reasoning and formal modelling science lecture 3 prof. dr ...€¦ · reasoning and formal...

199
Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L¨owe Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L¨ owe 2nd Semester 2010/11

Upload: others

Post on 23-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Reasoning and Formal Modelling forForensic Science

Lecture 3

Prof. Dr. Benedikt Lowe

2nd Semester 2010/11

Page 2: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Binary connectives from last week.

p true true false false

q true false true false

p ∨ q true true true false

p xor q false true true false

p → q true false true true

p ↔ q true false false true

p ∧ q true false false false

∨ disjunction / inclusive or. → implication. ↔ equivalence.∧ conjunction.

Page 3: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Binary connectives from last week.

p true true false false

q true false true false

p ∨ q true true true false

p xor q false true true false

p → q true false true true

p ↔ q true false false true

p ∧ q true false false false

∨ disjunction / inclusive or. → implication. ↔ equivalence.∧ conjunction.

Page 4: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Binary connectives from last week.

p true true false false

q true false true false

p ∨ q true true true false

p xor q false true true false

p → q true false true true

p ↔ q true false false true

p ∧ q true false false false

∨ disjunction / inclusive or. → implication. ↔ equivalence.∧ conjunction.

Page 5: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (1).

Writing

p true true false false

q true false true false

p ∨ q true true true false

is rather tedious.

We can shorten it to

∨ T FT T TF T F.

Note that now we need to specify whether we read it “byrows” or “by columns”. For instance, the upper right entryin the matrix stands for row T and column F: but does thismean “p is true and q is false” or “q is true and p is false”?

Page 6: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (1).

Writing

p true true false false

q true false true false

p ∨ q true true true false

is rather tedious.

We can shorten it to

∨ T FT T TF T F.

Note that now we need to specify whether we read it “byrows” or “by columns”. For instance, the upper right entryin the matrix stands for row T and column F: but does thismean “p is true and q is false” or “q is true and p is false”?

Page 7: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (1).

Writing

p true true false false

q true false true false

p ∨ q true true true false

is rather tedious.

We can shorten it to

∨ T FT T TF T F.

Note that now we need to specify whether we read it “byrows” or “by columns”. For instance, the upper right entryin the matrix stands for row T and column F: but does thismean “p is true and q is false” or “q is true and p is false”?

Page 8: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (1).

Writing

p true true false false

q true false true false

p ∨ q true true true false

is rather tedious.

We can shorten it to

∨ T FT T TF T F.

Note that now we need to specify whether we read it “byrows” or “by columns”.

For instance, the upper right entryin the matrix stands for row T and column F: but does thismean “p is true and q is false” or “q is true and p is false”?

Page 9: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (1).

Writing

p true true false false

q true false true false

p ∨ q true true true false

is rather tedious.

We can shorten it to

∨ T FT T TF T F.

Note that now we need to specify whether we read it “byrows” or “by columns”. For instance, the upper right entryin the matrix stands for row T and column F: but does thismean “p is true and q is false” or “q is true and p is false”?

Page 10: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (2).

To make this more interesting:

→ T FT ?F ? .

One of the remaining entries stands for “false implies true”(which should be true) and the other one for “true impliesfalse” (which should be false). But is row T, column F “falseimplies true” or rather column T, row F?

Convention 1. In our matrices, the rows stand for the firstentry of the binary connective, and the columns for thesecond:

→ T FT T FF T T.

Page 11: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (2).

To make this more interesting:

→ T FT ? ?F ? ?.

One of the remaining entries stands for “false implies true”(which should be true) and the other one for “true impliesfalse” (which should be false). But is row T, column F “falseimplies true” or rather column T, row F?

Convention 1. In our matrices, the rows stand for the firstentry of the binary connective, and the columns for thesecond:

→ T FT T FF T T.

Page 12: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (2).

To make this more interesting:

→ T FT T ?F ? T.

One of the remaining entries stands for “false implies true”(which should be true) and the other one for “true impliesfalse” (which should be false). But is row T, column F “falseimplies true” or rather column T, row F?

Convention 1. In our matrices, the rows stand for the firstentry of the binary connective, and the columns for thesecond:

→ T FT T FF T T.

Page 13: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (2).

To make this more interesting:

→ T FT T ?F ? T.

One of the remaining entries stands for “false implies true”(which should be true) and the other one for “true impliesfalse” (which should be false). But is row T, column F “falseimplies true” or rather column T, row F?

Convention 1. In our matrices, the rows stand for the firstentry of the binary connective, and the columns for thesecond:

→ T FT T FF T T.

Page 14: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (2).

To make this more interesting:

→ T FT T ?F ? T.

One of the remaining entries stands for “false implies true”(which should be true) and the other one for “true impliesfalse” (which should be false). But is row T, column F “falseimplies true” or rather column T, row F?

Convention 1. In our matrices, the rows stand for the firstentry of the binary connective, and the columns for thesecond:

→ T FT T FF T T.

Page 15: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A notation convention (2).

To make this more interesting:

→ T FT T ?F ? T.

One of the remaining entries stands for “false implies true”(which should be true) and the other one for “true impliesfalse” (which should be false). But is row T, column F “falseimplies true” or rather column T, row F?

Convention 1. In our matrices, the rows stand for the firstentry of the binary connective, and the columns for thesecond:

→ T FT T FF T T.

Page 16: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Our binary connectives according toConvention 1.

∨ T FT T TF T F

xor T FT F TF T F

→ T FT T FF T T

↔ T FT F FF F T

∧ T FT T FF F F.

Page 17: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

An observation: relating unary and binaryconnectives.

In the table

→ T FT T FF T T

we now see several unary truth tables:

Each of the rows and each of the columns corresponds to aunary truth table.

You are asked to make this observation more precise inHomework Exercise B.

Page 18: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

An observation: relating unary and binaryconnectives.

In the table

→ T FT T FF T T

we now see several unary truth tables:

Each of the rows and each of the columns corresponds to aunary truth table.

You are asked to make this observation more precise inHomework Exercise B.

Page 19: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

An observation: relating unary and binaryconnectives.

In the table

→ T FT T FF T T

we now see several unary truth tables:

Each of the rows and each of the columns corresponds to aunary truth table.

You are asked to make this observation more precise inHomework Exercise B.

Page 20: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

An observation: relating unary and binaryconnectives.

In the table

→ T FT T FF T T

we now see several unary truth tables:

Each of the rows and each of the columns corresponds to aunary truth table.

You are asked to make this observation more precise inHomework Exercise B.

Page 21: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A second convention.

We can simplify

→ T FT T FF T T

even further:

T FT T

Convention 2. In the above diagram, the left columnstands for “true”, the right column stands for “false”. Theupper row stands for “true”, the lower row for “false”.

Page 22: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A second convention.

We can simplify

→ T FT T FF T T

even further:

T FT T

Convention 2. In the above diagram, the left columnstands for “true”, the right column stands for “false”. Theupper row stands for “true”, the lower row for “false”.

Page 23: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A second convention.

We can simplify

→ T FT T FF T T

even further:

T FT T

Convention 2. In the above diagram, the left columnstands for “true”, the right column stands for “false”. Theupper row stands for “true”, the lower row for “false”.

Page 24: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A second convention.

We can simplify

→ T FT T FF T T

even further:

T FT T

Convention 2. In the above diagram, the left columnstands for “true”, the right column stands for “false”. Theupper row stands for “true”, the lower row for “false”.

Page 25: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (1).

Can we recover this rule in our system of truth tables?

First, we need to translate it into a formula:

((p → q) ∧ p) → q.

Page 26: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (1).

Can we recover this rule in our system of truth tables?

First, we need to translate it into a formula:

((p → q) ∧ p) → q.

Page 27: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (1).

Can we recover this rule in our system of truth tables?

First, we need to translate it into a formula:

((p → q) ∧ p) → q.

Page 28: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (1).

Can we recover this rule in our system of truth tables?

First, we need to translate it into a formula:

((p → q) ∧ p) → q.

Page 29: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (1).

Can we recover this rule in our system of truth tables?

First, we need to translate it into a formula:

((p → q) ∧ p) → q.

Page 30: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (2).

((p → q) ∧ p) → q.

We say that a formula is valid if, no matter which truthvalues I plug in for the propositional variables, the truthtables for the connectives calculate the value of the entireformula as true.

((p → q) ∧ p) → q consists of subformulas:

I p → q and

I (p → q) ∧ p.

We need two truth tables: the one for → and the one for ∧:

T FT T

T FF F

Page 31: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (2).

((p → q) ∧ p) → q.

We say that a formula is valid if, no matter which truthvalues I plug in for the propositional variables, the truthtables for the connectives calculate the value of the entireformula as true.

((p → q) ∧ p) → q consists of subformulas:

I p → q and

I (p → q) ∧ p.

We need two truth tables: the one for → and the one for ∧:

T FT T

T FF F

Page 32: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (2).

((p → q) ∧ p) → q.

We say that a formula is valid if, no matter which truthvalues I plug in for the propositional variables, the truthtables for the connectives calculate the value of the entireformula as true.

((p → q) ∧ p) → q consists of subformulas:

I p → q and

I (p → q) ∧ p.

We need two truth tables: the one for → and the one for ∧:

T FT T

T FF F

Page 33: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (2).

((p → q) ∧ p) → q.

We say that a formula is valid if, no matter which truthvalues I plug in for the propositional variables, the truthtables for the connectives calculate the value of the entireformula as true.

((p → q) ∧ p) → q consists of subformulas:

I p → q and

I (p → q) ∧ p.

We need two truth tables: the one for → and the one for ∧:

T FT T

T FF F

Page 34: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (2).

((p → q) ∧ p) → q.

We say that a formula is valid if, no matter which truthvalues I plug in for the propositional variables, the truthtables for the connectives calculate the value of the entireformula as true.

((p → q) ∧ p) → q consists of subformulas:

I p → q and

I (p → q) ∧ p.

We need two truth tables: the one for → and the one for ∧:

T FT T

T FF F

Page 35: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (2).

((p → q) ∧ p) → q.

We say that a formula is valid if, no matter which truthvalues I plug in for the propositional variables, the truthtables for the connectives calculate the value of the entireformula as true.

((p → q) ∧ p) → q consists of subformulas:

I p → q and

I (p → q) ∧ p.

We need two truth tables: the one for → and the one for ∧:

T FT T

T FF F

Page 36: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 37: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 38: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 39: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p

true false false false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 40: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true

false false false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 41: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false

false false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 42: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false

false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 43: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 44: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q

true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 45: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q true

true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 46: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q true true

true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 47: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q true true true

true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 48: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 49: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Using truth tables for reasoning (3).

((p → q) ∧ p) → q

Relevant subformulas:

p → q(p → q) ∧ p

T FT T

T FF F

p true true false false

q true false true false

p → q true false true true

(p → q) ∧ p true false false false

((p → q) ∧ p) → q true true true true

We say that a formula is valid if, no matter which truth values I plug in for thepropositional variables, the truth tables for the connectives calculate the valueof the entire formula as true.

Page 50: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Recapitulation.

We have proved the validity of one of the most fundamentalrules of reasoning:

Modus ponens. If p implies q, and p is true, then q is true.

A: “If we find his fingerprints on the knife, he isthe murderer.”A & B process the knife and find matchingfingerprints.B: “But I still don’t believe that he is themurderer: maybe his fingerprints were already onthe knife before the night of the murder.”A: “You might be right.”

Page 51: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Recapitulation.

We have proved the validity of one of the most fundamentalrules of reasoning:

Modus ponens. If p implies q, and p is true, then q is true.

A: “If we find his fingerprints on the knife, he isthe murderer.”A & B process the knife and find matchingfingerprints.B: “But I still don’t believe that he is themurderer: maybe his fingerprints were already onthe knife before the night of the murder.”A: “You might be right.”

Page 52: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Recapitulation.

We have proved the validity of one of the most fundamentalrules of reasoning:

Modus ponens. If p implies q, and p is true, then q is true.

A: “If we find his fingerprints on the knife, he isthe murderer.”A & B process the knife and find matchingfingerprints.B: “But I still don’t believe that he is themurderer: maybe his fingerprints were already onthe knife before the night of the murder.”A: “You might be right.”

Page 53: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Recapitulation.

We have proved the validity of one of the most fundamentalrules of reasoning:

Modus ponens. If p implies q, and p is true, then q is true.

A: “If we find his fingerprints on the knife, he isthe murderer.”A & B process the knife and find matchingfingerprints.B: “But I still don’t believe that he is themurderer: maybe his fingerprints were already onthe knife before the night of the murder.”A: “You might be right.”

Page 54: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 55: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 56: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 57: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid.

The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 58: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 59: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 60: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p

false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 61: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 62: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q

false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 63: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 64: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q

true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 65: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 66: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p

true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 67: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true

false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 68: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false

true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 69: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true

true

(p → q) ↔ (¬q → ¬p) true true true true

Page 70: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 71: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p)

true true true true

Page 72: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true

true true true

Page 73: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true

true true

Page 74: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true

true

Page 75: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Equivalences.

We say that two formulas ϕ and ψ are equivalent if theformula ϕ↔ ψ is valid.

Claim. The formulas p → q and ¬q → ¬p are equivalent.

In order to prove this, we need to prove that(p → q) ↔ (¬q → ¬p) is valid. The relevant subformulasare p → q, ¬p, ¬q, and ¬q → ¬p.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬q → ¬p true false true true

(p → q) ↔ (¬q → ¬p) true true true true

Page 76: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (1).

We just proved the “Rule of Contraposition”: if you want toprove that p implies q, then you can equally well prove that¬q implies ¬p.

P: If his fingerprints are on the gun, he is themurderer.D: Of course, I accept that; but I will show that hisfingerprints are not on the gun. Therefore, hecannot be the murderer, by your own argument.

This would correspond to the rule:

(p → q) → (¬p → ¬q).

Let’s check whether this is valid.

Page 77: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (1).

We just proved the “Rule of Contraposition”: if you want toprove that p implies q, then you can equally well prove that¬q implies ¬p.

P: If his fingerprints are on the gun, he is themurderer.D: Of course, I accept that; but I will show that hisfingerprints are not on the gun. Therefore, hecannot be the murderer, by your own argument.

This would correspond to the rule:

(p → q) → (¬p → ¬q).

Let’s check whether this is valid.

Page 78: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (1).

We just proved the “Rule of Contraposition”: if you want toprove that p implies q, then you can equally well prove that¬q implies ¬p.

P: If his fingerprints are on the gun, he is themurderer.D: Of course, I accept that; but I will show that hisfingerprints are not on the gun. Therefore, hecannot be the murderer, by your own argument.

This would correspond to the rule:

(p → q) → (¬p → ¬q).

Let’s check whether this is valid.

Page 79: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (1).

We just proved the “Rule of Contraposition”: if you want toprove that p implies q, then you can equally well prove that¬q implies ¬p.

P: If his fingerprints are on the gun, he is themurderer.D: Of course, I accept that; but I will show that hisfingerprints are not on the gun. Therefore, hecannot be the murderer, by your own argument.

This would correspond to the rule:

(p → q) → (¬p → ¬q).

Let’s check whether this is valid.

Page 80: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (1).

We just proved the “Rule of Contraposition”: if you want toprove that p implies q, then you can equally well prove that¬q implies ¬p.

P: If his fingerprints are on the gun, he is themurderer.D: Of course, I accept that; but I will show that hisfingerprints are not on the gun. Therefore, hecannot be the murderer, by your own argument.

This would correspond to the rule:

(p → q) → (¬p → ¬q).

Let’s check whether this is valid.

Page 81: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 82: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 83: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 84: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p

false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 85: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 86: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q

false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 87: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 88: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q

true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 89: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 90: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q

true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 91: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true

true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 92: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true

false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 93: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false

true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 94: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 95: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q)

true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 96: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true

true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 97: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true

false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 98: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 99: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (2).

(p → q) → (¬p → ¬q).

The relevant subformulas are p → q, ¬p, ¬q, and ¬p → ¬q.

p true true false false

q true false true false

¬p false false true true

¬q false true false true

p → q true false true true

¬p → ¬q true true false true

(p → q) → (¬p → ¬q) true true false true

The formula (p → q) → (¬p → ¬q) is not valid!

Page 100: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (3).

Correct rule (Contraposition): (p → q) ↔ (¬q → ¬p).Incorrect rule (“converse error”): (p → q) → (¬p → ¬q).

Why is it so easy to make this error?

Because in natural language, we often assume the“equivalence reading” of “if ... then ...”. If you read “If pthen q” as p ↔ q, then the prosecutors reasoning becomes:

(p ↔ q) → (¬p ↔ ¬q)

(which is valid, as you can check yourself).

Page 101: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (3).

Correct rule (Contraposition): (p → q) ↔ (¬q → ¬p).Incorrect rule (“converse error”): (p → q) → (¬p → ¬q).

Why is it so easy to make this error?

Because in natural language, we often assume the“equivalence reading” of “if ... then ...”. If you read “If pthen q” as p ↔ q, then the prosecutors reasoning becomes:

(p ↔ q) → (¬p ↔ ¬q)

(which is valid, as you can check yourself).

Page 102: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (3).

Correct rule (Contraposition): (p → q) ↔ (¬q → ¬p).Incorrect rule (“converse error”): (p → q) → (¬p → ¬q).

Why is it so easy to make this error?

Because in natural language, we often assume the“equivalence reading” of “if ... then ...”.

If you read “If pthen q” as p ↔ q, then the prosecutors reasoning becomes:

(p ↔ q) → (¬p ↔ ¬q)

(which is valid, as you can check yourself).

Page 103: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Contraposition and “Converse Error” (3).

Correct rule (Contraposition): (p → q) ↔ (¬q → ¬p).Incorrect rule (“converse error”): (p → q) → (¬p → ¬q).

Why is it so easy to make this error?

Because in natural language, we often assume the“equivalence reading” of “if ... then ...”. If you read “If pthen q” as p ↔ q, then the prosecutors reasoning becomes:

(p ↔ q) → (¬p ↔ ¬q)

(which is valid, as you can check yourself).

Page 104: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The algorithm of proving by truth table.

1. Write down the formula you want to prove.

2. Identify all of the propositional variables occurring inthe formula and all relevant subformulas. Sort thesubformulas by their complexity (i.e., if ϕ and ψ aresubformulas, and ϕ is also a subformula of ψ, then listϕ before ψ in your list).

3. Write down the full list of all possible distributions oftruth values: if you have n propositional variables, thiswill be 2n possible distributions.

4. Calculate the values of all relevant subformulasrecursively from top to bottom (since you listed themore complex formulas later, this will work).

5. The final row of your calculation will contain theformula from Step 1. It is valid if the row has onlyentries true. In all other cases, it is not valid.

Page 105: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The algorithm of proving by truth table.

1. Write down the formula you want to prove.

2. Identify all of the propositional variables occurring inthe formula and all relevant subformulas. Sort thesubformulas by their complexity (i.e., if ϕ and ψ aresubformulas, and ϕ is also a subformula of ψ, then listϕ before ψ in your list).

3. Write down the full list of all possible distributions oftruth values: if you have n propositional variables, thiswill be 2n possible distributions.

4. Calculate the values of all relevant subformulasrecursively from top to bottom (since you listed themore complex formulas later, this will work).

5. The final row of your calculation will contain theformula from Step 1. It is valid if the row has onlyentries true. In all other cases, it is not valid.

Page 106: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The algorithm of proving by truth table.

1. Write down the formula you want to prove.

2. Identify all of the propositional variables occurring inthe formula and all relevant subformulas. Sort thesubformulas by their complexity (i.e., if ϕ and ψ aresubformulas, and ϕ is also a subformula of ψ, then listϕ before ψ in your list).

3. Write down the full list of all possible distributions oftruth values: if you have n propositional variables, thiswill be 2n possible distributions.

4. Calculate the values of all relevant subformulasrecursively from top to bottom (since you listed themore complex formulas later, this will work).

5. The final row of your calculation will contain theformula from Step 1. It is valid if the row has onlyentries true. In all other cases, it is not valid.

Page 107: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The algorithm of proving by truth table.

1. Write down the formula you want to prove.

2. Identify all of the propositional variables occurring inthe formula and all relevant subformulas. Sort thesubformulas by their complexity (i.e., if ϕ and ψ aresubformulas, and ϕ is also a subformula of ψ, then listϕ before ψ in your list).

3. Write down the full list of all possible distributions oftruth values: if you have n propositional variables, thiswill be 2n possible distributions.

4. Calculate the values of all relevant subformulasrecursively from top to bottom (since you listed themore complex formulas later, this will work).

5. The final row of your calculation will contain theformula from Step 1. It is valid if the row has onlyentries true. In all other cases, it is not valid.

Page 108: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The algorithm of proving by truth table.

1. Write down the formula you want to prove.

2. Identify all of the propositional variables occurring inthe formula and all relevant subformulas. Sort thesubformulas by their complexity (i.e., if ϕ and ψ aresubformulas, and ϕ is also a subformula of ψ, then listϕ before ψ in your list).

3. Write down the full list of all possible distributions oftruth values: if you have n propositional variables, thiswill be 2n possible distributions.

4. Calculate the values of all relevant subformulasrecursively from top to bottom (since you listed themore complex formulas later, this will work).

5. The final row of your calculation will contain theformula from Step 1. It is valid if the row has onlyentries true. In all other cases, it is not valid.

Page 109: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The algorithm of proving by truth table.

1. Write down the formula you want to prove.

2. Identify all of the propositional variables occurring inthe formula and all relevant subformulas. Sort thesubformulas by their complexity (i.e., if ϕ and ψ aresubformulas, and ϕ is also a subformula of ψ, then listϕ before ψ in your list).

3. Write down the full list of all possible distributions oftruth values: if you have n propositional variables, thiswill be 2n possible distributions.

4. Calculate the values of all relevant subformulasrecursively from top to bottom (since you listed themore complex formulas later, this will work).

5. The final row of your calculation will contain theformula from Step 1. It is valid if the row has onlyentries true. In all other cases, it is not valid.

Page 110: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 111: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 112: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 113: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p.

(Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 114: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 115: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 116: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p

false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 117: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 118: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p

true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 119: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true

false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 120: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 121: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p

true true

The rule of double negation (or duplex negatio) is valid.

Page 122: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true

true

The rule of double negation (or duplex negatio) is valid.

Page 123: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 124: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

Double negation.

If it is not the case that p is false, then p is true.

Formalized as: ¬¬p → p.

This formula contains one propositional variable (p), and thesubformulas ¬p and ¬¬p. (Clearly, ¬¬p is more complexthan ¬p.)

p true false

¬p false true

¬¬p true false

¬¬p → p true true

The rule of double negation (or duplex negatio) is valid.

Page 125: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 126: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 127: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 128: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 129: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 130: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p

false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 131: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 132: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p

true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 133: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true

true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 134: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 135: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p

true true

The law of excluded middle (or tertium non datur) is valid.

Page 136: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true

true

The law of excluded middle (or tertium non datur) is valid.

Page 137: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 138: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of excluded middle.

Every proposition is either true or false.

Formalized as: p ∨ ¬p (or p xor ¬p).

This formula contains one propositional variable (p), and thesubformula ¬p.

p true false

¬p false true

p ∨ ¬p true true

p xor ¬p true true

The law of excluded middle (or tertium non datur) is valid.

Page 139: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 140: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 141: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 142: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 143: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 144: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p

false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 145: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 146: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p

false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 147: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false

false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 148: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 149: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p)

true true

The law of contradiction is valid.

Page 150: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true

true

The law of contradiction is valid.

Page 151: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 152: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

The law of contradiction.

No proposition is both true and false.

Formalized as: ¬(p ∧ ¬p).

This formula contains one propositional variable (p), and thesubformulas ¬p and p ∧ ¬p.

p true false

¬p false true

p ∧ ¬p false false

¬(p ∧ ¬p) true true

The law of contradiction is valid.

Page 153: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 154: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 155: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 156: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 157: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 158: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q

true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 159: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 160: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p

false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 161: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 162: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q

false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 163: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 164: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q

false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 165: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false

true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 166: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true

true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 167: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true

true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 168: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 169: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q)

false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 170: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false

true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 171: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true

true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 172: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true

true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 173: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 174: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q)

true true true true

De Morgan’s Law is valid.

Page 175: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 176: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

De Morgan’s Law.

¬(p ∧ q) and ¬p ∨ ¬q are equivalent.

We need to prove that (¬(p ∧ q)) ↔ (¬p ∨ ¬q) is valid.

This formula contains two propositional variables (p and q),and the subformulas p ∧ q, ¬p, ¬q, ¬p ∨ ¬q, and ¬(p ∧ q).

p true true false false

q true false true false

p ∧ q true false false false

¬p false false true true

¬q false true false true

¬p ∨ ¬q false true true true

¬(p ∧ q) false true true true

(¬(p ∧ q)) ↔ (¬p ∨ ¬q) true true true true

De Morgan’s Law is valid.

Page 177: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 178: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 179: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 180: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 181: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 182: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 183: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p

false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 184: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 185: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p

false false false false

(p ∧ ¬p) → q true true true true

Page 186: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 187: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q

true true true true

Page 188: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

ex contradictione quodlibet

We had already shown that p ∧ ¬p is “the contradiction”.

Claim. From a contradiction you can deduce anything.

As a formula: (p ∧ ¬p) → q.

This formula contains two propositional variables (p and q),and the subformulas ¬p, p ∧ ¬p.

p true true false false

q true false true false

¬p false false true true

p ∧ ¬p false false false false

(p ∧ ¬p) → q true true true true

Page 189: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?

Page 190: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?

Page 191: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?

Page 192: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?

Page 193: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q

true false true true

q → p true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?

Page 194: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?

Page 195: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p

true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?

Page 196: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?

Page 197: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p true true false true

(p → q) ∨ (q → p)

true true true true

Why does this valid law sound so weird?

Page 198: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?

Page 199: Reasoning and Formal Modelling Science Lecture 3 Prof. Dr ...€¦ · Reasoning and Formal Modelling for Forensic Science Lecture 3 Prof. Dr. Benedikt L owe Binary connectives from

Reasoning andFormal Modelling

for ForensicScienceLecture 3

Prof. Dr. BenediktLowe

A last law for today...

(p → q) ∨ (q → p).

This formula contains two propositional variables (p and q),and the subformulas p → q and q → p.

p true true false false

q true false true false

p → q true false true true

q → p true true false true

(p → q) ∨ (q → p) true true true true

Why does this valid law sound so weird?