764-2.0750592.454392H0.549111-1.1208552.100811H1.828207-1.8296393.095594H0.211582-2.5719653.073797C3.1654753.6641161.320896C3.6988022.2838651.360803C5.1064222.0788640.880383H5.3877501.0217690.921644H5.2369752.423638-0.156419H5.8280372.6461321.484977C4.1454704.7877591.501641H4.7019184.6956712.445148H4.8990594.8036250.701878H3.6406845.7592611.501085Al-0.3292490.413020-0.073471C2.9704781.2523481.817776H1.9694711.3930522.221978C1.8638443.9085601.104267H1.1498843.1046640.917609H3.3590350.2338351.799686H1.4773764.9268301.091270Int-1c.logSCF(wB97x)=-1475.78075365E(SCF)+ZPE(0K)=-1474.998961H(298K)=-1474.953255G(298K)=-1475.078078LowestFrequency=5.6299cm-1N-1.448424-0.859520-0.735553N1.374492-0.873421-0.790278C-1.317137-1.528981-1.885287C-0.074773-1.904505-2.411190H-0.096007-2.478660-3.332938C1.191847-1.564888-1.920937

C-2.539243-1.891136-2.681088H-3.298997-2.371202-2.052793H-2.291683-2.556940-3.512376H-3.014459-0.991445-3.094214C2.381660-1.990333-2.735352H3.129883-2.494910-2.112261H2.890587-1.121404-3.173223H2.088739-2.658979-3.549454C-2.768574-0.452958-0.346546C-3.471314-1.1960700.622409C-4.750392-0.7677050.990664H-5.304984-1.3409781.734288C-5.3223990.3661220.430649H-6.3199860.6827090.730163C-4.6047901.103924-0.502862H-5.0409382.010777-0.922260C-3.3252260.716653-0.904887C-2.898132-2.4379741.275172H-1.888106-2.6007140.872773C-2.766780-2.2485382.785493H-2.149474-1.3720483.021262H-2.301127-3.1268223.249941H-3.748237-2.1056803.257104C-3.730502-3.6775160.950968H-3.802969-3.849666-0.130121H-4.753878-3.5823551.337687H-3.289352-4.5733991.405027C-2.5477921.599998-1.861750H-1.6572771.050317-2.200395C-3.3530251.987198-3.099489H-3.7396091.109096-3.632283H-2.7318792.558663-3.799761H-4.2134792.618470-2.843237C-2.0622822.844184-1.117793H-1.4507162.575874-0.244895H-2.9144863.433063-0.750607H-1.4641973.491918-1.771624C2.716046-0.482944-0.462010C3.2582520.670174-1.070908C4.5599811.047085-0.740556H4.9931771.932980-1.202620C5.3138790.3123960.168856H6.3295680.6202520.411500C4.759384-0.8058630.773395H5.345244-1.3759951.495250C3.457007-1.2233710.477356C2.4247391.513980-2.016808H1.7022900.854104-2.519830C1.6197102.540460-1.219993H0.9808532.061219-0.461972H0.9773783.138998-1.878922H2.2892663.223854-0.680145C3.2439502.200651-3.104196H3.8827851.492422-3.646689

Page 53: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S36

H3.8923572.985894-2.695224H2.5810802.683951-3.831503C2.905754-2.4519681.172672H1.885574-2.6267650.801521C3.732841-3.6973580.857326H3.785347-3.891648-0.221164H3.300322-4.5836241.337674H4.763270-3.5960531.222825C2.815693-2.2260072.681178H2.183914-1.3587172.912639H3.807896-2.0457803.116559H2.386683-3.1023453.183208C-0.4909103.2950062.225641C0.9608633.2660592.273373Al-0.006407-0.3405250.596543C1.7320702.2581942.722444H1.2508561.3668783.132357C-1.3301722.3512782.693431H-0.9127151.4834373.209191C-2.8092072.3741322.550431H-3.3165652.3695413.526583H-3.1530383.2564751.995667H-3.1701551.4822822.015133C3.2179292.2467572.693620H3.6001931.3672622.155093H3.6223893.1408702.201680H3.6480302.1961073.705291H-0.9342914.1577651.718637H1.4680164.1415531.8566581,5-COD.logSCF(wB97x)=-311.972069493E(SCF)+ZPE(0K)=-311.791018H(298K)=-311.782623G(298K)=-311.822558LowestFrequency=81.2810cm-1C-1.1869961.236055-0.500822C-1.9178780.023931-0.012723C1.0951161.0758180.666413C0.0455891.677762-0.225427H-2.443895-0.418357-0.873917H1.7909621.8689950.971364C-1.095117-1.0757880.666466C1.917879-0.023928-0.012730C1.186996-1.236078-0.500763C-0.045588-1.677773-0.225344H-1.790967-1.8689510.971447H2.4438870.418321-0.873949H0.3540692.590829-0.739628H-1.7727011.846821-1.192273H-0.354064-2.590870-0.739495H1.772701-1.846881-1.192183

H-0.664876-0.7001741.600226H2.725241-0.3403990.668901H0.6648720.7002411.600186H-2.7252340.3404360.668901s-cis-2,3-dimethylbutadiene.logSCF(wB97x)=-234.575955944E(SCF)+ZPE(0K)=-234.433976H(298K)=-234.425870G(298K)=-234.464381LowestFrequency=87.2253cm-1C0.7523570.016442-0.267477H0.027865-0.5493350.334224H1.738994-0.412252-0.043603H0.7435221.0513120.088846C0.434082-0.060967-1.732494C0.0969531.033838-2.428570H0.0829432.019291-1.966268C0.482638-1.398970-2.365723C0.911978-1.565126-3.624629H1.274297-0.728830-4.218822H0.927045-2.546688-4.095092H-0.1885610.977898-3.476932C0.056825-2.569840-1.528290H-0.959629-2.437230-1.132579H0.077885-3.500867-2.103391H0.711295-2.702094-0.655801s-trans-2,3-dimethylbutadiene.logSCF(wB97x)=-234.581210652E(SCF)+ZPE(0K)=-234.438624H(298K)=-234.430695G(298K)=-234.468757LowestFrequency=95.9338cm-1C1.7815820.576810-1.479252H2.331932-0.022228-0.741884H2.4211140.640420-2.369401H1.6687841.587086-1.074154C0.447821-0.031246-1.799691C-0.6820590.662719-1.580355H-0.6529721.670022-1.170085C0.418830-1.394257-2.354382C1.548715-2.088197-2.573737H2.535555-1.687274-2.356323H1.519677-3.095411-2.984228H-1.6689140.261757-1.797624C-0.914923-2.002111-2.675226H-1.465178-1.402797-3.412433H-0.802100-3.012259-3.080630H-1.554503-2.065986-1.785130

Page 54: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S37

Int3.logSCF(wB97x)=-1553.15681935E(SCF)+ZPE(0K)=-1552.334490H(298K)=-1552.291095G(298K)=-1552.404505LowestFrequency=27.2388cm-1H-1.6480042.9579071.465475C-1.9311643.4693240.538415H-2.9224573.9182900.686711H-1.2149184.2871360.381377C-1.9354182.522210-0.662521H-0.9477322.035392-0.683979C-2.0781583.317484-1.955812H-2.1260082.666742-2.838105H-1.2217203.990077-2.082891C1.2407260.3576922.272079C2.4148580.5442543.192574H2.626714-0.3980753.715038H2.1957331.2926333.960884H3.3250210.8403042.663259H2.1840942.8823112.107778H1.4656064.2956781.322727H3.1909123.9399221.106062C1.8695332.654042-0.049554C1.7515203.579365-1.257384H1.5800573.032519-2.193474H2.6529664.190478-1.394256C4.0545591.766749-0.949421H4.2139552.739286-1.413299C5.0225040.778807-1.080642H5.9297550.972449-1.650558C4.833756-0.449179-0.462881H5.607979-1.212616-0.539994C3.676319-0.7341250.269504H5.600638-1.9922931.862838C4.560165-2.0431122.211405H4.456277-2.9632542.800554C2.6805470.2619770.356435C2.8787671.533647-0.233128H0.8872562.1894900.122979H2.571661-2.1794271.376358C3.602399-2.0538171.013852C3.958075-3.2603390.145907H3.386743-3.290215-0.784826H3.766512-4.1916530.693092H5.024581-3.258756-0.115565C-0.674197-2.504100-0.965401C-1.565998-2.578539-2.193469H-1.457991-3.531766-2.748418H-2.270429-1.156993-3.682850H-0.897736-3.332412-0.280394

C-0.828759-0.181501-2.468583H-1.5758650.544389-2.157312Al0.011793-0.819975-0.144215N1.4079870.0332870.981870H4.403768-1.1918642.879960H0.9163044.277543-1.116629C2.1947943.4852291.194044C-0.0254540.5202142.836724H-0.0574190.7574353.897222C-1.2558190.5151692.168610C-2.4418530.9100283.007312H-2.7696480.0607263.620417H-3.2978081.2420462.414037H-2.1652711.7112553.700413H-2.522154-1.8372591.869321C-3.525131-1.8861891.420926C-3.675723-3.2496170.749580H-2.919051-3.416505-0.019264H-3.588083-4.0512041.493830H-4.663830-3.3498340.280725C-4.573135-1.7849532.536769H-4.608188-0.7950583.003213H-4.379117-2.5277963.320688H-5.576318-1.9873272.138585C-3.674278-0.7237830.456162C-2.6995820.2807030.283604C-2.9692451.418647-0.511531C-1.334460-1.408423-3.165170C-4.1994721.504779-1.165793H-4.4149242.369585-1.790387C-5.1495160.497677-1.043539H-6.0992880.574215-1.570061C-4.885315-0.595539-0.232924H-5.641319-1.372329-0.113883N-1.3932090.1728920.877290H-2.9789693.944791-1.954133C0.870796-2.365836-1.089614C1.529169-2.185203-2.452313C1.632333-0.704185-2.840601C0.4937050.127568-2.304397H1.350172-3.154292-0.500304H1.011815-2.765399-3.235615H2.549992-2.596035-2.437938H1.696645-0.572826-3.936575H2.566610-0.294443-2.434076H0.7321491.135803-1.946458H-0.619918-1.690109-3.948096H-2.617594-2.544998-1.8688793.logSCF(wB97x)=-1553.21642363E(SCF)+ZPE(0K)=-1552.390948H(298K)=-1552.348535

Page 55: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S38

G(298K)=-1552.461012LowestFrequency=21.2288cm-1H2.3675151.080477-3.138270C2.8031952.022374-2.787112H3.8632142.034799-3.075879H2.3011762.834311-3.328279C2.6437312.209451-1.276395H1.5754842.085674-1.045023C3.0254123.634231-0.891315H2.9824463.7933780.192712H2.3361024.345775-1.360823C-1.076050-1.177443-2.079832C-2.215881-1.740223-2.880695H-2.563616-2.679404-2.430857H-1.901607-1.961731-3.904293H-3.080084-1.069242-2.908357H-2.0303410.908619-3.353632H-2.0690822.662194-3.553208H-3.5882281.755383-3.440809C-2.5591432.020452-1.536953C-3.0708083.416763-1.200036H-3.1387823.579256-0.117381H-4.0611243.608015-1.634423C-4.6294311.095719-0.397227H-5.1222402.048261-0.582726C-5.3179020.0895920.271504H-6.3420550.2565730.600793C-4.697021-1.1261870.517044H-5.239600-1.9128461.041819C-3.383122-1.3677190.103744H-4.575714-3.9388300.403555C-3.633124-3.862798-0.153682H-3.117697-4.825271-0.049484C-2.695327-0.330145-0.554508C-3.3107640.913379-0.817029H-1.5106301.971749-1.204983H-1.787429-2.772340-0.119601C-2.763670-2.7247940.384553C-2.519643-2.9306141.879056H-1.841731-2.1745572.286943H-2.080736-3.9186682.067311H-3.462611-2.8737272.439496C-0.017172-0.2207992.246675C1.2213680.6039082.656318H1.3052240.7021913.749817H2.0943382.2442921.491056H-0.000690-1.2141252.712282C-0.0296652.0570600.996225H-0.0123652.9804260.399493Al0.0421240.1676290.271976N-1.323919-0.508323-0.948499H-3.894755-3.729890-1.210596H-2.3909004.173067-1.609429

C-2.5619021.818520-3.053806C0.212546-1.425591-2.568287H0.268455-1.972009-3.504949C1.438706-1.090268-1.980484C2.674054-1.560171-2.695319H2.459368-1.769407-3.746953H3.041486-2.490491-2.242484H3.493715-0.837642-2.633808H2.119438-2.666078-0.028888C3.037553-2.5555670.565867C2.665850-2.7990382.028415H1.895680-2.1014502.372509H2.286781-3.8195492.167012H3.542366-2.6780302.679135C4.033975-3.6195390.102878H4.382041-3.451149-0.923728H3.582276-4.6178640.149368H4.923597-3.6375270.745449C3.578350-1.1520950.360487C2.866185-0.147245-0.323612C3.4010981.147764-0.497967C1.1451072.0119271.993022C4.6592931.4169010.044921H5.0888902.410206-0.070406C5.3674920.4439620.740643H6.3426200.6782681.164166C4.829496-0.8260960.891292H5.387047-1.5867641.438121N1.547931-0.417167-0.830248H4.0361893.895652-1.232146C-1.2839380.5750462.608481C-1.3701441.4050273.916616C-1.5739792.6939613.099420C-1.3381821.9107141.785858H-2.184348-0.0418942.465276H-0.4490111.4014234.511510H-2.1930001.1330114.589310H-0.8784693.5166603.309858H-2.5908443.1004763.169067H-2.1998491.9807361.110180H1.0318342.7849542.771014H2.1452990.0913952.3471442h.logSCF(wB97x)=-1780.69059570E(SCF)+ZPE(0K)=-1779.852749H(298K)=-1779.807678G(298K)=-1779.924608LowestFrequency=24.8146cm-1H1.973477-3.025284-2.343012C2.199189-2.292588-3.126590H3.225940-2.475569-3.471332

Page 56: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S39

H1.523135-2.493158-3.967535C2.039284-0.851828-2.634966H1.023023-0.763283-2.222302C2.1299810.111922-3.812873H2.1321811.158262-3.485928H1.272718-0.031050-4.483372C-1.290029-2.5934090.234503C-2.499900-3.4835660.206283H-3.070886-3.4091081.139211H-2.210025-4.5285930.071034H-3.187771-3.198478-0.597524H-1.567308-2.516959-2.226735H-1.551875-1.919206-3.886324H-3.081522-2.422944-3.151743C-2.361481-0.475305-2.485950C-2.8738830.341246-3.667646H-3.1482051.360308-3.376349H-3.753876-0.126949-4.129281C-4.5701680.073214-1.364949H-4.9518190.380940-2.335906C-5.3986130.159505-0.252934H-6.4162340.531176-0.359975C-4.924241-0.2237360.991865H-5.576155-0.1512771.862210C-3.623621-0.7079411.155204H-5.105752-1.5111533.485326C-4.195022-2.0601683.215001H-3.783396-2.4753934.142801C-2.792749-0.7687020.019335C-3.254791-0.382905-1.257948H-1.379009-0.062568-2.205820H-2.235154-1.7129472.435561C-3.171792-1.1472242.537709C-2.8760940.0502823.437499H-2.0695500.6656673.028821H-2.581709-0.2812224.441505H-3.7623260.6910043.539786C-1.0501962.279330-0.593714C-1.2119862.2609530.812521C-0.0577271.6039561.520972C1.2016302.2864291.064350H-0.1648221.5645422.609795C0.2153361.615784-1.049031H0.3232811.576075-2.138345Al0.0251690.0046470.217964N-1.442197-1.2617730.144326H-4.502065-2.8974462.575686H-2.1004070.405601-4.442573C-2.127488-1.916181-2.951152C-0.049996-3.2353850.324118H-0.078851-4.3174310.407302C1.222173-2.6604230.228912C2.395264-3.5983010.244808H2.095422-4.605912-0.056046

H2.808527-3.6667211.260015H3.208982-3.258740-0.403292H2.508716-1.7109132.292643C3.433733-1.1181302.277904C3.2282910.0432393.245360H2.3256400.6102002.999258H3.134625-0.3265714.274512H4.0720940.7451453.212758C4.571115-2.0180822.764211H4.780375-2.8366092.064050H4.327359-2.4558613.740107H5.502955-1.4517982.887688C3.677359-0.6621940.850136C2.735278-0.851327-0.175962C3.025793-0.541905-1.521758C1.3608542.273131-0.340343C4.2772640.003345-1.810356H4.5257700.254768-2.840546C5.2030170.249932-0.803269H6.1641810.700256-1.045475C4.904324-0.0854210.509456H5.6407040.0940811.292985N1.416145-1.3414210.126004H3.035814-0.053843-4.410829C-2.3550132.8259441.378435C-3.3378603.3846650.561828C-3.1703223.412858-0.821731H-4.2334583.8124971.010739C-2.0203382.874360-1.397046H-3.9339483.864457-1.454573H-1.8670422.922713-2.475864H-2.4762342.8366102.461906C2.1595942.9110911.860999C3.2947843.4750841.279591C3.4648293.435884-0.103108H4.0452913.9525321.908675C2.4944712.847064-0.912560H4.3536563.873925-0.556081H2.6199712.835548-1.996764H2.0224362.9488062.9427102g.logSCF(wB97x)=-1780.67706289E(SCF)+ZPE(0K)=-1779.840745H(298K)=-1779.795189G(298K)=-1779.913758LowestFrequency=26.5138cm-1H-0.1584954.085572-0.580913C-0.5864563.894614-1.571919H-1.4853974.517400-1.674035H0.1437804.235916-2.316850C-0.9232082.416294-1.779246

Page 57: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S40

H-0.0014871.846400-1.582159C-1.3002562.164331-3.233720H-1.6220821.128907-3.395855H-0.4392802.359017-3.885912C2.7411851.5402031.095825C4.1922591.8722941.298312H4.6461901.2039282.040443H4.3122942.8989481.653403H4.7702231.7449830.376481H3.3328802.566938-1.237764H2.8841432.836843-2.924827H4.5057592.237020-2.530389C2.9289730.736562-2.377923C2.8497350.331767-3.845066H2.530097-0.710309-3.965541H3.8130280.449825-4.358516C4.710879-1.044752-2.088949H4.917994-0.970179-3.154951C5.421461-1.958557-1.317893H6.178967-2.589167-1.779942C5.162961-2.0617080.040823H5.722726-2.7779950.642535C4.196944-1.2629410.660790H5.924303-2.1741132.749260C5.276632-1.3089082.939697H5.078837-1.2855824.018124C3.472376-0.363223-0.141235C3.722247-0.238251-1.524664H1.8980140.739933-1.995640H3.310281-0.5944602.486499C3.967812-1.4102462.154573C3.264599-2.7238532.493806H2.269257-2.7774372.042747H3.151396-2.8332813.579698H3.843553-3.5836912.130689H1.684362-2.320577-2.304084C0.993278-2.058309-1.503320C1.003787-2.650191-0.286753H1.697207-3.444157-0.012459C0.000486-2.0897410.682365C-1.357234-2.0809800.050427H0.026827-2.5331341.681909C-0.016548-0.960008-1.648055H0.001285-0.441334-2.611111Al0.589161-0.1838970.162893N2.4082310.4225710.426928H5.853136-0.4123022.680001H2.1271100.967054-4.371537C3.4444812.171657-2.254434C1.8130142.4448291.621323H2.2249853.2920362.161399C0.4203362.4335121.459821C-0.3482023.5837502.043078H-0.6718603.3377333.063573

H-1.2521533.8109501.469579H0.2731544.4818052.105660H-1.1625191.1157453.065984C-2.2333710.9125582.925464C-2.460505-0.5502503.294879H-1.795301-1.2094072.728793H-2.276236-0.7103214.364989H-3.491560-0.8613863.078751C-3.0103791.8272653.873949H-2.9016512.8860903.607759H-2.6665271.6966954.907634H-4.0833421.5976683.857053C-2.5866411.2143721.480681C-1.6201331.5651700.521910C-1.9766331.953051-0.787653C-3.3303081.944392-1.125509H-3.6324362.224141-2.133962C-4.2975921.548590-0.208448H-5.3441931.506275-0.503930C-3.9262671.1956541.080663H-4.6905580.8927471.796799N-0.2172631.4514920.821736H-2.1106722.824825-3.568903H-2.561480-0.819752-2.902826C-2.549642-1.297278-1.920226C-1.365520-1.448310-1.235820C-2.533233-2.5511130.589655C-3.771070-2.349279-0.069603C-3.779119-1.709763-1.352028C-5.020289-1.484747-1.991436C-6.206641-1.855371-1.397841C-6.199629-2.480178-0.133280C-5.006005-2.7248030.509412H-2.533383-3.0509591.560186H-4.995285-3.2090271.487379H-7.140223-2.7721400.331528H-7.152863-1.667905-1.903610H-5.020058-0.993202-2.9659882i.logSCF(wB97x)=-1473.39965474E(SCF)+ZPE(0K)=-1472.658657H(298K)=-1472.617788G(298K)=-1472.728325LowestFrequency=20.1141cm-1H-1.9807402.0795462.529280C-2.2465242.9008321.852933H-3.2750813.2094322.084442H-1.5837973.7441022.086478C-2.1110202.5002380.382821H-1.0886942.1165660.249659C-2.2422643.723872-0.515845

Page 58: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S41

H-2.2120243.453063-1.577993H-1.4189264.422747-0.321707C1.260036-0.4599152.070279C2.462012-0.5402222.966833H2.995800-1.4865662.811697H2.172979-0.4865734.019679H3.1817920.2575242.753015H1.8335732.0967982.434557H1.5030853.7645971.954317H3.1798863.2006892.082999C2.1307172.5036300.301302C2.3329903.724520-0.587789H2.3579593.453862-1.650143H3.2635824.258049-0.353077C4.3489751.626628-0.559046H4.6366792.652991-0.779860C5.2296980.592090-0.855721H6.1978730.811595-1.302491C4.870915-0.719074-0.579969H5.563183-1.528073-0.814464C3.634123-1.029463-0.006933H5.316142-3.2669820.530963C4.385912-3.1635731.104178H4.073803-4.1731361.398078C2.7493310.0288870.265563C3.0949141.370676-0.004003H1.1158552.1317360.099290H2.361193-2.5136810.852615C3.296234-2.4816530.275640C3.058351-3.264129-1.015036H2.219961-2.852094-1.584873H2.840114-4.317030-0.795889H3.947107-3.234699-1.659829H2.0145871.238240-3.077875C1.2084100.598847-2.717333C1.220839-0.748200-2.806745H2.032024-1.317655-3.259930C-0.001378-1.412017-2.227509C-1.226903-0.768208-2.821930H-2.020297-1.351483-3.288648H-2.0498471.204833-3.104278H0.007719-2.504570-2.262202C-0.0246001.157117-2.064753H-0.0331672.244245-1.948279Al-0.004085-0.230067-0.555552N1.425921-0.2373360.760691H4.630295-2.6039172.015755H1.5115624.436531-0.441065C2.1664532.9080531.776029C0.005751-0.6202932.672666H0.010293-0.8142993.740980C-1.254417-0.4789822.077311C-2.451744-0.5933252.976215H-2.169455-0.4806284.026389

H-2.920509-1.5794272.860304H-3.2211190.1463362.730908H-2.385268-2.5179950.828241C-3.318423-2.4714280.249087C-3.090712-3.259874-1.039501H-2.240630-2.866100-1.604965H-2.896042-4.316886-0.818018H-3.974933-3.212706-1.689418C-4.422292-3.1309211.077149H-4.655529-2.5643921.987343H-4.131550-4.1465351.372403H-5.353703-3.2152030.502637C-3.632434-1.013939-0.031720C-2.7417530.0306550.270687C-3.0698211.3801660.019351C-1.2386390.578230-2.732863C-4.3098501.658066-0.556279H-4.5839572.691374-0.762769C-5.1934490.636902-0.888544H-6.1500260.872905-1.351600C-4.854467-0.682076-0.623769H-5.551553-1.479983-0.881204N-1.424638-0.2528580.770437H-3.1758994.272362-0.3337032b.logSCF(wB97x)=-1475.84387423E(SCF)+ZPE(0K)=-1475.060233H(298K)=-1475.017374G(298K)=-1475.132143LowestFrequency=-9.9927cm-1N-1.4179570.124611-0.940177N1.418561-0.124490-0.940093C-1.2457550.178293-2.264255C0.0004080.000515-2.882388H0.0004630.000888-3.968336C1.246552-0.177220-2.264246C-2.4215240.467137-3.154549H-3.313253-0.103184-2.877158H-2.1858680.271497-4.204158H-2.6939131.527471-3.062225C2.422753-0.464390-3.154502H2.697618-1.523999-3.061257H3.3132580.108168-2.877713H2.186529-0.270102-4.204228C-2.7555190.012423-0.429850C-3.333689-1.276636-0.369738C-4.648913-1.3832860.085057H-5.118923-2.3649470.129347C-5.365491-0.2636500.494010H-6.392121-0.3697360.840378C-4.7581220.9831410.483780

Page 59: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S42

H-5.3092831.8563680.834142C-3.4437291.1456670.034308C-2.561400-2.521863-0.776079H-1.489566-2.292407-0.678689C-2.854231-3.7099060.137895H-2.754392-3.4444711.196606H-2.154449-4.527718-0.071939H-3.865856-4.107343-0.016683C-2.815798-2.918764-2.232118H-2.441500-2.173351-2.942213H-3.889739-3.054333-2.419956H-2.315821-3.867847-2.463030C-2.8068812.5191420.088172H-1.7621602.424874-0.243885C-3.5117323.509589-0.837267H-3.5163043.169524-1.880117H-3.0232494.491296-0.805315H-4.5583363.652207-0.536655C-2.7968383.0488111.522805H-2.3478542.3275522.215639H-3.8164823.2562501.873950H-2.2292843.9855981.589520C2.756014-0.011607-0.429664C3.3328661.277935-0.368050C4.6480611.3854050.086703H5.1170552.3674970.132054C5.3657850.2660150.494254H6.3923520.3726660.840634C4.759633-0.9813770.482704H5.311717-1.8544090.832100C3.445385-1.1447160.033160C2.5591552.522836-0.772687H1.4875962.292082-0.675329C2.8508523.7100330.142716H2.7513763.4431251.201085H2.1501854.527369-0.066017H3.8620354.108754-0.011457C2.8127602.921737-2.228306H2.4390972.176721-2.939156H3.8864983.058728-2.416262H2.3116653.870528-2.458021C2.809714-2.5187720.085888H1.765134-2.425261-0.246844C3.516014-3.508264-0.839458H3.521063-3.167793-1.882175H3.028277-4.490361-0.808237H4.562516-3.650195-0.538164C2.799176-3.0490221.520322H2.348856-2.3285462.213110H3.818809-3.2553991.872119H2.232633-3.9864761.586253C-0.418622-1.3817701.735273C0.4185891.3775101.737374C-0.181028-0.6575393.044819

H0.119825-2.3427901.713711H-1.482950-1.6743621.684493C0.1789900.6519573.045797H1.4833011.6690271.687873H-0.1188032.3391281.716359C0.3929791.4798454.277124H1.4171651.8816494.300752H-0.2692682.3593264.268778H0.2229890.9502185.220280C-0.396704-1.4868274.274898H0.266053-2.3659324.266795H-0.228655-0.9581045.218908H-1.420706-1.8892254.296312Al0.000169-0.0011830.381729syn-2c.logSCF(wB97x)=-1475.83260093E(SCF)+ZPE(0K)=-1475.047240H(298K)=-1475.004378G(298K)=-1475.118180LowestFrequency=19.3583cm-1N-1.481251-0.0131610.685624N1.3767950.2211610.757692C-1.3404310.0400912.007439C-0.1193190.3548482.639665H-0.1641710.4537343.721032C1.1590920.3598302.075014C-2.482540-0.2743582.931856H-3.351944-0.6816092.409884H-2.7954090.6309733.466300H-2.161485-0.9934323.693665C2.3329550.4985383.000120H2.8572151.4422732.799845H3.068825-0.2989382.846433H2.0213730.4933704.047890C-2.740048-0.3399970.077058C-3.7982900.5939790.046707C-4.9745120.234188-0.619985H-5.8005910.945249-0.645432C-5.108242-0.993630-1.248423H-6.032369-1.247729-1.764465C-4.052340-1.897328-1.220804H-4.157936-2.858505-1.719767C-2.858632-1.593947-0.566253C-3.7433891.9585920.710406H-2.7373822.1019001.131689C-4.0031843.092441-0.284400H-3.3355043.052482-1.150754H-3.8664224.0664110.201690H-5.0345833.055751-0.658848C-4.7711732.0661261.841259H-4.6886191.2557192.572450

Page 60: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S43

H-5.7911112.0321061.435916H-4.6643663.0191662.374120C-1.726717-2.600565-0.508009H-0.787742-2.037869-0.615518C-1.678807-3.3029200.849967H-1.526052-2.5955891.674305H-0.854715-4.0288100.881069H-2.612445-3.8486541.041457C-1.754026-3.624762-1.635114H-1.825284-3.145720-2.619179H-2.593986-4.325047-1.536384H-0.834823-4.223264-1.620934C2.695386-0.1343980.308684C3.003262-1.5093040.185026C4.276502-1.864286-0.262330H4.531865-2.917555-0.364971C5.218782-0.898450-0.597924H6.203884-1.196790-0.952546C4.8935090.444409-0.487751H5.6279751.202790-0.760205C3.6366930.853735-0.030179C1.982156-2.5803380.524143H0.991695-2.1711920.269930C2.174141-3.867421-0.272793H2.293433-3.677385-1.345661H1.306934-4.526634-0.137314H3.053095-4.4301800.068451C1.963585-2.9120152.019197H1.619694-2.0722312.632188H2.965623-3.2000522.365643H1.288621-3.7549562.216523C3.3410562.3358270.067143H2.3389382.4553380.505394C4.3417343.0600750.968006H4.4148012.6065761.964292H4.0553514.1113711.094520H5.3494683.0471060.532415C3.3306302.976518-1.320635H2.5857792.511442-1.977935H4.3141222.878605-1.800021H3.1007244.047936-1.255308C-0.4523822.401851-1.181526C0.079971-0.204755-2.354984C0.0649342.277706-2.587735H-1.5552962.322666-1.239930C0.3023811.068470-3.132326H-0.942925-0.568534-2.581495Al-0.0371180.569606-0.510779C-0.1409533.721180-0.493605H-0.5380384.591515-1.042516H-0.5681393.7612950.518942H0.9394963.887700-0.387341C1.054936-1.306435-2.752701H1.016736-1.527482-3.832098

H2.096039-1.038240-2.520980H0.841802-2.249048-2.228926H0.6676810.991790-4.163179H0.2435793.188347-3.172701Int-2.logSCF(wB97x)=-1553.17472735E(SCF)+ZPE(0K)=-1552.351092H(298K)=-1552.307696G(298K)=-1552.422640LowestFrequency=11.6367cm-1H0.9382692.736742-1.603720C1.3969733.347081-0.817122H2.2403433.895762-1.258716H0.6503694.088550-0.501876C1.8595862.5171210.382331H0.9870891.9334930.738058C2.2592373.4481851.521246H2.6437642.9001752.390423H1.3911824.0311031.851993C-1.5002480.202360-2.279321C-2.7093630.595977-3.078445H-3.6011280.026938-2.802070H-2.5229080.483575-4.150285H-2.9512021.651614-2.893921H-2.9628443.513690-1.715166H-1.8880294.554684-0.764802H-3.5269774.215686-0.193858C-2.1280532.5626780.073762C-1.6872642.9674951.480242H-1.2606912.1087702.014348H-2.5312233.3533752.067771C-4.3842091.6721890.733545H-4.6032152.6651481.127966C-5.3344900.6644070.840569H-6.2980780.8675341.304687C-5.042050-0.6077610.367390H-5.780623-1.4027900.469251C-3.810458-0.897766-0.227069H-5.342995-2.555296-1.844399C-4.258105-2.668425-1.974505H-4.065420-3.710811-2.257752C-2.8798710.148188-0.364951C-3.1462071.4388380.132256H-1.2345942.196741-0.453995H-2.436121-2.377428-0.890739C-3.514090-2.312788-0.686665C-3.848459-3.3348030.400194H-3.405868-3.0632591.365693H-3.473794-4.3273550.121945H-4.932909-3.4269410.545567C-0.453677-2.0336971.365476

Page 61: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S44

C0.355994-3.0522992.145762H-0.292833-3.5988522.854690H2.272489-3.3709733.083937H-1.362790-2.5474051.028404C2.298821-1.3524392.433264H3.177990-1.5444181.813923Al-0.101841-0.5168120.204172N-1.607315-0.091921-0.988559H-3.957158-2.037907-2.819049H-0.9270213.7601681.434685C-2.6555273.773381-0.694389C-0.2611490.270409-2.938547H-0.2997800.475277-4.003830C1.0047720.319031-2.352367C2.1339910.728430-3.260321H1.7591740.962394-4.259602H2.897519-0.052016-3.354947H2.6515611.611844-2.866401H2.341676-1.823154-2.199189C3.228544-1.990688-1.572264C2.828923-3.041577-0.538136H1.959253-2.7086820.042080H2.566062-3.987814-1.028444H3.652060-3.2416950.162272C4.334107-2.518250-2.481706H4.682698-1.759099-3.193872H3.973932-3.380246-3.055229H5.206835-2.859160-1.910385C3.587483-0.675316-0.902222C2.6150100.306779-0.628856C2.9415951.5133450.020295C1.559936-2.5418562.966426C4.2770641.7320100.367139H4.5562812.6546940.872112C5.2523300.7779360.102875H6.2866780.9639690.386846C4.905093-0.416191-0.515880H5.674633-1.161706-0.710413N1.2547450.096525-1.045389H3.0293744.1665481.210221C-0.876437-0.6329822.008457C-0.444746-0.2537913.414045C0.8920020.4849133.517551C2.028497-0.0682862.714500H-1.970444-0.5478311.950441H-0.447302-1.1343314.076730H-1.2069770.4135953.845785H1.1919240.5787854.576498H0.7280951.5215353.177730H2.7325540.6702092.330762H1.223687-2.3055073.983273H0.706015-3.8226321.440634s-cis-(E,E)-2,4-hexadiene.log

SCF(wB97x)=-234.577644198E(SCF)+ZPE(0K)=-234.435962H(298K)=-234.427338G(298K)=-234.467336LowestFrequency=97.1909cm-1C-0.816776-0.4400910.149209C0.507396-0.547580-0.043316H-1.379029-1.3352940.429964H1.0639280.366840-0.269571C1.292910-1.7702240.042634C0.840110-3.019306-0.149259H2.355953-1.6440450.268701H-0.207896-3.158508-0.429729C-1.5949970.8207070.020757H-2.3718420.740981-0.753044H-2.1206161.0728580.952523H-0.9503671.667611-0.241805C1.663098-4.251311-0.020530H1.267175-4.9247400.753005H1.674224-4.834118-0.952342H2.701269-4.0172480.242414s-trans-(E,E)-2,4-hexadiene.logSCF(wB97x)=-234.583039378E(SCF)+ZPE(0K)=-234.441270H(298K)=-234.432725G(298K)=-234.472331LowestFrequency=107.3111cm-1C-0.706404-0.0977830.574676C-0.124638-1.003934-0.229201H-0.618395-0.2340491.656547H-0.207374-0.875856-1.313475C0.615216-2.1552460.229160C1.196977-3.061392-0.574726H0.697961-2.2833381.313432H1.108973-2.925118-1.656596C-1.4702921.0910340.112843H-2.5056231.0784110.482035H-1.0286102.0274580.482151H-1.5064801.147432-0.981259C1.960853-4.250218-0.112896H1.519104-5.186642-0.482124H2.996156-4.237660-0.482167H1.997118-4.3065680.981206TS-1b.logSCF(wB97x)=-1475.76754765E(SCF)+ZPE(0K)=-1474.985638H(298K)=-1474.941799

Page 62: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S45

G(298K)=-1475.058673LowestFrequency=-170.2941cm-1N1.5610760.559047-0.832162N-1.2536510.559121-1.007076C1.4892280.898881-2.121794C0.2742111.103087-2.787605H0.3387871.408801-3.827714C-1.0147190.913448-2.273503C2.7524071.071444-2.916037H3.4704071.707346-2.384328H2.5507451.506736-3.898689H3.2554090.107479-3.068575C-2.1714601.129629-3.208117H-2.8769461.859858-2.792194H-2.7457390.205282-3.352824H-1.8358151.483575-4.186643C2.8450720.286480-0.259432C3.4440691.2437010.584585C4.6346550.9056721.233927H5.1041711.6384421.891176C5.227683-0.3363061.055568H6.152690-0.5822371.574110C4.633935-1.2622350.206643H5.097963-2.2389520.067370C3.442853-0.974631-0.462695C2.8655512.6310360.790018H1.9448662.7107050.193585C2.4904452.8758242.250433H1.7540012.1403742.600123H2.0538353.8743372.378731H3.3687462.8092842.906161C3.8297773.7089170.294540H4.0933133.567004-0.760699H4.7651943.7018860.869495H3.3861684.7066280.400379C2.804915-2.044501-1.329393H1.985668-1.588390-1.903880C3.790597-2.652004-2.325212H4.278550-1.887436-2.943035H3.278682-3.352176-2.996442H4.584538-3.214239-1.817281C2.188148-3.129857-0.449529H1.425257-2.7091140.216014H2.952836-3.6031780.182220H1.719359-3.916628-1.054995C-2.6096610.327344-0.604263C-3.162790-0.955152-0.803257C-4.430353-1.219236-0.284662H-4.870488-2.206337-0.420250C-5.140830-0.2416890.405023H-6.125570-0.4677230.810731C-4.5983551.0262990.555727H-5.1684571.7993141.072673

C-3.3319811.3408910.052116C-2.377068-2.020693-1.544011H-1.728828-1.515073-2.274299C-1.458895-2.776759-0.588474H-0.835272-2.0944220.009261H-0.788594-3.457423-1.129083H-2.049243-3.3757440.117556C-3.256892-2.993745-2.320510H-3.956570-2.471245-2.984543H-3.848134-3.633539-1.653084H-2.639452-3.659660-2.934924C-2.8187272.7634600.175974H-1.8263422.810752-0.296196C-3.7364663.735991-0.567250H-3.8708603.456142-1.619659H-3.3295924.754380-0.538546H-4.7341313.767218-0.109705C-2.6569013.1986601.630584H-1.9296762.5665352.152782H-3.6097793.1373082.173870H-2.3111624.2387621.686890C-0.017189-1.9021462.693920C-1.322936-1.3652192.935663C-2.502277-2.2966502.979101H-3.443880-1.7394503.031525H-2.560961-2.9601532.104373H-2.459770-2.9564253.858264C0.140885-3.3863442.524248H-0.208186-3.9199753.420209H-0.437760-3.8032101.685068H1.189737-3.6623962.371749Al0.0638960.4991860.534641C-1.538201-0.0081512.989747H-0.7467590.6962513.220493C1.057999-1.0565432.436479H1.122766-0.0884362.924369H-2.5517100.3849973.065906H2.032991-1.4858632.195520TS-1h.logSCF(wB97x)=-1780.64735488E(SCF)+ZPE(0K)=-1779.813189H(298K)=-1779.767115G(298K)=-1779.887080LowestFrequency=-148.8964cm-1H0.960883-3.804629-0.679900C1.214151-3.610283-1.728740H2.094745-4.214104-1.987107H0.373741-3.968472-2.338055C1.469977-2.126158-1.995070H0.599631-1.581141-1.595779C1.524924-1.868224-3.497255

Page 63: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S46

H1.785309-0.827835-3.731367H0.550753-2.082373-3.954175C-1.374417-2.0527841.756585C-2.618020-2.6441032.358902H-3.078460-1.9288503.052941H-2.395907-3.5621652.909410H-3.377067-2.8620671.599372H-1.921144-3.576848-0.089609H-2.002706-4.122700-1.763860H-3.499708-3.824520-0.868649C-2.487542-2.016190-1.538040C-2.938167-2.021310-2.995555H-3.060340-1.009430-3.396998H-3.893217-2.548414-3.121693C-4.603653-0.721036-1.025626H-5.026143-1.107914-1.951388C-5.3574730.148157-0.245246H-6.3624850.429029-0.556432C-4.8168930.6666420.920795H-5.4023881.3596621.525680C-3.5344270.3107611.351050H-4.9251591.2030743.672232C-3.9905640.6446593.812306H-3.5520930.9797934.760051C-2.786976-0.5766620.552424C-3.308263-1.087849-0.657780H-1.448406-1.646416-1.507577H-2.0684460.3885802.903958C-3.0186170.8862342.656682C-2.7301662.3804472.520229H-1.9629732.5656301.758456H-2.3720042.7954163.471146H-3.6382262.9287772.233046C-0.6465421.824228-1.728003C-1.0748002.930010-0.922151C-0.1245383.550153-0.081321C1.2631563.367506-0.279543H-0.4574124.3630540.567583C0.6821011.334888-1.510212H1.0180650.508063-2.141459Al0.0983030.2694220.718382N-1.469540-0.9886010.949134H-4.259969-0.4135653.920217H-2.201922-2.549025-3.614771C-2.474951-3.460922-1.026615C-0.155255-2.6690572.079547H-0.210365-3.5235872.747129C1.097966-2.3987061.513617C2.212966-3.3666941.791530H1.857512-4.2327252.356074H3.014096-2.8838862.366811H2.677551-3.7183940.862515H2.667083-0.6009852.649136C3.584150-0.1783342.213967

C3.4368341.3430952.239632H2.5741481.6817491.648069H3.3041601.7039963.267803H4.3248521.8307231.815631C4.753715-0.6204453.090041H4.908667-1.7066583.055829H4.578139-0.3366104.134507H5.694431-0.1457202.783333C3.699786-0.6782120.787114C2.592912-1.2094270.097978C2.687478-1.604654-1.253971C1.6906312.248162-1.061491C3.929275-1.506118-1.885377H4.027490-1.815071-2.925021C5.039010-1.005334-1.212097H5.997963-0.930783-1.722314C4.915759-0.5831910.104831H5.781505-0.1656840.618726N1.323706-1.3254940.749182H2.260212-2.512553-3.996850C-2.4242303.350358-1.010625C-3.2965962.739035-1.883627C-2.8593551.678262-2.701762H-4.3299323.076277-1.946652C-1.5591671.220662-2.611606H-3.5547061.218091-3.402964H-1.2154540.388592-3.230185H-2.7566644.177569-0.382739C2.2434064.2457820.241562C3.5810834.049412-0.029097C3.9957172.947890-0.802743H4.3216884.7462450.360700C3.0638222.052842-1.292657H5.0546382.793466-1.007284H3.3803061.185446-1.873381H1.9193885.0951270.843218TS-1g.logSCF(wB97x)=-1780.64479899E(SCF)+ZPE(0K)=-1779.810240H(298K)=-1779.764422G(298K)=-1779.883436LowestFrequency=-87.3349cm-1H0.5614914.3812400.233811C0.2594134.427360-0.818801H-0.5204735.195119-0.913301H1.1312994.764570-1.393859C-0.2407603.075612-1.333084H0.5369632.334228-1.094274C-0.3925033.118131-2.850366H-0.7995982.181394-3.252604H0.5816513.294787-3.323588

Page 64: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S47

C2.7310971.1562591.589929C4.1861491.2966921.935392H4.5538920.3959652.443024H4.3577202.1542282.591013H4.8019351.4112771.035543H3.3461252.622052-0.356541H3.1563143.296475-1.976190H4.6910452.540973-1.517200C3.0882501.127665-1.947817C3.1901761.122036-3.469678H2.8829830.164759-3.908320H4.2138841.327826-3.809198C4.731728-0.804749-1.971984H5.036268-0.498694-2.970887C5.310244-1.934205-1.400586H6.063593-2.497227-1.948795C4.917138-2.342266-0.135732H5.363338-3.2334590.306155C3.955760-1.6332940.593152H5.409209-3.1752792.506324C4.784613-2.3490802.869564H4.470401-2.6059663.888287C3.380987-0.4935000.000145C3.757622-0.070501-1.295262H2.0184481.067136-1.688276H2.923702-1.3777262.446205C3.566069-2.1339741.971288C2.753958-3.4248701.872111H1.827237-3.2645531.307958H2.486537-3.7946472.870141H3.330880-4.2114871.366016H1.674404-1.053808-2.621449C0.853147-1.477309-2.050061C0.957854-2.742404-1.491261H1.869673-3.327845-1.608022C-0.079338-3.210558-0.676009C-1.399720-2.657712-0.796042H0.026413-4.168042-0.164637C-0.239058-0.657469-1.629438H-0.3260740.340959-2.074180Al0.460877-0.3646040.539701N2.3554460.2443020.681317H5.426174-1.4607392.927694H2.5497931.904204-3.893867C3.6003032.466248-1.410847C1.8351212.0160082.243369H2.2611582.6700362.998251C0.4851422.2268431.923521C-0.2456083.3319372.630469H-0.9730592.9029163.333959H-0.8231193.9525271.936794H0.4376503.9715643.195711H-1.5370100.5902192.847246C-2.5764090.6146042.486956

C-2.987786-0.8246512.180026H-2.329379-1.2800331.427802H-2.942914-1.4447183.084668H-4.013152-0.8695961.786621C-3.4408191.1986363.602800H-3.1865972.2445903.817802H-3.3164600.6219794.527292H-4.5070691.1680283.344798C-2.6175851.4626211.231877C-1.4485831.8739530.565429C-1.5072692.639302-0.619981C-2.7630353.009761-1.105394H-2.8304293.610518-2.011602C-3.9281802.611705-0.458848H-4.8996052.899401-0.858535C-3.8505481.8382130.691190H-4.7668041.5073521.180458N-0.1576251.4684721.034187H-1.0536973.931822-3.175343H-2.8228770.268789-1.887214C-2.747685-0.748332-1.495727C-1.506780-1.334598-1.348401C-2.555944-3.334483-0.426235C-3.829070-2.750711-0.573483C-3.929192-1.425754-1.120849C-5.209377-0.834213-1.242248C-6.343671-1.503271-0.841731C-6.246331-2.805983-0.304380C-5.018720-3.412843-0.177489H-2.479603-4.338504-0.005380H-4.939750-4.4176880.238515H-7.148211-3.3291750.009404H-7.320024-1.031329-0.940230H-5.2752180.172868-1.655546TS-1i.logSCF(wB97x)=-1473.37208477E(SCF)+ZPE(0K)=-1472.632727H(298K)=-1472.591520G(298K)=-1472.702674LowestFrequency=-218.7113cm-1H1.9922192.367345-2.409005C2.2103583.104550-1.628071H3.2424233.452955-1.770300H1.5432383.960588-1.791336C2.0180382.528485-0.223382H1.0073572.092663-0.192980C2.0725163.6473020.810699H2.0071613.2651351.837112H1.2404624.3455860.654830C-1.246698-0.135815-2.221509C-2.459827-0.025286-3.101463

Page 65: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S48

H-3.082596-0.925366-3.012977H-2.1830000.096006-4.152124H-3.0969090.815567-2.803142H-1.5620752.417032-2.124039H-1.2244043.982717-1.380214H-2.9021833.503306-1.694140C-1.9909372.5168700.024836C-2.1951723.6131511.064138H-2.2879393.2086902.079551H-3.0932444.2108640.859393C-4.2573701.6067560.713319H-4.5170302.5988361.078460C-5.1660870.5644990.866839H-6.1297120.7464101.339640C-4.834420-0.7078990.426144H-5.541731-1.5266230.561240C-3.606336-0.967425-0.190821H-5.321754-3.114652-0.949350C-4.393647-2.967251-1.516538H-4.096037-3.947092-1.909126C-2.7000170.098953-0.341886C-3.0099111.3962110.125033H-1.0088752.0598880.217301H-2.363006-2.355530-1.232056C-3.288442-2.381389-0.638338C-3.031476-3.2884610.565198H-2.182026-2.9281571.158856H-2.809677-4.3132270.240882H-3.912380-3.3269471.220954H-2.0191681.0004452.740969C-1.1751540.3123092.760264C-1.328061-1.0116093.063537H-2.300216-1.4398843.305880C-0.175892-1.8505992.932943C1.096100-1.2544513.213699H1.922212-1.8651133.575224H2.2125740.5741422.976374H-0.292580-2.9265493.061766C0.1255420.7127802.255462H0.2483901.7688401.998904Al0.017712-0.7093830.405508N-1.396732-0.126873-0.892257H-4.634866-2.319802-2.369116H-1.3443244.3049511.056150C-1.9190633.132111-1.373956C0.000206-0.246221-2.855378H-0.013519-0.286397-3.940670C1.264606-0.197081-2.248787C2.472525-0.199282-3.142270H2.2082670.023819-4.179767H2.948180-1.189900-3.121207H3.2327300.514116-2.805915H2.396011-2.405274-1.123852C3.305170-2.406817-0.504752

C3.023409-3.2860270.712996H2.152594-2.9210281.272294H2.822917-4.3211730.408522H3.883755-3.2978611.396394C4.442001-2.995319-1.339509H4.687701-2.365609-2.203996H4.175214-3.992741-1.709718H5.359371-3.104177-0.746496C3.596468-0.977442-0.091997C2.7042060.079438-0.349474C2.9937511.4011730.057697C1.2525730.0644282.898101C4.2030031.6420180.710996H4.4467572.6544751.029784C5.0937670.6073750.978634H6.0270320.8124371.500398C4.786517-0.6863830.582155H5.483939-1.4963660.797917N1.419281-0.170489-0.924758H2.9971884.2342620.732860TS-1c.logSCF(wB97x)=-1475.77017975E(SCF)+ZPE(0K)=-1474.985066H(298K)=-1474.942508G(298K)=-1475.054145LowestFrequency=-65.9104cm-1N-1.583004-0.280816-0.782078N1.2565120.008951-0.800410C-1.443818-0.264516-2.110899C-0.200846-0.149676-2.736483H-0.205953-0.144234-3.822133C1.0424110.055270-2.124836C-2.655727-0.352241-2.997031H-3.307016-1.178537-2.686931H-2.367514-0.501321-4.041211H-3.2702870.555174-2.940638C2.1894040.310750-3.068012H2.820004-0.581440-3.166255H2.8458831.112730-2.716329H1.8187900.568035-4.063941C-2.915160-0.131913-0.280419C-3.629013-1.2461860.193920C-4.903806-1.0375770.732204H-5.463819-1.8928261.112121C-5.4620470.2299690.789422H-6.4531740.3738031.216187C-4.7573141.3179470.282064H-5.2123052.3064350.311284C-3.4840041.164104-0.264967C-3.076716-2.6565910.141748H-2.094132-2.622398-0.351691

Page 66: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S49

C-2.866386-3.2185911.546767H-2.181751-2.5892212.129158H-2.439174-4.2282091.503968H-3.815790-3.2797392.096072C-3.976347-3.580439-0.678381H-4.130095-3.203752-1.697213H-4.966700-3.689425-0.216994H-3.537651-4.583002-0.752713C-2.7230022.360671-0.816331H-2.1505672.024967-1.693238C-3.6314793.490899-1.286469H-4.4071513.135035-1.976005H-3.0438514.257707-1.804519H-4.1351593.988335-0.447709C-1.6954522.8873540.184211H-1.0079382.0936350.504097H-2.1860153.2882941.081605H-1.0959453.693315-0.259081C2.6308410.155723-0.403043C3.0678801.4091180.070106C4.4124701.5545950.415786H4.7701022.5154650.782531C5.3022120.4912200.301569H6.3471680.6219030.578213C4.853200-0.736249-0.164533H5.553826-1.567151-0.249522C3.518772-0.932036-0.534327C2.0971562.5705760.177731H1.1401302.1469860.515190C2.5125943.6250741.197099H2.7753333.1881982.168054H1.6884664.3311911.359575H3.3741794.2122200.851894C1.8413773.244413-1.173600H1.2934312.595726-1.866543H2.7849073.540372-1.652715H1.2425804.154412-1.038785C3.095107-2.281981-1.092759H2.107765-2.165673-1.562052C4.062217-2.792117-2.162483H4.262811-2.046779-2.942244H3.657668-3.688556-2.647638H5.030338-3.071973-1.727828C2.943195-3.3384590.000125H2.211215-3.0248930.755437H3.903372-3.5236730.500710H2.604535-4.289965-0.429588C0.2819120.9064382.734091C1.6011330.4342592.793958Al-0.092440-0.7460820.531597C1.954675-0.9019372.792375H1.203622-1.6561503.023373C-0.8055280.0049482.574455H-0.652629-0.9532983.079378

C-2.2075380.5117492.808955H-2.3493290.6989863.883774H-2.4105571.4544932.291073H-2.979536-0.2012072.502485C3.377565-1.3317052.903397H4.061868-0.5189642.631306H3.616065-1.6364163.935689H3.620708-2.1908842.268453H0.1000381.9782002.624319H2.4167781.1590232.741762TS-2.logSCF(wB97x)=-1553.15495408E(SCF)+ZPE(0K)=-1552.333136H(298K)=-1552.290614G(298K)=-1552.402124LowestFrequency=-108.0902cm-1H-1.3237862.8550121.595381C-1.7347523.4270150.755950H-2.6811743.8809321.079266H-1.0298064.2416070.541237C-1.9349192.555176-0.484552H-0.9828342.028873-0.651934C-2.1750033.429866-1.710492H-2.3654412.831042-2.609778H-1.2956364.055631-1.905071C1.3005820.1868152.271063C2.4821520.2995563.192565H2.739744-0.6913333.589265H2.2521210.9393154.050429H3.3697530.6913462.686538H2.1516532.7030942.120984H1.5459464.1970571.390791H3.2649083.7764841.255355C1.9650772.628357-0.060590C1.9319703.623927-1.214490H1.8037303.129351-2.185667H2.8508644.222629-1.265620C4.1224431.689577-0.990294H4.3011282.653341-1.464656C5.0628300.674401-1.127993H5.9662210.840845-1.712268C4.852488-0.543586-0.498963H5.606556-1.327296-0.578793C3.698311-0.7911250.252485H5.670732-2.2309451.652216C4.672788-2.1575682.104731H4.536931-3.0408582.741748C2.7309660.2301720.342878C2.9501531.491360-0.260518H0.9620522.1851240.031956H2.605866-2.1462581.485879

Page 67: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S50

C3.598037-2.1009821.012177C3.758818-3.3336450.124408H3.013553-3.374893-0.673798H3.665998-4.2487320.722562H4.751338-3.354914-0.344705C-0.882214-2.316990-1.274604C-1.712630-2.416701-2.539163H-1.592767-3.381337-3.073616H-2.236692-0.888066-4.009026H-1.287747-2.903655-0.438840C-0.977350-0.104610-2.441292H-1.7535090.620473-2.197172Al0.024423-0.547694-0.338688N1.4537550.0260100.959329H4.675978-1.2703012.745914H1.1024674.330049-1.080754C2.2469863.3637991.251918C0.0324680.2694692.859192H0.0075160.4264683.934626C-1.1994340.3403242.203340C-2.3417440.7917603.080439H-2.3540630.2139774.011295H-3.3227190.7226392.609475H-2.1884171.8392783.368610H-2.336601-2.1281531.412119C-3.417016-2.0492251.225655C-3.849137-3.2638140.403400H-3.417386-3.265489-0.601177H-3.543780-4.1900790.905622H-4.941089-3.3021680.295925C-4.143982-2.1060482.572843H-3.839367-1.3115113.259576H-3.956088-3.0664853.068899H-5.229303-2.0182532.427674C-3.673809-0.7379200.502477C-2.7002330.2720320.359174C-3.0009841.488811-0.290770C-1.383116-1.205900-3.392559C-4.2940891.679628-0.781448H-4.5414202.609526-1.290394C-5.2687260.699238-0.639230H-6.2726570.866203-1.025681C-4.953169-0.494921-0.007139H-5.718716-1.2632720.103230N-1.3721450.0971690.890292H-3.0266724.108653-1.572265C0.597058-2.280756-1.212972C1.410447-2.028392-2.482792C1.491909-0.535286-2.861082C0.3844700.279080-2.207464H1.014710-3.046573-0.548227H1.006318-2.624353-3.318440H2.432325-2.405087-2.336375H1.484550-0.409245-3.959930

H2.456065-0.130873-2.522517H0.5660021.359629-2.125383H-0.566778-1.410488-4.096551H-2.775223-2.357535-2.260099TS_rotation-dimethylbutadiene.logSCF(wB97x)=-234.570737680E(SCF)+ZPE(0K)=-234.429623H(298K)=-234.421992G(298K)=-234.459420LowestFrequency=-73.1639cm-1C1.4456210.295427-0.876033H1.279886-0.389335-0.032220H2.4727800.109133-1.218446H1.3881781.322137-0.498359C0.4628650.049035-1.980045C-0.3505020.999479-2.448223H-0.3338322.012081-2.047484C0.420966-1.343987-2.515025C1.302800-1.767619-3.424392H2.068507-1.108034-3.829337H1.284825-2.788598-3.803225H-1.0559740.802856-3.253811C-0.645254-2.230175-1.946410H-1.644423-1.829573-2.165903H-0.586398-3.248924-2.344875H-0.576682-2.286855-0.850745TS_rotation-(E,E)-hexadiene.logSCF(wB97x)=-234.569478960E(SCF)+ZPE(0K)=-234.428475H(298K)=-234.420451G(298K)=-234.459118LowestFrequency=-189.0911cm-1C-0.807634-0.2773470.435475C0.300844-0.694636-0.183380H-1.192780-0.8680161.271324H0.680861-0.094652-1.018365C1.073192-1.8970790.183382C0.991745-3.078670-0.435510H1.776888-1.8010171.018373H0.294476-3.183276-1.271440C-1.5785400.9441770.071967H-2.6156730.703300-0.198904H-1.6383041.6501330.911849H-1.1236181.469575-0.775833C1.782256-4.287630-0.072038H1.132121-5.1306750.199336H2.399163-4.635610-0.912081H2.449542-4.0920470.775453

Page 68: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S51

TS-1f

SCF(m06l)=-1781.894215E(SCF)+ZPE(0K)=-1781.039956H(298K)=-1780.992847G(298K)=-1781.115917LowestFrequency=-88.15cm-1

Al0.28885000-0.40031900-0.50960700N-0.312605001.33342100-1.20861500C-1.74032800-1.954533000.98393500N2.132010000.28420600-0.30186300C2.96271400-0.631424000.42180900C-0.83469000-0.823977001.18625800C-1.17591100-3.065201000.31715100C-1.910990002.532763000.17962500C-1.667118001.73715500-0.96033900C2.649605001.31272700-0.97787800C4.35299100-2.593090000.46642200H4.93380500-3.35039200-0.05700000C-3.16480700-1.816342001.25850800C-1.94526700-4.06019800-0.36491300H-3.02889300-4.00313200-0.31786600C-3.213516002.989480000.39626000H-3.421586003.613455001.26223400C-3.998888001.80480000-1.54463700H-4.819896001.50425900-2.19045600C-4.247298002.64505800-0.46624000H-5.254063003.01023900-0.28202200C3.72911400-1.58661000-0.27715600C-3.94590400-2.904201001.70351600H-3.46221500-3.863408001.86832500C-5.30052800-2.761915001.97627700H-5.86681100-3.620906002.32844800C0.83012200-4.18184000-0.61178800H1.91443300-4.25424300-0.64407300C0.476574002.21443600-1.84670000C2.86523200-0.647231001.83050100C0.05259100-5.13374500-1.22453800H0.50862500-5.95287600-1.77398300C-2.711213001.33419100-1.81151100C-5.17492900-0.435820001.39542200H-5.643923000.537304001.26399000C0.24946200-3.096127000.08566500H0.90539300-2.573584000.78068800C1.871060002.16000800-1.78512100H2.411777002.92108600-2.33757700C3.51826100-1.667710002.52362700H3.45308300-1.703847003.60718800C-3.81977500-0.573828001.12867200H-3.258019000.290238000.78347800C2.120209000.454522002.56311700H1.223213000.695748001.97782600C-0.152489003.32127600-2.64335700H-0.810851002.90484900-3.41419700H0.603206003.94308600-3.12539700

H-0.785829003.96049700-2.02101000C-1.35694800-5.04167900-1.12188200H-1.98298500-5.76228800-1.64263400C-5.93056400-1.528317001.81976100H-6.99000400-1.418468002.03386800C4.24065300-2.646054001.84844600H4.72492500-3.443865002.40417400C-2.62969000-1.07539500-2.38914800H-1.98727000-1.27590600-1.52208200H-2.39407200-1.82809000-3.14853000H-3.65941400-1.23726700-2.04700000C-2.454990000.34603100-2.92906500H-1.406105000.45796500-3.23754300C1.654981000.055654003.95716100H1.09386000-0.884034003.94707300H1.002550000.828641004.37375000H2.49558400-0.062429004.65010200C3.93470100-1.54439900-1.78191500H3.44712900-0.64579200-2.17491800C-0.803972002.876360001.16120500H-0.005687002.133165001.02390300C4.119386001.61895400-0.91055600H4.275544002.68936100-0.75389400H4.605225001.36353900-1.85875300H4.625012001.06701900-0.11625900C-1.269660002.787445002.61263400H-1.968696003.591432002.86737800H-0.414978002.882783003.29079400H-1.768299001.836165002.82645600C2.957081001.733944002.61686600H3.910912001.559264003.12723900H2.425634002.521544003.16223300H3.176475002.116528001.61498600C-3.328164000.56993300-4.15765500H-4.382137000.35525500-3.95175000H-3.02215400-0.09691700-4.96890100H-3.264762001.59990300-4.52356200C3.30092600-2.73159100-2.50160700H3.71175100-3.68155400-2.13966200H3.50075700-2.67598800-3.57666200H2.21736700-2.75983400-2.35573000C5.42426400-1.45301500-2.11911300H5.91632400-0.62694200-1.59614100H5.56934900-1.31037500-3.19478600H5.95007800-2.37269000-1.84062200C-0.191857004.251515000.88863200H0.293624004.30195800-0.09009300H0.565526004.494464001.64157300H-0.958991005.033897000.92511700H0.02287100-1.113724001.81468700H-1.304208000.045778001.65603600

2e

SCF(m06l)=-1781.927347E(SCF)+ZPE(0K)=-1781.072041H(298K)=-1781.024991G(298K)=-1781.14748

Page 69: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S52

LowestFrequency=27.30cm-1

Al5.965770003.905947003.87262700N6.121053002.408306002.66010000C6.931638001.372820002.89943600C7.593691001.190581004.12510000H8.238593000.320620004.18534200C7.372183001.870431005.32953700N6.647215002.996760005.42123700C7.159177000.318138001.85669100H6.367221000.297250001.10569800H7.24038500-0.668228002.31805400H8.104942000.507267001.33778000C7.924723001.238163006.57334100H8.210248001.979955007.32195000H8.785656000.610928006.33526300H7.169898000.595378007.03865900C5.362783002.504404001.44242000C3.973957002.246508001.51400000C3.210807002.399289000.35610900H2.143348002.204017000.39256900C3.790053002.79903800-0.84237600H3.177706002.91318200-1.73234400C5.150508003.05578000-0.89348600H5.604372003.37353900-1.82998200C5.963166002.922329000.23724600C3.332499001.766140002.80329500H3.815461002.298254003.63569000C1.842245002.071571002.88528800H1.262709001.476087002.17130900H1.633196003.128128002.69276500H1.461474001.830777003.88157300C3.584445000.272170003.01801600H3.15343900-0.316368002.20010600H3.12376000-0.068206003.95274000H4.652102000.037957003.07288800C7.442802003.224877000.09418200H7.918956003.093727001.07539100C8.108503002.27325400-0.90396300H7.918791001.22084800-0.67776100H9.191840002.42847800-0.92619500H7.733731002.45669100-1.91705900C7.684417004.66485000-0.36263300H7.278807004.82552400-1.36752000H8.756831004.88064900-0.40549800H7.223605005.398759000.30233000C6.204230003.414705006.72627200C6.821002004.517501007.35550900C6.358891004.888465008.62079800H6.810749005.736998009.12357500C5.319364004.209717009.24445100H4.976933004.5237570010.22667400C4.708300003.146616008.59839100H3.877715002.628330009.07397800C5.132571002.728526007.33344200C7.950755005.282718006.68872100H7.673301005.430551005.63634800C9.271853004.511349006.69076300

H9.577655004.249392007.71106000H10.062664005.128341006.25205600H9.218875003.591974006.10204700C8.161057006.665632007.29135000H7.231768007.244929007.31008300H8.886318007.222877006.69361500H8.552714006.607074008.31391500C4.381493001.592263006.66215600H4.867495001.361010005.70480500C2.941611002.011345006.36430900H2.395146001.201946005.86684700H2.901723002.896464005.72244900H2.405063002.250214007.28934800C4.374757000.317745007.50674500H3.816899000.464177008.43813600H5.38099600-0.011479007.78264900H3.89168800-0.501404006.96402800C4.301543004.957046004.11326600H3.857456005.012236003.10257200H3.489834004.653580004.77929500C4.889856006.285904004.51033600C6.127838006.603816003.98502200C6.784884005.578193003.08076900H6.253634005.502165002.11039100C8.227155005.737357002.85691600H8.731246004.986514002.24646800C8.935514006.770765003.36883700H10.008453006.842663003.20985400C8.253012007.818196004.08425900H8.822748008.679713004.42580200C6.923267007.745710004.36172100H6.459678008.541913004.93715200C4.197934007.091624005.52685900C3.983444008.473301005.39055500H4.302411008.965740004.47491100C3.348155009.208025006.38705800H3.1891510010.274712006.24816100C2.905747008.583486007.55061700H2.411170009.157871008.32914500C3.098711007.210648007.69989900H2.764212006.706702008.60424300C3.725630006.476450006.70134700H3.884626005.407173006.84020600

TS-3

SCF(m06l)=--1553.20648357E(SCF)+ZPE(0K)=-1552.387572H(298K)=-1552.344343G(298K)=-1552.457611LowestFrequency=-221.080cm-1

Al0.6062870015.2244720012.88936100N0.7171230016.0009150011.01562100N-0.1254060013.5262070012.16983900C0.1740360012.2593270012.77566900C0.2555320016.2267590015.01779800

Page 70: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S53

C1.5148490017.0725340014.93616400H1.6922970017.5545500015.91162500C-0.1500890015.7035420010.05054700C-0.5429060011.8388820013.91609700C1.0080480018.4430690011.22937700C-0.3325870016.585653008.84803000H-0.3932690015.983204007.93790600H0.4761730017.310624008.73665800H-1.2746010017.142568008.92119100C-0.8189940013.4788250011.00870100C1.1844350011.4499020012.21203300C0.2075070015.1914910015.94954700H-0.7612570014.7609570016.18900000C1.4826560010.2342090012.83257800H2.273613009.6111780012.41855200C-1.4574780012.1867080010.57446500H-0.7462270011.592058009.99138400H-2.3124920012.388896009.92593900H-1.7775630011.5625780011.41034400C-1.9052580012.4170390015.97494100H-2.3830190011.4426810016.12828800H-2.5802140013.1714170016.39107300H-0.9802540012.4331960016.56102400C1.5391720017.1668660010.95045800C3.7624990018.0955250010.82763700H4.8301440017.9728320010.66856400C3.4662440015.6170600010.36928200H2.8751910014.8714850010.91832400H3.4361400016.1207920015.38211500C-0.4772610018.7014510011.40533000H-1.0147040017.7588180011.24790000C-0.8147820019.1796800012.81556400H-0.5601470018.4261650013.56529500H-1.8840410019.3978810012.90543700H-0.2678440020.0960990013.06547300C2.9228500016.9841880010.73803700C-1.6505860012.6951040014.49831200H-1.3218220013.7395830014.41450900C0.795786009.8116600013.96142800H1.041397008.8621510014.42865200C-0.2125140010.6102270014.49044600H-0.7483910010.2740050015.37351500C1.9972670011.8591050010.99518500H1.5811650012.7899800010.58728500C-0.9358760014.5371520010.10671300H-1.5941350014.368227009.26079200

C1.9553220010.799983009.89239300H2.459969009.8802780010.20862800H0.9346770010.525589009.61004200H2.4678240011.158942008.99383300C3.2570220019.3558790011.12780200H3.9274790020.2070940011.20685200C1.8931020019.5221560011.31751400H1.4964860020.5106550011.54239100C4.9288580015.4253130010.74836100H5.5924300016.0567730010.14737700H5.2359450014.3893490010.57758800H5.1100320015.6597150011.80294900C-2.9592730012.5717600013.71519800H-2.8705920012.9651090012.69976800H-3.7555910013.1342370014.21367500H-3.2833740011.5263680013.64943300C3.2495430015.328284008.88279700H2.1891970015.371587008.61487600H3.6175650014.329024008.62232700H3.7831090016.055408008.26004700C3.4553610012.1267170011.37198700H3.5545100012.9249420012.11380200H4.0365550012.4136510010.48821100H3.9193670011.2278250011.79403300C2.0548340013.4991280016.04329000H2.9677720013.1544540016.57905200H1.3691480012.6419830016.12377100C-0.9804420019.7141200010.37464800H-0.5425430020.7031800010.54902700H-0.7261860019.422768009.35112900C1.3840790014.6806800016.73091500H2.1047620015.4889010016.90072300H1.0603310014.3748440017.73510500C2.4908400014.9234210013.85083200H3.1343540014.7643040012.97489700C2.3571490013.7248120014.59625700H2.6075600012.8103020014.05740800H1.3575780017.8868130014.21889100C2.7718940016.2739970014.52159000H3.3487470016.8758210013.80755700H-0.6807500016.7642150014.85190900H-2.0679260019.8247080010.43704500

Page 71: Reactions of an Aluminium(I) Reagent with 1,2-, 1,3- and 1

S54

7. References

1Feldman,J.;McLain,S.J.;Parthasarathy,A.;Marshall,W.J.;Calabrese,J.C.;Arthur,S.D.Organometallics1997,16,1514–1516.2Cui,C.;Roesky,H.W.;Schmidt,H.-G.;Noltemeyer,M.;Hao,H.;Cimpoesu,F.Angew.Chem.Int.Ed.2000,39,4274–4276.3a)SHELXTLv5.1,BrukerAXS,Madison,WI,1998.b)SHELX-2013,G.M.Sheldrick,ActaCryst.,2015,C71,3-8.4Kong,R.Y.;Crimmin,M.R.Chem.Commun.2019,55,6181–6184.5Crimmin,M.R.;Butler,M.J.;White,A.J.P.Chem.Commun.2015,51,15994–15996.6Cui,C.;Roesky,H.W.;Hao,H.;Schmidt,H.-G.;Noltemeyer,M.Angew.Chem.Int.Ed.2000,39,1815–1817.7A.L.Spek(2003,2009)PLATON,AMultipurposeCrystallographicTool,UtrechtUniversity,Utrecht,TheNetherlands.SeealsoA.L.Spek,Acta.Cryst.,2015,C71,9-18.8Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Mennucci,B.;Petersson,G.A.;Nakatsuji,H.;Caricato,M.;Li,X.;Hratchian,H.P.;Izmaylov,A.F.;Bloino,J.;Zheng,G.;Sonnenberg,J.L.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Vreven,T.;Montgomery,J.A.,Jr.;Peralta,J.E.;Ogliaro,F.;Bearpark,M.;Heyd,J.J.;Brothers,E.;Kudin,K.N.;Staroverov,V.N.;Kobayashi,R.;Normand,J.;Raghavachari,K.;Rendell,A.;Burant,J.C.;Iyengar,S.S.;Tomasi,J.;Cossi,M.;Rega,N.;Millam,J.M.;Klene,M.;Knox,J.E.;Cross,J.B.;Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;Dannenberg,J.J.;Dapprich,S.;Daniels,A.D.;Farkas,Ow .;Foresman,J.B.;Ortiz,J.V.;Cioslowski,J.;Fox,D.J.Gaussian09,RevisionD.01;Gaussian,Inc.,Wallingford,CT,2009.9NBO6.0.Glendening,E.D.;Badenhoop,J.K.;Reed,A.E.;Carpenter,J.E.;Bohmann,J.A.;Morales,C.M.;Landis,C.R.;Weinhold,F.TheoreticalChemistryInstitute,UniversityofWisconsin,Madison(2013).10Johnson,E.R.;Keinan,S.;Mori-Sanchez,P.;Contreras-Garcıa,J.;Cohen,A.J.;Yang,W.J.Am.Chem.Soc.2010,132,6498–6506.11Grimme,S.;Antony,J.;Ehrlich,S.;Krieg,H.JChem.Phys.2010,132,154104.12Hooper,T.N.;Garçon,M.;White,A.J.P.;Crimmin,M.R.Chem.Sci.,2018,9,5435–5440.13Jain,S.;Vanka,K.Chem.Eur.J.2017,23,13957–13963.14Brand,S.;Elsen,H.;Langer,J.;Grams,S.;Harder,S.AngewChemIntEd.2019,58,15496–15503.