realsum14p

160
Καλώς ήρθατε στην Πραγmατική Ανάλυση! http://eclass.uoa.gr/courses/MATH244/ Χειmερινό Εξάmηνο 2014-15

Upload: christos-loizos

Post on 13-Apr-2017

940 views

Category:

Education


1 download

TRANSCRIPT

  • !

    http://eclass.uoa.gr/courses/MATH244/

    2014-15

  • X . X : X X R :(i) (x ,y) 0 x ,y X (x ,y) = 0

    x = y .

    (ii) (x ,y) = (y ,x) x ,y X .(iii) (x ,z) (x ,y) + (y ,z) x ,y ,z X (

    ).

    (X ,) .

  • () R

    d(x ,y) = |xy |, x ,y R.

    () Rm, m- x = (x1, . . . ,xm) , :

    2(x ,y) =

    (n

    i=1

    (xi yi )2)1/2

    .

  • () X : : X X R

    (x ,y) ={

    1, x 6= y0, x = y

    . .

    () X : f : X R 1-1, df X :

    df (x ,y) = |f (x) f (y)|, x ,y X .

  • () n- Hamming.

    Hn = {,}n ={

    (x1,x2, . . . ,xn) xi = , i = 1, . . . ,n}.

    h : HnHn R, h(x ,y) n- x = (x1, . . . ,xn) y = (y1, . . . ,yn),

    h(x ,y) = card({

    1 i n : xi 6= yi})

    .

    (Hn,h

    ) Hamming.

  • ( )

    (X ,) . A X , A : AA R

    A(x ,y) = (x ,y), x ,y A

    ( AA) A, A. (A,A) .

    , R .

  • ()

    (X ,) . A X C > 0 x ,y A (x ,y) C .,

    sup{(x ,y) : x ,y A}< .

    , A

    diam(X ) := sup{(x ,y) : x ,y A}.

    diam( /0) = 0. {(x ,y) : x ,y A} sup{(x ,y) : x ,y A}= + diam(A) = +.

  • :

    () R d(x ,y) = |xy | .

    () R

    (x ,y) =|xy |

    1 + |xy |, x ,y R

    , (x ,y) < 1 x ,y R. diam(R,) = 1.

    () X , ..(X , ) (, X = {} diam(X ) = 0, diam(X ) = 1).

  • (X ,d) ..

    (x ,y) =d(x ,y)

    1 + d(x ,y), x ,y X

    X .. . (x ,y) = f (d(x ,y)) f (t) = t1+t , t 0. f , , d(x ,y) d(x ,z) + d(z ,y) f (d(x ,y)) f (d(x ,z) + d(z ,y)),

    (x ,y) d(x ,z) + d(z ,y)1 + d(x ,z) + d(z ,y)

    =d(x ,z)

    1 + d(x ,z) + d(z ,y)+

    d(z ,y)

    1 + d(x ,z) + d(z ,y)

    d(x ,z)1 + d(x ,z)

    +d(z ,y)

    1 + d(z ,y)= (x ,z) + (z ,y).

  • ()

    X (:) . X : X R :

    () x 0 x X x= 0 x = 0( ).

    () x= | | x R x X ().

    () x + y x+y x ,y X ().

  • X , (X , ) . d : X X R

    d(x ,y) = xy, x ,y X

    ( X ).

  • 1. Rm supremum : Rm R : x = (x1, . . . ,xm) Rm

    x := max{|xi | : i = 1, . . . ,m}.

    2. Rm 1 : Rm R

    x1 := |x1|+ + |xm|=m

    i=1

    |xi |.

    R. (Rm, 1) `m1 .

  • 3. Rm 2 : Rm R

    x2 :=

    (m

    i=1

    |xi |2)1/2

    .

    ,

    ( CauchySchwarz)

    x1, . . . ,xm y1, . . . ,ym .

    m

    i=1

    |xiyi |

    (m

    i=1

    |xi |2)1/2(

    m

    i=1

    |yi |2)1/2

    .

  • :

    (x ,y) =m

    i=1

    xiyi

    x22 = (x ,x).

    x + y22 = (x + y ,x + y) = (x ,x) + (x ,y) + (y ,x) + (y ,y) x22 + 2|(x ,y)|+y22cs x22 + 2xy+y22 = (x+y)2

    . x + y2 x+y .

  • 4. , Rm p-,1 < p < ,

    xp :=

    (m

    i=1

    |xi |p)1/p

    .

    ( Holder)

    x1, . . . ,xm y1, . . . ,ym p,q > 1 1 1p +

    1q = 1,

    m

    i=1

    |xiyi |

    (m

    i=1

    |xi |p)1/p(

    m

    i=1

    |yi |q)1/q

    .

    CauchySchwarz Holder p = q = 2.1 p q .

  • ( Minkowski)

    x1, . . . ,xm y1, . . . ,ym p > 1, (

    m

    i=1

    |xi + yi |p)1/p

    (m

    i=1

    |xi |p)1/p

    +

    (m

    i=1

    |yi |p)1/p

    .

    x + yp xp +yp p- Minkowski. (Rm, p) `mp .

  • 1. ` `(N) x : N R . ` supremum : ` R

    x := sup{|x(n)| : n = 1,2, . . .}.

    2. c0 c0(N) ,

    c0 ={

    x : N R limn

    x(n) = 0}

    ( `) . supremum `.

  • 3. `1 `1(N) 1- ( ):

    `1 =

    {x : N R

    n=1

    |x(n)|< +

    }.

    c0( n=1 |x(n)|< + limn x(n) = 0). 1 : `1 R

    x1 :=

    n=1

    |x(n)|.

  • 4. 1 p < , `p `p(N) p-:

    `p =

    {x : N R

    n=1

    |x(n)|p < +

    }.

    p

    xp :=

    (

    n=1

    |x(n)|p)1/p

    .

    Minkowski p .5. c00 c00(N) :x c00 n0 n0(x) N x(n) = 0 n n0. p, 1 p .

  • 1. C ([0,1]) [0,1]:

    C ([0,1]) = {f : [0,1] R | f } .

    . C ([0,1]) : C ([0,1]) R,

    f = sup{|f (t)| : t [0,1]}.

    sup , |f | : [0,1] R , max , , .

  • 2. 1 p < , C ([0,1]) p

    f p :=( 1

    0|f (t)|p dt

    )1/p.

    , Holder Minkowski :

    Holder . f ,g : [0,1] R , 1 < p < 1p +

    1q = 1,

    10|f (t)g(t)|dt

    ( 10|f (t)|pdt

    )1/p( 10|g(t)|qdt

    )1/q.

    Minkowski . 1 p < , ( 10|f (t) + g(t)|pdt

    )1/p( 1

    0|f (t)|pdt

    )1/p+

    ( 10|g(t)|pdt

    )1/p.

  • 3. C 1([0,1]), f : [0,1] R ,

    f := f +f .

    f d := f

    ( ) C 1([0,1]).

    4. f ,g : [0,1] R ,

    dp(f ,g) =

    ( 10|f (t)g(t)|pdt

    )1/p 1 p <

    d(f ,g) = max{|f (t)g(t)| : t [0,1]}.

  • (X ,) . X x : N X . xn := x(n) n- x {xn}n=1 {xn} (xn) x = (x1,x2, . . . ,xn, . . .).

  • : (an) a R:

    an a > 0 no N : n no |ana|< .

    (xn) (X ,) x X ( - x)

    > 0 n0 n0() N n n0 (xn,x) < .

    xn x xn x .

  • (xn) x :

    xn x ( > 0 no N : n no (xn,x) < .)

    > 0 no N n no xn B (x ,) {y X : (y ,x) < }.

    > 0 (xno ,xno+1,xno+2, . . .) B (x ,).

    > 0

    P() : {n N : (xn,x) } .

  • (xn) x :

    > 0, P():

    P() : {n N : (xn,x) } .

    (xn,xn+1,xn+2, . . .) B (x ,), xm (xn,xn+1,xn+2, . . .) B (x ,)

    : (xn) x > 0 n N m n (xm,x) .

    xn 9 x ( > 0 n N m n : (xm,x) .)

  • (X ,) .

    (xn) (X ,) x X . xn x

    ((xn,x))n 0 R.

    (xn) (X ,). (xn), .

    (xn),(yn) X x ,y X xn x

    yn y , (xn,yn) (x ,y).

    :

    |(xn,yn)(x ,y)| (xn,x) + (yn,y).

  • : (xn) n0 N xn = xn0 n n0. , ( xn0).

    1. X (xn) X . (xn) (X , ) . Hamming (HN ,h) .(3)

  • 2. . (X1,d1), . . . ,(Xk ,dk) X = ki=1 Xi . X d = ki=1 di ,

    d(x ,y) =k

    i=1

    di (x(i),y(i)),

    x = (x(1), . . . ,x(k)), y = (y(1), . . . ,y(k)) x(i),y(i) Xi ., X :2

    xn = (xn(i))n

    x = (x(i)) i = 1,2, . . . ,k, xn(i)n

    x(i)

    2 d .

  • 3. Hilbert H

    [1,1]N =

    {x : N R

    |x(n)| 1,n = 1,2, . . .}

    d(x ,y) =

    n=1

    |x(n)y(n)|2n

    ,

    x = (x(n)) y = (y(n)). ([1,1]N,d) Hilbert H . .

    (xm) H :

    x1 = (x1(1),x1(2), . . . ,x1(n), . . .)

    x2 = (x2(1),x2(2), . . . ,x2(n), . . .)...

    xm = (xm(1),xm(2), . . . ,xm(n), . . .)...

  • 4. .

    (Xn,dn), n = 1,2, . . . dn(x ,y) 1 x ,y Xn n = 1,2, . . .. X = i=1 Xi d : X X R :

    d(x ,y) =

    n=1

    1

    2ndn(x(n),y(n)), (1)

    x = (x(1),x(2), . . .), y = (y(1),y(2), . . .) x(n),y(n) Xn n = 1,2, . . .. d : X .

  • 5. (C [0,1], )

    d(f ,g) = sup{|f (t)g(t)| : t [0,1]} . : (fn)

    fn(t) =

    2n3t 0 t 1

    2n2

    2n3( 1n2 t) 1

    2n2< t 1

    n2

    0 1n2

    < t 1

    ( ). t [0,1] lim

    nfn(t) = 0,

    d(fn,0)+, d(fn,0) = max{|fn(t) : t [0,1]}= n n.

  • 6. (C [0,1], 1)

    d1(f ,g) = 10|f (t)g(t)|dt

    . (fn)

    fn(t) = tn, t [0,1].

    d1(fn,0) =1

    n + 1 0 t [0,1]

    limn

    fn(t) = 0, fn(1) = 1 n.

    (fn)

    f (t) =

    {0 0 t < 11 t = 1

    C [0,1].

  • ( )

    (xn) (X ,). (xn) ( Cauchy) > 0 n0 n0() N m,n n0 (xm,xn) < .

    (X ,) . , X Cauchy.

  • ( )

    (xn) (X ,). (xn) A = {xn : n N} X . , C > 0 (xm,xn) C m,n N.

    (X ,) . , X ., X .

    : !! .. xn = (1)n (R, | |).

  • ;

    (Q, | |) : qn = (1 + 1n )n

    (R,) (x ,y) = x|x |+1 y|y |+1 : xn = n.

    (R, | |) .

    ; .

  • (xn) (X ,). k1 < k2 < < kn < (xkn) (xn).

    : xn =1n yn =

    12n

    zn =1

    n+5 wn =1pn

    pn = n- .

  • () k : N N x : N X X , x k : N X (xn). (xn) (xn) .

    () (kn) , kn n n = 1,2, . . .. :.

    xn x (xkn) (xn) ,

    : xkn x

  • (xn) x > 0 (xkn) (xn) n N (xkn ,x) .

    : xn 9 x > 0 {n N : (xn,x) } k1 < k2 < k3 < .. .

    (xkn ,x) n N.

    (X ,) (xn) X . (xn) Cauchy , .

  • BolzanoWeierstrass

    (BolzanoWeierstrass)

    Rm ( ) .

    BolzanoWeierstrass :

  • (c0, ) supremum : x = (x(n)) y = (y(n))

    d(x ,y) = sup{|x(n)y(n)| : n = 1,2, . . .}.

    (en) e1 = (1,0,0,0, . . .)

    e2 = (0,1,0,0, . . .)

    e3 = (0,0,1,0, . . .)...

    d(en,em) = en em = 1 n 6= m. (en) : 1.

  • : (C [0,2], 1)

    : d1(f ,g) = 20|f (t)g(t)|dt.

    (fn)

    fn(t) =

    tn 0 t 1

    1 1 < t 2

    d1(fn, fm) =1

    n+1 1

    m+1 m n, f C ([0,2]) lim

    nd1(fn, f ) = 0

    f f (t) = 0 0 t < 1 f (t) = 1 1 t 2, f . (fn) , , .

  • : A R , f : A R x0 A, f x0 : > 0 > 0 :

    x A |xx0|< , |f (x) f (x0)|< .

    (X ,) (Y ,) . f : X Y x0 X

    > 0 (x0,) > 0 : x X (x ,x0) < (f (x), f (x0)) < .

    f : X Y X X . f : (X ,) (Y ,) C (X ,Y ). Y = R C (X ) C (X ,R).

  • () X (Y ,) . f : (X , ) (Y ,) .

    () f : N X .() I : (c00, ) (c00, 2) .

    f : X Y x0 X > 0 : > 0 x X (x ,x0) < (f (x), f (x0)) .

  • , R.

    ( )

    (X ,) (Y ,) f : X Y x0 X . :() f x0.

    () (xn) X xn x0

    f (xn) f (x0).

    () (xn) xn x0, (f (xn))

    -.

  • :

    (X ,) x0 X .() - x0 > 0

    B (x0,) = {x X : (x ,x0) < }.

    () - x0 > 0

    B (x0,) = {x X : (x ,x0) }.

    () - x0 > 0

    S (x0,) = {x X : (x ,x0) = }.

  • () X , r > 0

    B(x , r) =

    {{x}, r 1X , r > 1

    S(x , r) =

    {X \{x}, r = 1/0, r 6= 1. .

    () R ,

    B(x ,) = (x ,x + ), B(x ,) = [x ,x + ],S(x ,) = {x ,x + }.

    () R2, B1(0,) B2(0,) B(0,).B2(0,) 0 B1(0,) B(0,) B2(0,) (1,0),(1,1),(1,0),(11).

  • :

    (X ,) A X . x A (interior point) A x > 0 B (x ,x) A.

    (X ,) G X . G - (open) x G x > 0 B (x ,x) G . , G .

    A X x A > 0 B (x ,)Ac 6= /0.

  • () .

    () .

    () (a,b] (R, | |), a < b .

    () (R, | |), Q , . Qc ...

  • : X , /0, ,

    (X ,) . , :() X /0 .

    () (Gi )iI X

    iI Gi .

    () G1,G2, . . . ,Gn ni=1 Gi = G1 Gn .

    ( (X ,) X .)

    (X ,) ., R Gn = (1, 1n ), n N,

    n=1 Gn = (1,0]: .

  • (X ,) . :() G X .

    () x G (xn) X xn

    x n0 N n n0 xn G .

    (X ,) . V X ( ) X .

    ( )

    U (R, | |) () .

  • (X ,) F X . F - (closed) F c X \F -.

    () (X ,) {x}, x X .

    () (X ,), B(x , r) ., R , [a,b] .

    () Q R , R\Q ( ).

  • () ( !).

    () (X ,d) . x X (xn) X , xn x .

    E = {xn : n = 1,2, . . .}{x}

    (X ,d).

    . , .

  • : X , /0, ,

    (X ,) . :() X , /0 .

    () F1,F2, . . . ,Fn X ,

    ni=1 Fi

    .

    () (Ei )iI X ,

    iI Ei .

    . , (R, | |), Fn =

    [1n ,1], n = 2,3, . . .,

    n=1 Fn = (0,1]

    .

  • (X ,) , F X .() F .

    () F

    F . , (xn) F

    xn x X x F .

    (): xn F n (xn), lim

    nxn F .

  • :

    (X ,) , F X .() F .

    () x X : > 0

    B(x ,)F 6= /0 F .

    () F F . , (xn) F

    xn x X x F .

  • () (): F F c , .

    x F c = > 0 .. B(x ,) F c ,. B(x ,)F = /0

    B(x ,)F 6= /0 > 0 = x F .

    () = (): (xn) .. xn x xn F n.... x F : > 0 n0 xn0 B(x ,), B(x ,)F 6= /0. (), x F .() = (): x X > 0 B(x ,)F 6= /0. ... x F . n, B(x , 1n )F 6= /0: xn B(x ,

    1n )F .

    n, xn F (xn,x) < 1n , xn x . (), x F .

  • A (X ,). ( interior) A A intA ( A). ,

    A intA = {x A | x > 0 : B(x ,x) A} .

    () x A Vx x Vx A() A X A A .

  • () (a,b] R (a,b).

    () Q R /0.() .

  • A,B (X ,). :() A A.() A =

    {V A : V }. , A

    A.

    () A = A A .

    () A B , A B.() (AB) = AB.() AB (AB).

    : (R, | |), A = [0,1], B = (1,2) AB = (0,1) (1,2) ,(AB) = (0,2). A = Q B = R\Q AB = /0, (AB) = R.

  • (X ,) A X . x X A > 0 AB(x ,) 6= /0( x A).

    ( x A, .)

    () (R, | |) A = (0,1]. 0 A 0 / A. 1 A 1 A.() (xn) (X ,) xn

    x , x A = {xn : n N}.

  • () X , A X , x X A x A.

    (X ,) A X . x X A (an)

    A an x .

  • (X ,) A X , (closure)A ( cl(A)) A .,

    A cl(A) = {x X : > 0,AB(x ,) 6= /0}.

    A X A A .

    () (R, | |) Q = R R\Q = R.() (R, | |), a,b R a < b cl(a,b) = cl(a,b] = cl [a,b) = [a,b].() X , A X cl (A) = A = A.

  • (X ,) A,B X . :() A A.() A =

    {F A : F }. , A

    X A.

    () A = A A .

    () A B , A B .) AB = AB .() AB AB .

    .: (R, | |) QQc = /0 QQc = R.

  • (X ,), A X :

    A = {x X | > 0 : B (x ,) A}

    : A.

    A = {x X |(xn) xn A xn x}

    = {x X | > 0 : B (x ,)A 6= /0}

    : A.

    G X G = G

    F X F = F

    G ,F ,G A F = G A A A F

  • (X ,) , A,B X . :() X \A = (X \A)

    () X \B = (X \B)

    . () x X . : > 0 B(x ,)A 6= /0, x A. > 0 B(x ,)A = /0, B(x ,) X \A, x (X \A). A (X \A) X . X \A = (X \A). (), () B = X \A.

  • ( )

    (X ,) A X . x X (accumulation point) A x A x . , > 0

    B(x ,) (A\{x}) 6= /0.

    A A A.

  • A X x X , :() x A.() > 0 AB(x ,) .() (an) A an

    x an 6= x n N.

    () (X ,) A X . , A = AA., A .() A ().

  • (X ,) A X . x X (boundary point) A x A Ac ., > 0 B(x ,)A 6= /0 B(x ,)Ac 6= /0. A (boundary) A bd(A) (A).

    ()

    (X ,) A X . ,() bd(A) = bd(Ac). () A = bd(A) int(A) ( ).() X = int(A)bd(A) int(Ac) ( ).() bd(A) = A\A. , bd(A) = AX \A. , bd(A) .() A bd(A) A.

  • A 6= /0 (X ,), A(x ,y) = (x ,y), x ,y A A. x A BA(x , r) = B (x , r)A.

    (X ,) A X . :() G A .. (A,A) (. A-) - V X G = AV .() F A A- - E X F = AE .

    () (R, | |) A = (0,1]{2}. (0,1] {2} A.() (R3, 2) xy - H ( (x ,y ,0)). D xy -(D = {(x ,y ,0) R3 : x2 + y2 < 1}) H R3.

  • : , ,

    ()

    A,B . A,B f : A B , 1-1 (f : A B). A =c B |A|= |B| A B .

    1. f : (0,1) (0,2) f (x) = 2x .f : (0,1) (a,b) f (t) = (1 t)a + tb.2. N A (:) n 7 2n.

    3. f : Z N f (n) ={

    2n, n 02|n|1, n < 0

    4. f : [0,1] [0,1) f (x) ={

    1n+1 , x M x =

    1n

    x , x /M(M = { 1n ,n N})

  • A,B,C . () A A,() A B , B A () A B B C , A C .

    A A = /0 n N f : A {1,2, . . . ,n} 1-1 . , A n A n .3

    |A|= n. A .

    3 0.

  • A . () A .() 1-1 f : N A, B A B N.

    1. Z , N Z.2. NQ.3. R .

    .

  • A 1-1 f : N A, A N., A .

    . 0 ( 0). , A |A|= 0.

    () Z .() NN = {(m,n) : m,n N} .() A,B , AB = {(a,b) : a A,b B} .

  • A . :() A .() f : NA, .() g : A N, 1-1.

    B N , B N.

    Q . U (R, | |) .

    (Cantor, 1899)

    (Ai )iI X . I ,

    iI Ai

    .

  • ;

    [0,1] = {x R : 0 x 1} .

    : R ( ). , Q [0,1] .

    R R\Q .

  • (Cantor)

    2N = {0,1}N = {x = (x(n)) : x(n) {0,1}, n = 1,2, . . .}

    .

    P(A) A .

  • : , ,

    A,B (A B) f : A B , 1-1 (f : A B).

    A A = /0 n N : A {1,2, . . . ,n}.

    A A N. [. A = Q.]

    A A N.

    A [..A = [0,1] {0,1}N].

  • (X ,) D X . D (dense) X , D = X .

    () Q R\Q (R, | |).() c00 (`1, 1).() ( Kronecker). 2 R\Q.

    D() := {(cos(n),sin(n)) : n N}

    S1 = {(x ,y) R2 : x2 + y2 = 1}.

  • (X ,) D X . :

    () D X .

    () F D F , F = X .() G X G D 6= /0.() x X > 0 D B(x ,) 6= /0.() x X (xn) D xn

    x .() (X \D) = /0.

  • (X ,) ( separable) . , D = {d1,d2, . . .} X D = X .

    () Rd , p, . Qd .() `p, 1 p < .() ` [: ].

    () Hilbert, H .

  • (X ,) . :() X .() O X : G X x G U O x U G .:

    (X ,) : > 0 {X n : n N} X diam(X n ) X =

    n=1

    X n .

    (X ,) . (A,A) X .

  • (X ,) .

    (X ,) {B(xi , ri ) : i I} , .

    X A : > 0 (x ,y) x ,y A, x 6= y . .

    () ` (`(N), ) .() (.. = R), (, ) (, ) .

  • f : (X ,) (Y ,) x0 X : > 0 (x0,) > 0 : x X (x ,x0) < (f (x), f (x0)) < .

    > 0 (x0,) > 0 :

    f (B (x0, )) B (f (x0),).

    : f : X Y :

    A X : f (A) = {f (x)|x A}= {y Y |x A : f (x) = y}B Y : f 1(B) = {x X |f (x) B}.

  • ( f : X Y X x X .)

    f : (X ,) (Y ,). :() f .

    () G Y , f 1(G ) X .

    () F Y , f 1(F ) X .

    f : (X ,) (Y ,). :() f .

    () A X f (A) f (A).() B Y f 1(B) f 1(B).() C Y f 1(C ) (f 1(C )).

  • Urysohn

    (Urysohn)

    (X ,) A,B X AB = /0. , f : X [0,1] :() f (x) = 0 x A.() f (x) = 1 x B .

    f (x) =dist(x ,A)

    dist(x ,A) + dist(x ,B)

  • Urysohn

    A,B (X ,).() A,B G ,H A G , B H G H = /0.() A,B G ,H A G , B H G H = /0.

    (X ,) E ,F X . E ,F .

  • f : (X ,) (Y ,) : > 0 = () > 0 : x ,y X (x ,y) < (f (x), f (y)) < .

    f : x X > 0 = (x ,) > 0 y X (x ,y) < (f (x), f (y)) < .

    . . : p : R R p(x) = x2 : > 0, x =

    1 y =

    1 +

    2 , |x y |<

    |p(x )p(y )|= 1 + 2

    4> 1.

  • :

    f : (X ,) (Y ,) : > 0 = () > 0 : x ,y X (x ,y) < (f (x), f (y)) < .

    , > 0 > 0 x X :f (B (x , )) B (f (x),)., > 0 > 0 A X :diam (A) < diam (f (A)) < .

  • () f : (X , ) (Y ,) . a : N Y .() (X ,) , A X dA : X R : t 7 dist(t,A) inf{(t,a) : a A}. dA .: t,s X , |dA(t)dA(s)| (t,s).() f : R R , ( , . 6).

    () f : RR , limx |f (x)|= 0, .

  • (X ,),(Y ,) f : X Y . () f . () (xn),(zn) X (xn,zn) 0, (f (xn), f (zn)) 0.

    f : (X ,) (Y ,). :() f .() f - -.() f .

    : () ; (): .. f (x) = 1x ((0,+), | |) () ; (): .. g(x) = x2 (R, | |).

  • Lipschitz

    f : (X ,) (Y ,) C > 0. f CLipschitz x ,y X

    (f (x), f (y)) C (x ,y).

    f Lipschitz Lipschitz C > 0.

    () Lipschitz . : .. f (x) =

    x (R+, | |).

    () f : R R Lipschitz.

    () X . : (X , ) (R, | |) 1Lipschitz, .

  • Lipschitz

    f : (X ,) (Y ,) Lipschitz. f X Y .

    . ..

    id : (R, ) (R, | |).

  • ()

    (X ,),(Y ,) . f : X Y (isometry) ,

    (f (x), f (y)) = (x ,y)

    x ,y X .

    () 1-1 .

    () Lipschitz.

    () : (shiftoperator) Sr : `2 `2 Sr (x1,x2,x3, . . .) = (0,x1,x2, . . .) .

  • X , X . ( ) .

    xn x xn

    x .

  • X , X . :

    () , .() id : (X ,) (X ,) id1 .

    () ( Hausdorff) > 0 x X 1,2 > 0 B (x ,1) B (x ,) B (x ,2) B (x ,).() G X .() F X .

    X , X .

  • f : (X ,) (Y ,). f (homeomorphism) 1-1, . (X ,) (Y ,) f : (X ,) (Y ,). X

    hom Y X ' Y .

    () .

    () X . , , (X ,) (X ,) . .

  • f : (X ,) (Y ,) 1-1 . :

    () f .

    () (xn) X x X , xn x

    f (xn) f (x).

    () G X f (G ) Y .() F X f (F ) Y .() d(x ,y) = (f (x), f (y)) X .

    (X ,) .

  • :

    f : (X ,) (Y ,).

    f : 1-1, , f 1 : (Y ,) (X ,) . X ' Y () f : (X ,) (Y ,). ( X = Y ) () id : (X ,) (X ,) : x x.

    ( C > 0), f CLipschitz x ,y X

    (f (x), f (y)) C (x ,y).

    f x ,y X

    (f (x), f (y)) = (x ,y).

  • () R 6' Z, R 6'Q

    () Z 6'Q() (2 ,

    2 ) R ( )

    tan : (2 ,2 ) R,

    diam((2 ,2 )) = diam(R) = .

    () (0,1)' (a,b), [0,1)' [a,b)' (c,d ] [0,1]' [a,b].

    () (0,1) (a,b) (c ,d)( b c).

    () (0,1) [0,1).

  • (X ,) (complete) (xn) X .

    , (xn) :

    > 0 n0 N : m,n n0 (xn,xm) <

    x X (xn,x) 0.

    ( )

    () X , (X , ) .() (R, | |) ( ).() (Rm,2), 2 , .

  • ( )

    () {(Xi ,di )}ki=1 . (ki=1 Xi ,

    ki=1 di ) (Xi ,di )

    i = 1,2, . . . ,k .

    () {(Xn,dn)}n=1 dn(x ,y) 1 x ,y Xn,n = 1,2, . . . . X = n=1 Xn

    d(x ,y) =

    n=1

    1

    2ndn(x(n),y(n))

    x = (x(1), . . . ,x(n), . . .) X . Xn (X ,d) .

  • ( )

    () (Q, | |) .() (R,) (x ,y) = |arctanxarctany | : xn = n -, -. .

  • Banach

    (X , ) . X Banach , (X ,d) d(x ,y) = xy .

    . `() x : R,

    d(x ,y) = sup{|x(i)y(i)| : i }

    .

    ` d .

  • (X ,) F X . (F ,|F ) , F X .

    (X ,) F X . F X (F ,|F ) .

    :

    (X ,) F X . F X (F ,|F ) .

  • c0 d ( `) .

    C ([a,b]) = {f : [a,b] R|} d( `([a,b])) .

    `().

  • Cantor

    : (R, | |).

    (CantorFrechet)

    (X ,) . : {Fn}nN , X diam(Fn) 0,

    n=1 Fn 6= /0.

    , x X

    n=1 Fn = {x}.

    : : (R, | |): Fn = (0, 1n ) : , diam(Fn) 0,

    n Fn = /0 :

    !

    Fn = [n,) : , ,

    n Fn = /0 :diam(Fn) 6 0.

  • Cantor

    ()

    (X ,) {Fn}nN , X diam(Fn) 0

    n=1 Fn 6= /0,

    (X ,) .

    , .. (Qc , | |): Fn = [ 1n ,

    1n ] : , diam(Fn) 0,

    n Fn = /0.

  • Cantor ()

    (X ,) {An} X diam(An) 0.,

    n=1 An .

    (X ,) (xn) X . (xn):

    Rn = {xk : k n}, n = 1,2, . . .

    (X ,) (xn):() (xn) .

    () diam(Rn) 0 n .

  • Baire

    G1,G2, . . . ,Gm (X ,), mi=1 Gi ( , ). [ ]

    : .: (Q, | |) (qn) Q Gn = Q\{qn}. Gn Q, .

    (Baire)

    (X ,) . (Gn) X ,

    n=1 Gn 6= /0.

    , X .

    :

    (X ,) . (Fn) X

    n=1 Fn = X ,

    k N int(Fk) 6= /0.

  • Baire:

    V X . ... V (

    n=1 Gn) 6= /0.G 1 = X V G1 6= /0 ,

    B(x1, r1) V G1 0 < r1 < 1.

    G 2 = X G2B(x1, r1) 6= /0

    B(x2, r2)G2B(x1, r1)V G1G2 0< r2 < 1/2.

    : n B(xn, rn):

    diam(B(xn, rn)) 2nB(xn, rn) GnB(xn1, rn1), B(xn, rn) B(xn1, rn1)

    B(xn, rn) V G1 Gn.

    Cantor: x X x

    n=1 B(xn, rn). x V G1 . . .Gn n N.

  • G F

    (X ,) A X .() A G X .() A F X .

    (R, | |): () (a,b] F G : k N, :

    (a,b] =

    n=k

    [a +

    1

    n,b

    ]=

    n=1

    (a,b +

    1

    n

    ).

    () Q F (.) G (.: !)

  • Baire

    G G R. , G .

    Q G R.

    ... .

  • Baire

    (X ,) .() A X int(A) = /0. ( int(A) = /0: .. Q (R, | |).)() B X (X ) X , En, n = 1,2, . . . X , B =

    n=1 En.

    () C X ( X ) .

    Baire :

    ( ).

  • (Osgood)

    fn : [0,1] R, n N, . t [0,1] (fn(t)) (.v.) ,. supn |fn(t)| Mt < . , a < b [0,1] M > 0 , t [a,b] n N,

    |fn(t)| M.

    , [a,b] (fn) [a,b].

    C ([0,1]) [0,1] d(f ,g) = maxt[0,1] |f (t)g(t)| (). M f C ([0,1]) [0,1] C ([0,1]).

    ( .)

  • f : (X ,) (Y ,) . x X , f x :

    f (x) =inf{diam(f (B (x , ))) : > 0}=lim

    0diam(f (B (x , ))) [0,+].

    f : (X ,) (Y ,) x X . :() f x .() f (x) = 0.

  • C (f ) f : (X ,) (Y ,) G X .

    D(f ) F :

    D(f ) =

    n=1

    {x X : f (x)1

    n}

    : f : R R (. C (f ) = R\Q).( [0,1] : f (mn ) =

    1n (m,n) = 1 f (x) = 0

    x /Q).

    f : R R C (f ) = Q.

    ... Q G .

  • Banach

    ( )

    f : X X x0 X . x0 f f (x0) = x0. Fix(f ) f .

    f , Fix(f ) X .

    (Banach)

    (X ,) T : X X : 0 < c < 1

    (T (x),T (y)) c (x ,y)

    x ,y X . , z X T (z) = z .

  • Banach

    () n- :

    (T n(x),z) cn

    1 c(x ,T (x)).

    () T : R R T (x) = log(1 + ex) |T (x)T (y)|< |xy | x ,y R, .

    () (X ,) .: f : (0,1) (0,1) f (x) = x2 |f (x) f (y)| 67 |xy | x ,y (0,1), f .

  • ( )

    (X ,) . (Y ,) X T : X Y T (X ) Y .

    ( )

    (X ,) . , (X , ) T : X X T (X ) X .

    (X ,) . T : (X ,) (`(X ),d).

    T : x fx fx(t) = (t,x)(t,a), t X .

  • ( )

    (X1,1) (X2,2) (X ,). , : X1 X2, , (T1(x)) = T2(x) x X .

    X1 X2

    T1(X ) T2(X ) T1 T2

    Xi X

    ( .)

  • ( )

    (X ,) A X . U = {Ui}iI X A, A

    iI Ui .

    J I A

    iJ Ui , {Ui}iJ U U = {Ui}iI A.

    ()

    (X ,) (compact) X . , :

    U = {Ui}iI X X =

    iI Ui

    Ui1 , . . . ,Uim U X = Ui1 Uim .

  • ()

    K (X ,) , k .

    K (X ,) (Vi )iI K - X , (Vij )

    mj=1 (Vi )iI

    : K m

    j=1 Vij .

    () X , (X , ) X .() (R, | |) .

  • () S` = {x = (x(n)) ` : x = 1} `.

    () (X ,) , x X (xn) X xn x , K = {xn : n = 1,2, . . .}{x} X .

    (X ,) K X . , K X .

    : ().

    (X ,) F X . , F .

  • ( )

    (X ,) (sequentially compact) (xn) X (xkn) x X .

    ( )

    (X ,) (totallybounded) , . > 0 m N x1, . . . ,xm X

    X =mi=1

    B(xi ,).

    , A X > 0 x1, . . . ,xm X

    Ami=1

    B(xi ,).

  • 1. A X , B A .2. xi A (A 6= /0).

    () (R, | |) ( (0,1) ).

    () X , (X , ) X .

    () 4 (S` ,d) , .

    4S` = {x = (x(n)) ` : x = 1}

  • ( )

    (X ,) . :1 (X ,) .2 A X

    X (, A 6= /0).3 X .

    4 X .

  • (X1,d1),(X2,d2) . A X1, B X2 , AB X1X2 X1X2.

    :

    (Xi ,di )mi=1 . X = mi=1 Xi

    Xi d X , (X ,d) .

  • K X , . : (`2, 2), B(0,1) , : (en)n .

    Rm, m 1, . K Rm .

  • ., .

    ( )

    (Fi )iI X 6= /0 J I

    iJFi 6= /0.

    : () {(,x ] : x R} R. () A N N\A .

    (X ,) Fi X (Fi )iI ,

    iIFi 6= /0.

  • f : (X ,) (Y ,) .(X ,) = f .

    f : (X ,) (Y ,) .K X = f (K ) Y .

    f : (X ,) (Y ,) , 11 .(X ,) = f .. : (X ,) . , f : [0,1) [2,3] [0,2] f (x) = x 0 x < 1 f (x) = x1 2 x 3. f , 1-1, , f 1 ( y = 1).

  • f : (X ,) (Y ,) (X ,) , f (X ) Y .

    (X ,) f : X R . , f .

  • :

    x R+. (xn).; , ; n N,

    gn : [0,1] R gn(x) = xn.

    (gn). x [0,1], (gn(x)) . x ;

  • x R, x 6= 1 :(1x)(1 + x + x2 + + xn) = 1xn+1

    1 + x + x2 + + xn = 11x

    xn+1

    1x

    , |x |< 1, 1 + x + x2 + + xn n 11x

    |x | 1 1 + x + x2 + + xn + . . . . fn(x) = 1 + x + x2 + + xn, (n N), f (x) =

    1

    1x.

    ; ;

  • ( )

    X , (Y ,) , fn, f : X Y , n N.

    ( )

    (fn) (pointwise) f : x X (fn(x)) f (x) Y , .limn

    (fn(x), f (x)) = 0. : x X > 0 n0 = n0(x ,) N n n0 (fn(x), f (x)) < .

    X , fn, f ,gn,g : X R. fnk.s. f

    gnk.s. g , : (i) a,b R afn + bgn

    k.s. af + bg (ii) fngn

    k.s. fg .

  • (1 )

    (X ,) fn, f : X R. fn f fn , f ;

    : .. fn : [0,1] R : fn(t) = tn : .

    limn

    fn(t) =

    {0, 0 t < 11, t = 1

    .

  • (2 )

    fn, f : [a,b] R. fnk.s. f fn

    Riemann [a,b], () f R [a,b];

    () ( R-. ) ba

    fn(x)dx ba

    f (x)dx ;

    () : .. Q = {qn : n N}, fn = {q1,...,qn}k.s. f = Q,

    f Riemann [0,1].() : .. fn, f : [0,1] R : fn(t) = n2t(1 t)n, f (t) = 0.

  • (3 )

    I R fn, f : I R. fn f fn I , () f I ;() ( ) f n f ;

    () : fn(t) = tn [0,1], f f (t) = limn fn(t) .() : .. () fn, f : [0,1] R : fn(t) = t1+nt , f (t) = 0... () gn,g : (0,) R : gn(t) = sin(nt)n , g(t) = 0.

  • ( )

    () fn : [0,1] R : fn(t) = tn

    limn

    (limt1

    fn(t)) = 1 6= 0 = limt1

    ( limn

    fn(t)).

    limn fn(t) = f (t) =

    {0, 0 t < 11, t = 1.

    () fn : [0,1] R fn(t) ={

    0, 0 t 1/nsin(/t), 1/n t 1

    limn(limt0 fn(t)) = 0 limt0(limn fn(t)) .

    limn

    fn(t) = f (t) =

    {0, t = 0sin(/t), 0 < t 1

  • ( )

    X , (Y ,) , fn, f : X Y , n N. ( )

    (fn) (pointwise) f : x X (fn(x)) f (x) Y , .limn

    (fn(x), f (x)) = 0. : x X > 0 n0 = n0(x ,) N n n0 (fn(x), f (x)) < .

    ( )

    (fn) (uniformly) f : > 0 n0 = n0() N : n n0 x X (fn(x), f (x)) < .

    fnom. f fn

    k.s. f

    fnk.s. f ; fn

    om. f .. fn(t) = tn, t (0,1)

    sup{tn : t (0,1)}= 1 n.

  • :

    X , (Y ,) , fn, f : X Y , n N.

    ( )

    (fn) (uniformly) f : > 0 n0 = n0() N : n n0 x X (fn(x), f (x)) < .

    (Y ,) = (R, | |): (fn) f > 0 n0 = n0() N : n n0 ( f fn ) fn f < .

    : n n0, fn 2 f .

  • : (fn) fn : X R.1 f fn f ;

    x X (fn(x)): . x X lim

    nfn(x) , f : X R

    f (x) = limn

    fn(x).

    2 fn f : fn f fn f [0,+]: fn

    om. f (fn f ) 0 n .

  • () (X ,d) , (xn) X xn x ,fn, f : X R fn(t) = d(t,xn) f (t) = d(t,x) t X . : |fn(t) f (t)| d(xn,x) . t.() fn : R R fn(x) = xn . fn 0 .,

    fn0 = sup{|x |n

    : x R}

    = +

    n N. .() fn, f : [0,M] R fn(t) =

    (1 + tn

    )n, f (t) = et .

    : t 0, fn(t) f (t).

    f fn?= eM

    (1 +

    M

    n

    )n lim

    nf fn = 0.

    () hn,h : [0,+) R hn(t) =(1 + tn

    )n, h(t) = et .

    hhn en(

    1 +n

    n

    )n= en2n+.

  • () fn : [0,) R fn(x) = nx+n2 . x 0

    |fn(x)|=n

    x + n2 n

    n2=

    1

    n: .

    () fn : [0,1] R fn(x) = xn. fn f ,

    f (x) =

    {0, 0 x < 11, x = 1.

    .

    () fn : [0,1] R fn(x) ={

    11+nx ,

    1n x 1

    nx2 , 0 x 0 n0 = n0() : n,m n0 fn fm < .

    :

    fn f 0 > 0 n0 N : n n0 fn f < /2 n,m n0 fn fm <

    : gn = fn fn0 (n n0) gn `(X ) (gn) , ( (`(X ), ) ) g `(X ) gng 0, f = g + fn0 fn

    om f .

  • (X ,d) , fn : X R f : X R fn

    o f . , x0 X (xn) X xn x0 fn(xn) f (x0).

    : |fn(xn) f (x0)| fn f + |f (xn) f (x0)|.

    (Dini)

    (X ,d) fn : X R , f : X R. , fn

    om f .

    : > 0, Kn() = {x X : |fn(x) f (x)| }. Kn() Kn+1()

    n Kn() = /0.

  • (X ,) , f , fn : X R x0 X . :1 fn f X , 2 fn x0.

    , f x0., fn X , f X .

    , fn , fn f f , .

  • (fn) [a,b] R. fn : [a,b] R Riemann [a,b] fn f [a,b]. ,() f Riemann [a,b]

    () ba

    fn(x)dx ba

    f (x)dx .

    ( () .)

  • : (fn) (0,) fn(x) = sin(nx)nom 0 (f n)

    .v.

    fn, f : [a,b] R fn f . () fn [a,b]() f n [a,b]() (f n) [a,b]. f [a,b] f = lim f n.

    : fn f [a,b].

  • :

    fn,g : [a,b] R, n N. () fn [a,b]() f n [a,b]() f n g [a,b], () x0 [a,b] (fn(x0)) ( R). (fn) f : [a,b] R, f [a,b] f = g .

  • fk : X R, k N. n N sn : X R

    sn(x) = f1(x) + f2(x) + + fn(x).

    s : X R snk.s. s X ,

    k=1 fk s X

    s =

    k=1

    fk .

    snom s, k=1 fk

    s X .

  • ()

    k=0

    xk .

    k=0

    xk =1

    1x x (1,1).

    sup{|sn(x) s(x)| : x (1,1)}= +

    n N: .

    ()

    k=0

    xk

    k!= ex x R.

    K R, R.

  • k=1 fk s X , s X .

    fk ,gk : X R, k N a,b R. k=1 fk = f k=1 gk = g X ,

    k=1(afk + bgk) = af + bg

    X . .

    ( Cauchy)

    fk : X R, k N. k=1 fk ( ) X : > 0 n0 = n0() N : n > m n0 x X ,

    |fm+1(x) + + fn(x)| .

  • ( Weierstrass)

    fk : X R , k N.

    sup{|fk(x)| : x X} Mk , k N

    Mk |fk |,

    k=1

    Mk < +.

    , k=1 fk X .

    k=1 fk k=1 fk.

    k=1sin(kx)

    k2, x R.

    R, .

  • (X ,) , f , fk : X R x0 X . 1 k=1 fk f X , 2 fk x0.

    f x0., fk X , f X .

    (fk) [a,b]. fk : [a,b] R Riemann k=1 fk f [a,b]. f Riemann- [a,b] b

    a

    (

    k=1

    fk(x)

    )dx =

    k=1

    ( ba

    fk(x)

    )dx .

  • (Weierstrass, 1872): f (x) =k=1

    12k

    cos(10kx)

    !

    fk , f : [a,b] R k=1

    fk = f .

    () fk [a,b]() f k [a,b]

    () k=1

    f k [a,b]

    f [a,b] (

    k=1

    fk

    )=

    k=1

    f k .

    k=1

    fk f .

  • :

    fk : [a,b] R, k N. () fk [a,b]() f k [a,b]() k=1 f k [a,b], () x [a,b] k=1fk(x) ( R). k=1 fk f : [a,b] R, f [a,b] (

    k=1

    fk

    )=

    k=1

    f k .

  • C (K ) (K ,d)

    `(K ) f : K R f = sup{|f (x)| : x K} .

    fn f 0 fn f K .

    (C (K ), ) (`(K ), ).( = .)

    (C (K ), ) (`(K ), ).( .)

    (K ,d) . (C (K ), ) .

  • Weierstrass

    (Weierstrass)

    f : [a,b] R . > 0 p : R R p [a,b]

    f p .

    , x [a,b],

    |f (x)p(x)| .

    :

    (Weierstrass)

    f : [a,b] R . (pn) pn f [a,b].

    Metric SpacesMetrics in linear spacesFinite dimensional spacesSequence spacesFunction spaces

    Convergence of sequencesConvergent sequencesExamples of convergenceCauchy sequences and bounded sequencesSubsequences

    ContinuityTopology of metric spacesOpen sets

    Closed setsInterior of a setContact pointsClosure of a setClosure and InteriorAccumulation points and the boundaryRelatively open, relatively closed sets

    Finite, infinite, uncountableCountable and uncountable setsDense subsets

    Separable metric spacesContinuous functionsUrysohn's Lemma

    Uniformly continuous functionsLipschitz functions

    Isometries, homeomorphisms, equivalent metricsIsometriesEquivalent metricsHomeomorphisms

    Complete metric spacesCantor's TheoremThe Baire Category TheoremGd and Fs setsOscillation and points of continuity

    Banach's fixed point theoremCompletion of a metric spaceCompactnessCharacterisations of compactnessBasic properties of compact setsContinuous functions on compact setsSequences of functionsSequnces of functions: Uniform convergenceUniform convergence criteriaContinuity, integral, derivative

    Series of functionsThe space C(K) where (K,d) is a compact metric spaceThe Weierstrass Approximation Theorem