readq4 hw2

Upload: anonymous-fjzuzi

Post on 07-Jan-2016

288 views

Category:

Documents


0 download

DESCRIPTION

for hw

TRANSCRIPT

  • 1ECE 407 Spring 2009 Farhan Rana Cornell University

    Handout 18

    Phonons in 2D Crystals: Monoatomic Basis and Diatomic Basis

    In this lecture you will learn:

    Phonons in a 2D crystal with a monoatomic basis Phonons in a 2D crystal with a diatomic basis Dispersion of phonons LA and TA acoustic phonons LO and TO optical phonons

    ECE 407 Spring 2009 Farhan Rana Cornell University

    1a

    x

    21 amanRnm

    Phonons in a 2D Crystal with a Monoatomic Basis

    y

    2a

    yanxanyanxan

    43

    21

    General lattice vector:

    Nearest-neighbor vectors:

    Atomic displacement vectors:

    tRutRu

    tRunmy

    nmxnm ,

    ,,

    Atoms, can move in 2D therefore atomic displacements are given by a vector:

    yaxapyaxapyaxapyaxap

    43

    21

    Next nearest-neighbor vectors:

  • 2ECE 407 Spring 2009 Farhan Rana Cornell University

    Vector Dynamical Equations

    mmm

    RRm

    12

    tRu ,1

    tmRutRu ,, 12

    mmtRutmRummtRutRudt

    tRudM .,,.,,, 111221

    2

    Vector dynamical equation:

    If the nearest-neighbor vectors are known then the dynamical equations can be written easily.

    Component dynamical equation:To find the equations for the x and y-components of the atomic displacement, take the dot-products of the above equation on both sides with and , respectively:x

    xmmtRutmRudt

    tRudM x ..,,, 1121

    2

    y

    ymmtRutmRudt

    tRudM y ..,,

    ,112

    12

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Vector Dynamical Equations for a 2D Crystal

    1a

    x

    y

    2a

    21 amanRnm

    yanxanyanxan

    43

    21

    General lattice vector:

    Nearest-neighbor vectors:

    yaxapyaxapyaxapyaxap

    43

    21

    Next nearest-neighbor vectors:

    4,3,2,12

    4,3,2,112

    2

    .,,

    .,,,

    jjjnmjnm

    jjjnmjnm

    nm

    pptRutpRu

    nntRutnRudt

    tRudM

    summation over 4 nn

    summation over 4 next nn

    12

  • 3ECE 407 Spring 2009 Farhan Rana Cornell University

    ,,2

    ,,2

    ,,2

    ,,2

    ,,2

    ,,2

    ,,2

    ,,2

    ,,,,,

    42

    42

    32

    32

    22

    22

    12

    12

    31112

    2

    tpRutRutpRutRu

    tpRutRutpRutRu

    tpRutRutpRutRu

    tpRutRutpRutRu

    tnRutRutnRutRudt

    tRudM

    nmynmynmxnmx

    nmynmynmxnmx

    nmynmynmxnmx

    nmynmynmxnmx

    nmxnmxnmxnmxnmx

    Dynamical Equations

    4,3,2,12

    4,3,2,112

    2

    .,,

    .,,,

    jjjnmjnm

    jjjnmjnm

    nm

    pptRutpRu

    nntRutnRudt

    tRudM

    If we take the dot-product of the above equation with we get:x

    ECE 407 Spring 2009 Farhan Rana Cornell University

    ,,2

    ,,2

    ,,2

    ,,2

    ,,2

    ,,2

    ,,2

    ,,2

    ,,,,,

    42

    42

    32

    32

    22

    22

    12

    12

    41212

    2

    tpRutRutpRutRu

    tpRutRutpRutRu

    tpRutRutpRutRu

    tpRutRutpRutRu

    tnRutRutnRutRudt

    tRudM

    nmxnmxnmynmy

    nmxnmxnmynmy

    nmxnmxnmynmy

    nmxnmxnmynmy

    nmynmynmynmynmy

    Dynamical Equations

    4,3,2,12

    4,3,2,112

    2

    .,,

    .,,,

    jjjnmjnm

    jjjnmjnm

    nm

    pptRutpRu

    nntRutnRudt

    tRudM

    If we take the dot-product of the above equation with we get:y

  • 4ECE 407 Spring 2009 Farhan Rana Cornell University

    Solution of the Dynamical Equations

    Assume a wave-like solution of the form:

    Then:

    tiRqiyxnmy nmxnm eeququ

    tRutRu

    tRu nm

    .

    ,,

    ,

    tRueeequ

    que

    eeququ

    tnRutnRu

    tnRu

    nmnqi

    tiRqi

    y

    xnqi

    tinRqi

    y

    x

    jnmy

    jnmxjnm

    j

    nmj

    jnm

    ,

    ,,

    ,

    .

    ..

    .

    We take the above solution form and plug it into the dynamical equations

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Dynamical Matrix and Phonon Bands

    ququ

    MM

    ququ

    qDy

    x

    y

    x

    0

    02Compare with the standard form:

    Solutions:

    X M

    FBZ

    a2

    a2

    kg 2x10

    N/m 100N/m 200

    26-2

    1

    M

    coscos122

    sin4sinsin2

    sinsin2coscos122

    sin42

    22

    12

    222

    1

    ququ

    Mququ

    aqaqaq

    aqaq

    aqaqaqaqaq

    y

    x

    y

    x

    yxy

    yx

    yxyxx

  • 5ECE 407 Spring 2009 Farhan Rana Cornell University

    Transverse (TA) and Longitudinal (LA) Acoustic Phonons

    2

    42

    22

    42

    222

    2

    12

    222

    2

    2

    1

    ququ

    Mququ

    aqaqaq

    aqaq

    aqaqaqaqaq

    y

    x

    y

    x

    yxy

    yx

    yxyxx

    Case I: 0,0 yx qq

    0121 Aqu

    quaq

    Mq

    xy

    xxxxLA

    Longitudinal acoustic phonons: atomic motion in the direction of wave propagation

    Transverse acoustic phonons: atomic motion in the direction perpendicular to wave propagation

    102 Aqu

    quaq

    Mq

    xy

    xxxxTA

    TA

    LA

    X

    M

    FBZ

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Transverse (TA) and Longitudinal (LA) Acoustic Phonons

    2

    42

    22

    42

    222

    2

    12

    222

    2

    2

    1

    ququ

    Mququ

    aqaqaq

    aqaq

    aqaqaqaqaq

    y

    x

    y

    x

    yxy

    yx

    yxyxx

    Case II: qqqqq yxyx 0,0

    114 21 Aqu

    quaq

    Mq

    y

    xLA

    Longitudinal acoustic phonons: atomic motion in the direction of wave propagation

    Transverse acoustic phonons: atomic motion in the direction perpendicular to wave propagation

    111 Aqu

    quaq

    Mq

    y

    xTA

    TA

    LA

    X

    M

    FBZ

    TA

    LATA

    LA

  • 6ECE 407 Spring 2009 Farhan Rana Cornell University

    Transverse (TA) and Longitudinal (LA) Acoustic Phonons

    TA

    LATA

    LATA

    LAIn general for longitudinal acoustic phonons near the zone center:

    y

    x

    y

    xqq

    qA

    ququ

    And for transverse acoustic phonons near the zone center:

    x

    y

    y

    xqq

    qA

    ququ

    In general, away from the zone center, the LA phonons are not entirely longitudinal and neither the TA phonons are entirely transverse

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Transverse (TA) and Longitudinal (LA) Acoustic Phonons

    LATA

    TA and LA

  • 7ECE 407 Spring 2009 Farhan Rana Cornell University

    Periodic Boundary Conditions in 2D

    tiRqiyxnmy nmxnm eeququ

    tRutRu

    tRu nm

    .

    ,,

    ,

    Our solution was:

    Periodic boundary conditions for a lattice of N1xN2 primitive cells imply:

    22

    where

    21

    21 where22

    integer an is where2.1

    ,,

    11

    1

    11

    1111

    1111

    .

    ..11

    11

    11

    NmN-Nm

    -mN

    mmaNqe

    eeququ

    tRueeququ

    taNRu

    aNqi

    tiRqi

    y

    xnm

    tiaNRqi

    y

    xnm nmnm

    21 amanRnm

    General lattice vector: 21,21 212211 bbq

    General reciprocal lattice vector inside FBZ:

    Similarly:

    22 where 222

    2

    22

    NmN-Nm

    FBZ

    1b2b

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Counting Degrees of FreedomIn the solution the values of the phonon wavevector are dictated by the periodic boundary conditions:

    2211 bbq

    22 where 11

    1

    11

    NmN-Nm

    22 where 222

    2

    22

    NmN-Nm

    There are N1N2 allowed wavevectors in the FBZ(There are also N1N2 primitive cells in the crystals)

    There are N1N2 phonon modes per phonon bandCounting degrees of freedom:

    There are 2N1N2 degrees of freedom corresponding to the motion in 2D of N1N2 atoms

    The total number of different phonon modes in the two bands is also 2N1N2

    FBZ

  • 8ECE 407 Spring 2009 Farhan Rana Cornell University

    Phonons in a 2D Crystal with a Diatomic Basis

    Atomic displacement vectors:

    tdRutdRutdRutdRu

    tdRutdRu

    nmy

    nmx

    nmy

    nmx

    nm

    nm

    ,,,,

    ,,

    22

    22

    11

    11

    22

    11

    The two atoms in a primitive cell can move in 2D therefore atomic displacements are given by a four-component column vector:

    1a

    x

    y

    2a

    1

    2

    21 amanRnm

    2

    2

    2

    2

    43

    21

    yaxahyaxah

    yaxahyaxah

    1st nearest-neighbor vectors (red to blue):

    yanxanyanxan

    43

    21

    2nd nearest-neighbor vectors (red to red):

    3rd nearest-neighbor vectors (red to red):

    yaxapyaxapyaxapyaxap

    43

    21

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Diatomic Basis: Force Constants

    plus

    1a

    x

    y

    2a

    1

    The force constants between the 1st2nd and 3rd nearest-neighbors need to be included (at least)

    1a

    x

    y

    2a

    23

  • 9ECE 407 Spring 2009 Farhan Rana Cornell University

    4,3,2,111113

    4,3,2,111112

    4,3,2,1111212

    112

    1

    .,,

    .,,

    .,,,

    jjjnmjnm

    jjjnmjnm

    jjjnmjnm

    nm

    pptdRutpdRu

    nntdRutndRu

    hhtdRuthdRudt

    tdRudM

    summation over 4 1st nn

    summation over 4 2nd nn

    Diatomic Basis: Dynamical Equations

    4,3,2,122223

    4,3,2,122222

    4,3,2,1222212

    222

    2

    .,,

    .,,

    .,,,

    jjjnmjnm

    jjjnmjnm

    jjjnmjnm

    nm

    pptdRutpdRu

    nntdRutndRu

    hhtdRuthdRudt

    tdRudM

    summation over 4 1st nn

    summation over 4 2nd nn

    Dynamical equation for the red(1) atom:

    Dynamical equation for the blue(2) atom:

    summation over 4 3rd nn

    summation over 4 3rd nn

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Diatomic Basis: Dynamical Equations

    tiRqi

    dqiy

    dqix

    dqiy

    dqix

    nmy

    nmx

    nmy

    nmx

    nm

    nm ee

    equequ

    equequ

    tdRutdRutdRutdRu

    tdRutdRu nm

    .

    .2

    .2

    .1

    .1

    22

    22

    11

    11

    22

    11

    2

    2

    1

    1

    ,,,,

    ,,

    Assume a solution of the form:

    ququququ

    MM

    MM

    ququququ

    qD

    y

    xy

    x

    y

    xy

    x

    2

    21

    1

    2

    2

    1

    1

    2

    2

    21

    1

    000000000000

    To get a matrix equation of the form:

  • 10

    ECE 407 Spring 2009 Farhan Rana Cornell University

    The Dynamical Matrix

    aqaqaq

    yx

    x

    coscos122

    sin42

    3

    221

    2cos

    2cos2 1

    aqaq yx

    2sin

    2sin2 1

    aqaq yx

    2cos

    2cos2 1

    aqaq yx

    2sin

    2sin2 1

    aqaq yx

    2cos

    2cos2 1

    aqaq yx

    2sin

    2sin2 1

    aqaq yx

    2sin

    2sin2 1

    aqaq yx

    2cos

    2cos2 1

    aqaq yx

    ququququ

    MM

    MM

    ququququ

    qD

    y

    xy

    x

    y

    xy

    x

    2

    21

    1

    2

    2

    1

    1

    2

    2

    21

    1

    000000000000

    aqaqaq

    yx

    y

    coscos122

    sin42

    3

    221

    aqaqaq

    yx

    x

    coscos122

    sin42

    3

    221

    aqaqaq

    yx

    y

    coscos122

    sin42

    3

    221

    aqaq yx sinsin2 3

    aqaq yx sinsin2 3

    aqaq yx sinsin2 3

    aqaq yx sinsin2 3

    qD The matrix is:

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Diatomic Basis: Solution and Phonon Bands

    N/m100N/m200N/m300

    kg1042

    3

    2

    1

    2621

    MM

    For calculations: Opticalbands

    Acousticbands

    One obtains:

    - 2 optical phonon bands (that have a non-zero frequency at the zone center)

    - 2 acoustic phonon bands (that have zero frequency at the zone center)

    TA

    LA

    LO

    TO

    TA

    LA

    LO

    TO

    X M

    FBZ

    a2

    a2

    X

    TA

    LA

    TOLO

  • 11

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Longitudinal (LO) and Transverse (TO) Optical Phonons

    Case I: 0,0 yx qq

    0

    01

    2021

    2

    21

    1

    1MMA

    ququququ

    Mq

    xy

    xxxy

    xx

    rxLO

    212

    21

    1

    1010

    20

    MM

    A

    ququququ

    Mq

    xy

    xxxy

    xx

    rxTO

    Longitudinal optical phonons: atomic motion in the direction of wave propagation and basis atoms move out of phase

    Transverse optical phonons: atomic motion in the direction perpendicular to wave propagation and basis atoms move out of phase

    X

    M

    FBZ

    21

    111MMMr

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Longitudinal (LA) and Transverse (TA) Acoustic Phonons

    Case I: 0,0 yx qq

    0101

    ?0

    2

    21

    1

    A

    ququququ

    q

    xy

    xxxy

    xx

    xLA

    1010

    ?0

    2

    21

    1

    A

    ququququ

    q

    xy

    xxxy

    xx

    xTO

    Longitudinal acoustic phonons: atomic motion in the direction of wave propagation and basis atoms move in phase

    Transverse acoustic phonons: atomic motion in the direction perpendicular to wave propagation and basis atoms move in phase

    X

    M

    FBZ

  • 12

    ECE 407 Spring 2009 Farhan Rana Cornell University

    Counting Degrees of Freedom and the Number of Phonon Bands

    2211 bbq

    22 where 11

    1

    11

    NmN-Nm

    22 where 222

    2

    22

    NmN-Nm

    There are N1N2 allowed wavevectors in the FBZThere are N1N2 phonon modes per phonon bandCounting degrees of freedom:

    There are 4N1N2 degrees of freedom corresponding to the motion in 2D of 2N1N2 atoms (2 atoms in each primitive cell)

    The total number of different phonon modes in the four bands is also 4N1N2

    Periodic boundary conditions for a lattice of N1xN2 primitive cells imply: