received - us epa...carried by a drag conveyor and loaded into a storage silo with a capacity of 150...

75
RECEIVED Hamilton County Department of Environmental Services COMPLIANCE TEST REPORT DETERMINATION OF PARTICULATE EMISSIONS BARRElT PAVING MATERIALS, INC. LEBANON, OHIO prepared for BARRElT PAVING MATERIALS, INC. 7374 Main Street Cincinnati, Ohio 45244 AAYDEN ENVIRONMENTAL GROUP, INC. 561 Congress Park Drive Dayton, Ohio 45459 (5 13) 438-3010 Written By Reviewed By Bruce A. Sarven Dale L. Davidson Project Manager Environmental Engineer Emissions Measurement Division Emissions Measurement Division June 7, 1994 P.N. 266.007

Upload: others

Post on 11-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • RECEIVED

    Hamilton County Department of Environmental Services

    COMPLIANCE TEST REPORT DETERMINATION OF PARTICULATE EMISSIONS

    BARRElT PAVING MATERIALS, INC. LEBANON, OHIO

    prepared for

    BARRElT PAVING MATERIALS, INC. 7374 Main Street

    Cincinnati, Ohio 45244

    AAYDEN ENVIRONMENTAL GROUP, INC. 561 Congress Park Drive

    Dayton, Ohio 45459 (5 13) 438-3010

    Written By Reviewed By Bruce A. Sarven Dale L. Davidson Project Manager Environmental Engineer Emissions Measurement Division Emissions Measurement Division

    June 7, 1994 P.N. 266.007

    EPAText BoxNote: This is a reference cited in AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

    The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

  • EXECUTIVE SUMMARY

    Hayden Environmental Group, Inc. was retained by Barrett Paving Materials, Inc. to perform a compliance particulate emission evaluation on the asphalt mixing plant located at their Lebanon, Ohio facility. The evaluation was performed to demonstrate compliance with Ohio Environmental Protection Agency regulations restricting air emissions from stationary sources. Emission samples were collected and analyzed using USEPA Reference Methods for stationary source sampling. The tests were conducted on May 10, 1994. The results of the tests are summarized below.

    Summary of Particulate and Lead Emission Rates

    ' Total Part ER = Filterable Part ER + Condensible Part ER pounds per hour ' The results from test run #1 are not included in the average. An explanation

    is provided in Section 5.0, "Discussion and Interpretation."

    -

    Run No.

    1

    2

    3

    4

    Averages

    Total Particulate Emission Ratea

    (lb/hr)b

    2.21

    2.49

    1.58

    1.87

    1.98'

  • TABLE OF CONTENTS

    2.0 PROCESS DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    3.0 SAMPLING AND ANALYTICAL PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . 2 3.1 Measurement Sites (Method 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.2 Velocity and Volumetric Flow Rates (Method 2) . . . . . . . . . . . . . . . . . 2 3.3 Dry Molecular Weight (Method 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.4 Moisture (Method 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.5 Particulate (Method 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    Figure 3.1 Sample Site Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Figure 3.2 Particulate Sample Train Diagram . . . . . . . . . . . . . . . . . . . . 4

    4.0TESTRESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 4.1. Summary of Stack Gas Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 4.2. Summary of Particulate Emissions . . . . . . . . . . . . . . . . . . . . . . . . . 7

    5.0 DISCUSSION AND INTERPRETATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    APPENDIX A PROCESS DATA APPENDIX B FIELD DATA APPENDIX C LABORATORY DATA APPENDIX D CALCULATIONS APPENDIX E QUALITY ASSURANCE AND PROCEDURES

  • 1.0 INTRODUCTION

    Hayden Environmental Group, Inc. (Hayden) was retained by Barrett Paving Materials, Inc. (Barrett) to determine the particulate emissions from the Wisconsin Electronics Baghouse controlling the emissions from their Lebanon, Ohio asphalt plant. The testing was performed on May 10, 1994. Triplicate tests were performed using USEPA Reference Methods 1, 2, 3, 4, and 5. Mr. Gary Stowell of Barrett coordinated the test schedule with plant operations. Ms. Denise Bien of the Hamilton County Department of Environmental Services (HCDES) was on-site to verify process conditions and witness test procedures. The emissions tests were performed by the Hayden test team of Mr. Bruce Sarven and Mr. Bert Forsyth. Sample analyses were performed by Hayden's laboratory in Miamisburg, Ohio.

    2.0 PROCESS DESCRIPTION AND OPERATING CONDITIONS

    Barrett Paving Materials, Incorporated manufactures asphalt at their Lebanon, Ohio facility. The plant was manufactured by H&B and operates as a batch feed process. In this process raw aggregate is first screened and then fed into a natural gas fired rotary kiln. In the kiln the aggregate is heated to approximately 325"F, mixed, and dried. The finished product is carried by a drag conveyor and loaded into a storage silo with a capacity of 150 tons. The plant can produce a maximum of 180 tons per hour. Exhaust emissions from the kiln are ducted through an emission control system consisting of a Wisconsin Electronics Baghouse. The exhaust gases from the baghouse are vented to the atmosphere.

    The plant produced an average of 184 tons of asphalt per hour during the compliance test.

  • 3.0 SAMPLING AND ANALYTICAL PROCEDURES

    The sampling and analytical procedures used conformed to the most recent revisions of the USEPA Reference Methods for stationary sources. A brief description of each procedure used is included below:

    3.1 Measurement Sites (USEPA Method 1) The location of measurement sites and the number of traverse points were determined using USEPA Reference Method 1, "Sample and Velocity Traverses for Stationary Sources." A drawing of the sample site is included in Figure 3.1.

    3.2 Velocities and Volumetric Flow Rates (USEPA Method 21 The stack gas velocity and volumetric flow rate was determined using USEPA Reference Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate." The stack gas velocity was measured on a 10" Dwyer oil manometer using a calibrated S-Type pitot tube. The stack gas temperature was measured with a calibrated type "K" thermocouple and Omega digital temperature readout.

    3.3 Dry Molecular Wei~ht (USEPA Method 3) The stack gas dry molecular weight was determined using USEPA Reference Method 3, "Gas Analysis for Carbon Dioxide, Oxygen, Excess Air, and Dry Molecular Weight." Several grab samples were collected and analyzed during each test with Fyrite combustion gas analyzers which directly measure concentrations of 0, and CO,.

    3.4 Moisture (USEPA Method 4) The stack gas moisture content was determined using USEPA Reference Method 4,"Determination of Moisture Content in Stack Gases." The samples were collected in a series of chilled impingers. The moisture collected within the impingers was analyzed by gravimetric analysis.

    3.5 Particulate Matter (USEPA Method 5 ) The particulate emissions were determined using USEPA Reference Method 5, "Determination of Particulate Emissions from Stationary Sources." The stack gas samples were collected isokinetically through a heated glass lined probe, a heated (248"+/-25") tared glass fiber filter, and a series of cooled impingers (to condense the moisture). The acetone from each probe rinse was transferred to a tared beaker before being evaporated at a temperature below its boiling point. The filter and the residue from the probe rinse were analyzed by gravimetric analysis. A drawing of the sample train is included in Figure 3.2.

    Triplicate test runs and measurements were performed for all parameters.

  • 4.0 TEST RESULTS

    The stack gas conditions are summarized in Table 4.1. The stack gas velocity averaged 50.1 feet per second (fps). The stack gas flow rate averaged 41,423 actual cubic feet per minute (acfm) or 24,011 dry standard cubic feet per minute (dscfm) at 223°F and 23.9% moisture. The average concentrations of oxygen and carbon dioxide were 16.3% and 4.1%, respectively.

    The particulate emissions are summarized in Table 4.2. The filterable particulate concentration averaged 5.82E-03 grains per dry standard cubic foot (grldscf) or 8.31E-07 pounds per dry standard cubic foot (lb/dscf). The average filterable particulate emission rate was 1.19 pounds per hour (Ibkr). The condensible particulate concentration averaged 3.87E-03 grldscf or 5.53E-07 lbldscf. The average condensible particulate emission rate was 0.79 lbkr. The total particulate emission rate averaged 1.98 Ibkr.

  • BARRETT PAVING MATERIALS, INC.

    Table 4.1 Summary of Stack Gas Conditions

    " feet per second actual cubic feet per minute dry standard cubic feet per minute degrees fahrenheit ' Test run #1 was not included in the averages. An explanation is provided in Section 5.0, "Discussion and Interpretation."

    Carbon Dioxide

    (%)

    4.2

    4.0

    4.0

    4.2

    4.1'

    Moisture

    (%)

    23.8

    25 .O

    23.7

    22.9

    23.9'

    Temp.

    (OF)*

    220

    226

    222

    222

    223'

    Run No.

    1

    2

    3

    4

    O ~ Y gen

    ( % )

    16.3

    16.0

    16.3

    16.5

    16.3'

    Time

    (5/10/94)

    07 19-0826

    0925- 1030

    1052-1 157

    1257-1402

    Averages L

    Velocity

    (fps)"

    50.1

    48.5

    50.6

    51.2

    50.1'

    Flow Rate - ( a ~ f r n ) ~

    41,445

    40,138

    41,798

    42,333

    41,423'

    (dscfm)'

    24,171

    22,845

    24,309

    24,880

    24,O 11"

  • BARRETT PAVING MATERIALS, INC.

    Table 4.2 Summary of Particulate Emissions

    ' grains per dry standard cubic foot pounds per dry standard cubic foot

    " pounds per hour Test run #1 was not included in the averages. An explanation is provided in Section 5.0, discussion and Interpretation."

    Total Particulate

    (lbhr)'

    2.205

    2.491

    1.581

    1.866

    1.97gd

    Run No.

    1

    2

    3

    4

    Condensible Particulate Time

    (511 0/94)

    07 19-0826

    0925- 1030

    1052-1157

    1257-1402

    Averages

    Emission Rate

    (lbhr)'

    0.195

    0.913

    0.485

    0.985

    0.794~

    Concentration

    Filterable Particulate

    (grdsct)'

    9.41E-04

    4.668-03

    2.33E-03

    4.62E-03

    3.87E-03d

    (~bldscf)~

    1.37E-07

    6.66E-07

    3.33E-07

    6.608-07

    5.53E-07d

    Emission Rate

    (lbhr)'

    2.010

    1.578

    1.096

    0.882

    1.185~

    Concentration

    5.82E-03d

    (grldscf)'

    9.70E-03

    8.06E-03

    5.26E-03

    4.13E-03

    8.3 1E-07d

    (Ib/ds~f)~

    1.398-06

    1.15E-06

    7.5 18-07

    5.91E-07

  • 5.0 DISCUSSION AND INTERPRETATION

    The results from Test Run #1 were not included in the final averages. The stack gas moisture content was underestimated and the sample was collected out of isokinetics during the first test run. The isokinetic sampling rate was adjusted prior to the second test run. A forth test run was performed to give a better estimate of the actual emission rate.

  • 4888 ~ ~ ~ ~ Y ~ E # Z S E E K R O A D L E B A N O N , OHIO 45836

    621 -6822 494-2269

    Data Cmt b. Sub h. P.O. b. llir lo. Rod Dncriptim Ti- k. 95/18/94 SUO 1A 969-81 391 BIS6 HI1 l42l2 Curtoler Dcliolcrcd hne: SIU) Ilr To Job: SIUl 1A

    Tim AggTA662 Af33 A661 Agg Total Asp T ASP A 7- 6 2 a I Q O a 8 6 94

    6:23:31 15 615 399 100s 2918 1 92 6:24:39 10 615 399 1835 2040 5 91 6:25:5 5 638 418 1025 2 6 5 6 9 4 6:26:59 0 614 395 975 1980 5 % 6:28:01 0 625 399 875 1899 6 94 6:29:(# 5 6 3 4 8 878 1939 6 92 6:1:& 8 6 3 4 5 875 1918 S % 6:31:#9 8 618 395 895 1918 6 93 6:32:12 0 6Uj 395 980 1 W 6 93 6:33:14 -5 625 390 675 1 6 94

    TOW 62lS 3970 m 19515 93s R8p lbirtum 0 . m kt Total 0 D q T o t r l 0. a. 4 Lp 2 virgin UC C s7 2 UC ibp

    Tim: 6:31r13 Truck b.: SILO U Total tom to job t*: 10.22 w to job todry: 1 Truck Tr& trclct w T u c 0 . 1 Ist 18.22 Groa 10.22 Iiaolrr 8. (Q

    Asp Totd Batch Total U/C 29.e

    92 2192 4.38 91 4233 4.27 94 6392 4.35 % 8468 4.62 94 10452 4.74 92 12474 4.55 % 1W 4.79 93 16473 4.67 93 1- 4.67 94 2.m 4.74 935 10.22 4.57

    Lord Total 10.22 0.00 X U C I ~ U ~ X 1.57

    T o m : 10.22 Fn igb t :

    nahrlal: Tax r

    Total A d :

    P L A N T #93 4888 T U R T L E C R E E K R O A D L E B A N O N , O H I O 45836

    621-6822 494-2269

  • Date Clrrt k. Sub k. P.O. k. Mx k. Prod Dmriptioo Ticket b. 95/19/94 SIU) 1A LOe-QI 391 B A S MIX 11213 mmRr DRliPrnd Due: SILO 14 To Job; SIU I

    Tim A g g T a 2 4663 AG61 @ T o t a l LpTASPA Trrsct 124 849 1m 188

    6:35:23 9 1255 810 11155 392) 6 188 6:35:56 -5 1245 799 1W 3835 8 138 6:36:59 0 1245 BW 1- 3859 7 187 6:36:02 -5 1259 885 1785 3818 7 1 1 6:39:85 5 1235 7 lm 379) 7 189

    T o W l am9118 I s m 944 ep o.m w ~otrl e D ~ ~ T O W 9.00 h 7- luY T a w Z ti* UC 4.68 X UC R q

    T i w : 6:UaM Tnck b.: SIU) U T o t r l tou to jab toQI: 20.31 ladr to job t*: 2 tr\rct Trrct T N C ~ f4 Tm 0 . a k t 10.09Qarr 10.096ma 0.0

    Ig Total Eatcb Total WC 1OOO

    188 U.0 4.50 199 8133 4.72 187 1279 4.63 199 16218 4.71 189 2017'9 4.75 944 10.09 4.68

    Lord Total re. 09 0.00 X U C I n b 4.68

    Tom : 10.89 Freight Ibte :

    nabrial : Tax r

    TOW Ammt :

    P L A N T #93 4888 TURTLE CREEK R O A D L E B A N O N , OHIO 45836

    621-6822 494-2269

    W e CPrtb. Sdb. P.0.b. lix b. Rod Dwcriptior Tidtct b. 16/18/91 SfiO lA Y9-01 3 1 lUSli EIX l a 4 Cortomu lklimrd Ir: Sfll) 1 A To Job; SILO 1 A

    Is) Total Batdl T o t a l XUC 6me 5981 4.71

    11976 4.74 17987 4.67 24004 4.69 31110 4.68 35991 4.70 uw 4.72 479% 4.68 S U I ~ 4.72 59991) 4.70 65991 4.68 7 1 ) Y l l A Z ; P

  • 6:SIrlb 5 1855 1295 2644 9794 6:55:19 5 1865 l260 a635 57U 6:56:21 10 1865 1lY 267@ 5675 6:!i7:24 1 18n 1175 2675 !ma 6:58:26 18 1835 l 2 l O 2618 5685 6t99r28 18 1875 1180 X H 5715 7:Waa 10 1- 1190 2655 %% 7:@1:33 10 1 l2@3 266O 5745

    T o t r l r 24415 53185 11132) Rap lbMm 0 . w uet Total 0 Dry Totll b LI 7- 2 Virgin UC 4.74

    Tim: 7rQr34 Truck b.: SIU) lA Totrl tar to job t*: 1W. 29 1#6 to job todry: 3 Tn~c& M Trret w T;lw 0. W kt 59.9 &om 59.98 6r#r 0.W

    281 77989 4.70 281 0 4 3 4.63 285 89999 4.78 281 95991 4.68 282 101958 4.73 282 197955 4.79 279 113929 4.67 282 119956 4.68 S36 59.96 4.79

    Losd Total 59.96 0.00 XUCIaIUI 4.70

    Tom : 59.98 Fnigbt Uate :

    lhterial : T u :

    TON Amant :

    P L A N T #93 4888 TURTLE C R E E K R O A D LEBANON, OHIO 45836

    621-6822 494-2269

    me C& b. Sdb. P.O. la Ul k. Rod miptia TidPlt k. WlU94 SILO l4 a9-W 301 81S6 11II l42l6 k t w w k i id Irr: SIUllA To J d r SXUI 1 A

    h p Total

  • T i m : 7:JJ:U Tru& k.: SILO lA T O W tom to job todry: l a 3 7 -to job -8 4 Ird Tma Ird w Tm 4 . m #aka8 90.aGrorr 0. I

    P L A N T #93 4888 T U R T L E CREEK R O A D LEBANON, OHIO 45836

    621 -6822 494-2269

    Drtc -lo. Sdb. P.0.b. lir b, Rod h u i p t i o r 4Wl.m SILO u nussru Crtarr klirmd lu: S U 1A To Job: SIUj lA

    T i m IggTMa32 16163 1661 Trrort 1064 l2n

    7:3st49 5 m l2n x45 7:SrZI 5 Ma 11% zm 7:37125 5 m l2n mo 7838825 5 1116) l2l4 2655 7139126 5 167. 1174 267) 7rY126 5 lm l2ls 1655 7rUr26 4 1 11% S7!5 7142127 5 1845 1W S64 7:43127 5 la54 1190 2h65 7144127 5 la75 l22a 2640 7:45:27 5 1 8 s 11% zss 7146827 14 1 W 11% X7U 7~47824 5 1679 11% 26U 7t48:za 5 1874 118s 26% 7849tP 5 184. l225 m3

  • T i r t 8:31:2# Tmcltb,:SILOlA Totr l tan8tojobtodry: 332.52 1#6 to job t*: 5 tneL T r e Trrct lrsrl T m C W irt 162.15 Gror 162.15 6ma d W

    T a r t 162.15 h d g h t i b t e r

    lbtrrirl : Ta r

    T o t r l Lwt r

  • ~smm F ~ & T E E ~ E S E E K ROAD BANON, OHIO 45836

    Chb ktb. Wb. P.0.b. Ul b. trd Dwaiptiar ti- b. mum sflll l~ a w 31 w r a 1 4 2 ~ Cvtolrr hlirmd lrr: SILO 1A t o Job1 SIU lA

    rim: 9843:14 hretb.:SIUU rotrl t# to jd today8 41. Ladr to job t-r 6 hrcL t m k frrcL w fm b0OM 69.14Grar 69.146ma C I

  • P L A N T US3 48-8 TURTLE CREEK R O A D LEBANON. OHIO 45836

    621 -6822 494-2269

    T a r 1 %la v - 8

    Ltrririt Ta a

    Total Ammt 1

  • P L A N T U93 48a8 TURTLE CREEK R O A D LEBANON, OHIO 4S836

    621-6822 494-2269

  • PLANT US3 484)- TURTLE CREEK R O A D LEBANON, OHIO 45836

    621 -6822 494-2269

  • 11i16t39 1 1685 13S 263 5665 11:17:39 5 1695 tJn 16u 5115 11r18839 5 1 135) %I@ m llr19r39 5 17)5 1355 s6ao llrrnr39 5 17a l37s 2635 5719 ll:21:39 S 178s 134s 16U 56% llr22:Y S 1- 1365 2625 569) llt23r1 5 1690 1355 263 5615 Hr24r39 1 1713 1363 W 574 llt2StY 5 11# 1365 26M s6ao Hr26rY 5 1665 13b) %la 5655 1l:ZrY 5 1725 1365 a S7SO lll2ntY 5 1 1363 264 Slld 11829rY @ 1 1 3 0 26Y 5670 11;3@:4l 5 171) la@ 9.5 11r31t4S 5 1473 136) 2645 %a@ 11832~4 3 fii# lm 264S SnO llr3314S 3 1365 2640 57W 11:3(r13 5 1 7 1 1356 a635 369. llr35tU 1 l69@ 1m %# SIZI llr3614 1 1724 1366 1625 Slw ll:Pt46 1 1780 1SS 264a Sllb llr30116 5 16%5 131) 263 S6a 11r39:47 @ 149) 1355 a#, S1(6 llrYr47 3 l6M 1356 2W %a# llrUr47 3 17W 13Y 263 56db 11rUt48 5 1715 W ZS 5725 llr43148 5 W 13h) %a 3670 llr44t48 3 l6n W15 Bm s615 lltU848 5 1696 la 2660 m 11146r48 5 17US 1364 a 572s llr47t49 3 1688 L3Y s3s 367s

    totala U M70 1S25 W(55 W W a ColJ WToW @ R l T m W roo- @tan 2 9 i f g r ~ c 5.u

    P L A N T U 9 3 4888 TURTLE C R E E K ROAD L E B A N O N * OHIO 454)36

    621-6aa2 494-2269

  • I T d r l wc mn ma 1.7 1192 514 l(yP 1 4 6 W36 5.u 3w64 5.M 3Wl 5.14 42.u 5.14 4aaa Ill 5Ul111l 611111 1m bSTl 113 7194 5.12 9M4 1Y a m 4 rn 119991 iLQ 95971 114 101m 119 111911 5.w 113419 114 119974 10 129961 113 la913 I13 1319U I14 143966 5.a 149926 $13 l%94s 5.m 161966 110 mse I L L im ra 1 m $11 1- Ils 191- 5m 1- 5.46 2109a6 5.10 am6 5.u Us936 PaWt 5.5 22am s19 2mw 5.13 239916 512 24s900 sli 2U9U 5.14 m 1

    510 268919 5.e mBY 111 a9n 5.11 2anM 5.12 29[1915 r 18

    147 3mm Sam 311945 5. 11 3179&SY: -r r .&

  • PLANT #93 48-8 TURTLE CREEK R O A D LEBANON, OHIO 45-36

    621 - 6 C d 2 2 494-2269

  • APPENDIX B

    FIELD DATA

  • METHOD 1 TRAVERSE POINT LOCATION FOR

    Client:. 2 / P & ~ ~ J p ~ . Date:

    Source: site: CbCki- Run: 4 ' 4 Calculated B ~ : ~ ' ~ L c 3f12&

    ;/

    3 XS9& INSIDE DUCT DIMENSIONS:

    NIPPLE DEPTH: 1 w -

    EQUIVALENT STACK DIAMETER: ~ 3 , ~ y NEAREST UPSTREAM DISTURBANCE: ( 2 y (29 I . NEAREST DOWNSTREAM DISTURBANCE:

    : 0

    NUMBER OF TRAVERSE POINTS: lo(- . 7

    MATRIX: 9 J

    NEAR WALL TO

    I

  • MEI"I'101I 2 VELOCITY IiIlSLD IIA'I'A

    Clierlt: ~ ~ , A ~ A P J J ,&,/,.dl Pitot Tube I.D.: Ijroject Nu~nber: 2 6 X - Oo7 Tliermocouple I.D.:

    I -

    Date: ii/?h Y Pre-Test Leak Check: source: & / / & ~ L J - f in-7 /gd(i/#*fl) I'ost-Test Leak Check:

    Sire: 6'bTV-f Stack 1.D.:

    I I < U I I : -2' ME'I'HOD 4 DATA I 0pe1-ators: f l l , 4F Wet Bulb Thermocouple 1.D.:

    13arolnetric Pressure: Dry Bulb 'I'llermocouple I.D.: Static P~essure: Ten~peratures ( O F ) ; Wet: /f l D,: / .d7 ' : r

    0 : c&-

    ~7: P : 'Is : vs: 8% :

    I

    smrcLI

    Traverse I'oi~lt f t

    P 1 3 3

    /j J

    3

    3

    7

    3 -Q

    n / 1

    7 @

    Stilck 'Ternl). (OF)

    A I' ("1 1,0)

    tia

    f.4

    -

  • MOISTURE IN STACK GAS BY WET BULB-DRY B U L B MEASUREMENT

    Plant A q 4 # ~ # 7 p.? V/J 5 L o c a t i o n n d f r * 7 m

    Stack X A ~ ; / A U ~ P , A w F + ~ R u n /Rc Date 4 //*&z

    Operators dJ* 4 ' - / '-

    Barometric Pressure (Hg) a 'bar = 2y.. 5-o i n Hg

    S t a t i c Pressure ( i n H20) P = -fl- 71 i n H70

    Absolute Pressue o f Stack =

    P 'bar ' 13.6 - -

    Wet Bulb Temperature ( O F ) =

    Dry Bulb Temperature (OF) =

    Temp Difference (Td-Tw) =

    Vapor Pressure o f H20 a t Tw (from tab1 e )

    Partial Pressure of H20 = PP

    (PS - VP) ( AT ) P P = ( V P ) - 2800 - 3 ) ( Tw r

    \ X Moisture by vo lume = M 't7 ' ) jnCJ

  • -

    I NOMOGRAPH DATA Client: PN: Date:

    I Source: Site: Run: Calculated By:

    I

    Barometric Pressure. Pb (in. Hg)

    Static Pressure. Pg (in. Hg)

    Orifice Constant. AH@ (in. H20)

    Average Meter Temperature. Tm (OF)

    Moisture in the Stack Gas, Bws (%)

    Meter Pressure, Pm (in. Hg)

    Absolute Pressure of the Stack Gas. Ps (in. Hgl

    Ps/Pm

    Average Stack Temperature, Ts (OF)

    Average Velocity Pressure. AP (in. H20)

    Maximum Velocity Pressure, AP (in. H20)

    C Factor

    Calculated Nozzle Diameter (in.)

    Actual Nozzle Diameter (in.)

    Reference AP (in H20)

  • " I"_

    ";{!& : s, 2 '2 3 .a c 5

    h 2 2 - . . " Z

    4 'C ' z .,, 2 ; ;

    'd = - c... 2 - 2 .. - - 1, 3 .s

    ' 3 r 3 2 ; : d - ~ ~ ~ = ) ~ ~

  • SAMPLE RECOVERY DATA 7

    Client 2fim/~& PN: source: A$%~C%- , / L Site: 0 O7 LOT Sample Date: 5//c/?y

    " Recovery Date: - Date: &

    Filter So: Glassware Set No: Sample Box No: I

    IMPINGER DATA

    Gravimetric: Volumetric:

    RECOVERED SAMPLE

    Description of Particulate on Filter:

    Color of Silica Gel: q a V P ,AL& /

    Recovered By:

  • METHOD 3 FYRITE DATA

    P ~ : 266- ,OG 7 Date: 4 7 /8 /92 Client: h'A/FbTf p4,ur"4/b site: cd r c ' c f Source: 4F /t Run#:

    Operator: dfl

    O ~ Y gen Carbon Dioxide ( 0 2 ) (COJ

    I

    Run 1 / 7 - 0 4 - 8

    Run 2 16- a 4.

    Run 3 /J. d 9" s-

    Average / 6 . ? l;r. 3 v d !

    A

  • Orifice Pressure Teniperalurcs Traverse Sampling Clock Meter Velocity AH d

    ('H2b) Train

    Point Time Tlme Reading Pressure Vacuum (OF) Number ( m ~ n ) (hr) (cu ft.) AP

    ("H20) Desired Actual ("Hg) Stack Filter Probe IMP Meter

    ( 1 33 $4 PAP Q 45 /- r p /-9" 7. fl 7 3 0 ~ J - J do 7y73 3 76 927, Fk' /;7. A9 /-m - .7.0 2.79 75-3 A6 B.?hy 3 79 Y>/:Y>. 0 d 7 /. go 1. 3-0 3 o 3 J R 357 65 - BL//7>- 4 k3 ~ J Z ~8 0. $3 / - a 0 1- 2 fl 3. 0 277 $5-/ 64- RO76

    + J- Y>~?Z O, ~6 4 20 1- 2 P 3. ~9 316 >/a 6,' %~ d / 7 1 . 0.- 2 oaf> 7.0 7 $5-3 -7/ .Y.7/77

    3 F' 'I-334-I, (3,Yd 09> @ 93 7.0 i Hi7 c 4 l f i i i c . 3 5-4/ ~ 7 4 . ~ $ 0 ( b c 96 c /.or ? c 3 7 3 ) "'/ 3 L/y 7 .Y5)77 !I 5 -7 '175: P O (7. y~ /.OF j 7 . p 37y 397 6 1 , . 8 7 7 ~

    60 0 9725y a . ~ b / . on A , O ~ y L 0 333 230 R3777, A 74 ,q

    1

  • A SAMPLE RECOVXRY DATA

    Client: PN: Source: Site: Qo'TLW'' Sample Recovery Date: -

    Filter No: 77?4 Glassware Set No: Sample Box No: -7 IMPINGER DATA

    Gravimetric: Volumetric:

    RECOVERED SAMPLE I

    Contents

    Fhal

    7 Initial

    Description of Particulate on Filter:

    Color of Silica Gel: 9 7 -4 &/

    #1

    CJ 70.7

    fT4LY

    Net

    #2

    ".'

    57fd.6

    /

    I

    / 9 3 3 3 3.5-

    #3

    6 Y'i2.3

    4357-0

    4.3

    #4

    d ! d .

    ,7077 LyqO

    /?3

    #5 Total

    I

    2 90.5 J.;l/

  • METHOD 3 IFYRITE DATA

    Client: 8/14/?~+ j p ~ : >6(.(.C:7 Date : ?//O,/& Source: / 2 ? 4 ~ * - , 6 Site: ndu-7 r , Run#: 2 Operator: ~1 ,?K

    / -

    Run 1

    Run 2

    Run 3

    Average I

    oxygen (02)

    /&- 0

    16.0

    / b 0

    / 6 -

    Carbon Dioxide (C02)

    I / . 0

    q- 0

    4:

    9 - 0

  • i -20 -32 d 4 +' I.! - , -\I< 1 : 3

    P. ,\ga @ = r : .$ .. I

    . .= .= .. '3 3 L h ,- - A a u :L r, > - .. b,c?: . . A 3- ,, c Pf., g ,;:/'I" "? 3 . . . . '3 -= y 3 r ; O t z p * z - A -3 ;- =3\ ., ? 2 32 - f r :43j l,.s - - .. - 2 2 g d s $ p 3 * ?- I .. L) 3 L.. - U , U + ' , 3 2 , 3 , 2 37 2 5 3 5 + .? .J 4 & & & Z L % - O S v 3 3 2 ' , 3 - -

  • SAMPLE RECOVERY DATA

    PN: Source:, i t : / 00Tl-7 Run#: 3

    Recovery Date:

    Filter No: 7 (/ $% Glassware Set No: Sample Box No: 5 IMPINGER DATA

    Gravimetric: c--"

    Volumetric:

    #1 #2 #3 #4 #5 Total

    /.z Contents K

    F ~ I 6oa./ ---, 6/a.@ Y.lf7.y &/.y B - 5 4 ~ ~ , 3 4L3.6 '/37,? 77517

    Initial

    Net /5/.d /@,Y Y96 96.7 371. 9 db/

    RECOVERED SAMPLE

    Description of Particulate on Filter:

    Color of Silica Gel: Lj-0 9? ~ L L P

    Recovered By: -41

  • METHOD 3 FYRITE DATA

    Client: ,&9r&t t- PN: -d66.~"^7 Source: Site: PU f*f Operator: &f

    % % e n Carbon Dioxide (02) (CO*)

    Run 1 /7, 9 yo Run 2 I[, 0 k* * Run 3 /6-" % Q

    Average /6-3 (7'- -0

  • Clicrrt: h '4 f l ~~ r Meter Box #: W- 7 hletcr AH@: / Rp4f, Srrrnplt: Box #: 5' Meter Y l2acior: 1 . e 2 / Filler #: 733, C 1:actur: (7.73

    Source: ,494#~b/c l'robe kry thnypc& d q f J fA , l Y O I 0, 5-2 7 9 - . '7 / 3 $07.7,~ s / g-,* -74,-- 4-7 -- -

    >

    4' / A g,/ )-6 2' d

    'I i-

    Tra~ri V ~ c u u ~ i i

    ("l-lg)

    -

    5-0 Cer

    q P 17 P w

    -

    g o < P

    6 . Q

    I - -

    Stack.

    227 23/ 227 - 317 '2 /J

    32;

    JIG >9y T n

    337 .--e

    .---

    1 - - - -

    --

    OriC~ce Pressure A Hot)

    Prubr

    -------L

    . --

    Filtcr

    334+

    533 7;fJ

    237

  • I

    EMISSION TESTING FIELD DATA A ' W ~

    Client: /3,4,4fl,~Is/ Y Page of 3

    -- -- - - - .-

  • SAhlPLE RECOVERY DATA -7

    ~ l i e n t : e ' & m PN: Date: p site: Source: fisr"&& ! A vT - 007 Run#: 7

    Sample Date: 4//07~3 Recovery Date: i (

    Filter NO: '7dd2 Glassware Set No: Sample Box No: 4 IMPINGER DATA

    Gravimetric: J' Volumetric:

    RECOVERED SAMPLE

    Description of

    Color of Silica Gel:

    Recovered By: [fl

    #5 Total #4

    762.3

    #3 #1

    J-

    #2

    1

    6 7 8 2

    583.Y

    yyy

    Contents

    k'.7 Final '' Initial

    Net -

    Gfi7

    L ,ys :a

    7 7

    /g. 7

    7 ~ / - 3

    .5~f7"3

    7 2 7 0

    JP- * &&

    ~ 2 b + . . o

    592f

    ;ra

  • METHOD 3 FYRITE DATA

    Client: ~4 mL7j /HU/- o PN: , ) & K O 2 7 Date: $~/o/YY Source: Site: o - 7 ~ 6 7 Run#: 4 Operator: A'F

    Run 1

    Run 2

    Average / 6 - r Y.2 I 1

    - Oxygen

    (02)

    / L . 0

    / ? - 0

    Carbon Dioxide (C02)

    7- Q

    Y o

  • May 31, 1994

    Mr. Gary Stowell BARRETT PAVING 7374 Main Street Cincinnati, OH 45224

    Subject: HEG Lab Task 94050141 HEG Sample Number(s) 9405838 - 9405842

    Project # : 266.007 Project Name: Barrett

    Dear Mr. Stowell:

    We are pleased to submit the report of analysis for the sample(s) you recently submitted to our laboratory. This report contains results for samples you submitted on 5/11/94.

    If you need additional information regarding these samples or if you have any questions regarding the results, please contact one of the persons listed below at 513/866-5908. We can provide additional report copies, method summaries or quality control data reports that you may require for full documentation of your samples. Please request pricing for these additional reports.

    Thank you for choosing Hayden Laboratories for your environmental or industrial hygiene laboratory needs. we hope to continue to provide you with quality analytical services and support. If you have any comments on the services we have provided, we would appreciate hearing from you.

    Sincerely,

    HAYDEN LABORATORIES

    ~ebecca F. Tipps QA/Qc officer Client Services Representative

    cc: Client File

    A D~vfsfon of Hayden Env~ronmental Group, Inc 601 5 Mann~ng Road. Mlamsburg. Ohla 45342. USA [513] 866-5008 [800] 548-4031 FAX [513] 866-9505

  • M r . G a r y S t o w e l l BARRETT PAVING 7 3 7 4 Main Street C i n c i n n a t i , OH 45224

    P a g e 1 R e p o r t D a t e : 0 5 / 3 1 / 9 4 HEG T a s k # : 9 4 0 5 0 1 4 1 HEG P/N, A c c t : 266 .007

    ............................................................................

    P.O. Number: D a t e ~ e c e i v e d : 0 5 / 1 1 / 9 4 P r o j Name: B a r r e t t P r o j # : 266 .007 ............................................................................

    EEG S a m p l e # : 9 4 0 5 8 3 8 Sample D a t e : 0 5 / 1 0 / 9 4 S a m p l e P r i o r i t y : N o r m a l S a m p l e I D : Run 1

    P a r a m e t e r U n i t s R e s u l t s Comments ............................................................................

    EPA Method 5 A c e t o n e mg 21 .9 F i l t e r mg 8.0

    EPA 2 0 2 , P a r t i c u l a t e O r g a n i c F r a c t i o n P a r t i c u l a t e mg 1 . 7 I n o r g a n i c F r a c t i o n P a r t i c u l a t e l'"3 1 . 2

    S a m p l e Volume s u b m i t t e d mL 3 5 0

    HEG S a m p l e # : 9 4 0 5 8 3 9 S a m p l e D a t e : 0 5 / 1 0 / 9 4 S a m p l e pr ior i ty: ~ormal S a m p l e I D : ~ u n 2

    P a r a m e t e r U n i t s R e s u l t s comments ............................................................................

    EPA Method 5 A c e t o n e F i l t e r

    EPA 2 0 2 , P a r t i c u l a t e o r g a n i c F r a c t i o n p a r t i c u l a t e I n o r g a n i c F r a c t i o n P a r t i c u l a t e

    S a m p l e Volume s u b m i t t e d

  • LABORATORY ANALYSIS REPORT

    M r . G a r y S t o w e l l BARRETT PAVING 7 3 7 4 M a i n Street C i n c i n n a t i , OH 4 5 2 2 4

    Page 2 R e p o r t D a t e : 0 5 / 3 1 / 9 4 HEG Task # : 9 4 0 5 0 1 4 1 HEG P / N , A c c t : 2 6 6 . 0 0 7

    HEG S a m p l e # : 9405840 s a m p l e D a t e : 05/10/94 S a m p l e pr ior i ty: N o r m a l S a m p l e I D : Run 3

    P a r a m e t e r U n i t s R e s u l t s C o m m e n t s ............................................................................

    E P A Method 5 A c e t o n e mg F i l t e r mg

    EPA 2 0 2 , P a r t i c u l a t e O r g a n i c F rac t ion P a r t i c u l a t e mg Inorganic F rac t ion Par t i cu la te mg

    S a m p l e V o l u m e S u b m i t t e d mL

    HEG s a m p l e # : 9405841 s a m p l e D a t e : 05/10/94 s a m p l e p r io r i ty : N o r m a l S a m p l e I D : Run 4

    P a r a m e t e r u n i t s R e s u l t s c o m m e n t s ............................................................................

    EPA Method 5 A c e t o n e mg F i l t e r mg

    EPA 2 0 2 , pa r t i cu la te organic F r a c t i o n P a r t i c u l a t e mg Inorganic Frac t ion Par t iculate mg

    S a m p l e V o l u m e S u b m i t t e d r n ~

    HEG S a m p l e # : 9405842 s a m p l e D a t e : 05/10/94 ~ a m p l e pr ior i ty: N o r m a l s a m p l e I D : B l a n k

    P a r a m e t e r U n i t s R e s u l t s C o m m e n t s ............................................................................

    E P A Method 5 A c e t o n e ~ i l t e r

    E P A 2 0 2 , P a r t i c u l a t e O r g a n i c Frac t ion P a r t i c u l a t e I n o r g a n i c F r a c t i o n P a r t i c u l a t e

    S a m p l e V o l u m e s u b m i t t e d

  • HEG / LIMS Analysis Date Report Report Date: 05/31/94

    HEG Lab Task # 94050141 HEG Client: HAYDEN ENVIRONMENTAL GROUP, INC.

    Date ~eceived : 05/11/94 Date ~eported: 05/31/94

    ............................................................................. Sample #: 9405838 Sample Date: 05/10/94 Sample ID: Run 1 .............................................................................

    Analysis Date Analyst Test Performed

    05/23/94 j rw sample Volume Submitted 05/23/94 j rw EPAS-Particulate 05/31/94 0 VP Organic/Inorganic~articulate

    old Time (Days

    ............................................................................. Sample #: 9405839 Sample Date: 05/10/94 Sample ID: Run 2 .............................................................................

    Analysis Date Analyst Test Performed

    05/23/94 jrw Sample Volume submitted 05/23/94 j rw EPA~-Particulate 05/31/94 OVP Organic/InorganicParticulate

    old Time (Days)

    ............................................................................. Sample #: 9405840 Sample Date: 05/10/94 Sample ID: Run 3 .............................................................................

    Analysis Date Analyst Test Performed

    05/23/94 j rw Sample Volume Submitted 05/23/94 EPA5-Particulate 05/31/94 OVP Organic/InorganicParticulate

    Hold Time (Days

  • HEG / LIMS Analysis Date Report Report Date: 05/31/94

    ............................................................................. Sample #: 9405841 sample Date: 05/10/94 Sample ID: Run 4 .............................................................................

    Analysis Date Analyst Test Performed Hold Time (Days )

    05/23/94 j r w sample volume submitted 05/23/94 jrw EPA~-particulate 05/31/94 O W ~rganic/~norganicParticulate

    sample #: 9405842 sample Date: 05/10/94 Sample ID: Blank .............................................................................

    Analysis Date Analyst Test Performed Hold Time (Days)

    05/23/94 jm sample volume submitted 05/23/94 j r w EPAS-particulate 2 8 05/31/94 OVP organic/~norganicParticulate .............................................................................

  • NOMENCLATURE ! = Area of sampling nozzle, ft2

    4 = Cross-sectional area of stack at sampling site, ft2

    B, = Proportion water vapor in stack gas by volume

    CO = Percent carbon monoxide in stack gas by volume,dry basis, %

    CO, = Percent carbon dioxide in stack gas by volume, dry basis, %

    C, = Pitot tube coefficient

    C,nde,b,el = Concentration of condensable particulate in stack gas, grainsldscf

    Chden.,, , = Concentration of condensable particulate in stack gas, lbldscf C,il,en,,e = Concentration of filterable particulate in stack gas, grainstdscf

    CEil,b,e2 = Concentration of filterable particulate in stack gas, lbtdscf

    Dia = Diameter of stack at sampling site, inches

    ELndenmble = Condensable particulate emission rate, lbhr

    = Filterable particulate emission rate, lb/hr

    ER,,, = Total particulate emission rate, lbhr

    AH = Average pressure drop across orifice

    %I = Percent isokinetic sampling rate, %

    M, = Molecular weight of stack gas, dry conditions, lb/lb-mole

    Mn = Particulate catch, mg

    = Molecular weight of stack gas, stack conditions, lb/lb-mole

    N2 = Percent nitrogen in stack gas by volume, dry basis, %

    0, = Percent oxygen in stack gas by volume, dry basis, %

    Ap = Average velocity head of stack gas, inches H 2 0

  • JAp = Average square root of velocity head pressure, inches H,O

    P, = Barometric pressure, inches Hg

    P, = Static pressure of stack gas, inches H,O

    P, = Absolute stack gas pressure, inches Hg

    Q, = Volumetric stack gas flow rate, stack conditions, acfm

    Q,. = Volumetric stack gas flow rate, dry standard conditions, dscfm

    9 = Elapsed time of test, minutes

    T, = Average dry gas meter temperature, O F

    T, = Average stack gas temperature, O F

    V , = Mass of water collected, g

    Vm = Volume of gas measured by dry gas meter, ft3

    V, = Volume of dry gas meter corrected for leak rate, ft3

    V,, = Volume of dry gas meter corrected to standard conditions, ft3

    V, = Stack gas velocity, fps

    Vwa = Volume of water collected, standard conditions, R3

    Y = dry gas meter calibration factor, dimensionless

    Note: Standard conditions = 68°F and 29.92 inches Hg.

  • EXAMPLE CALCULATION RUN # 2

    1. Volume Metered, Standard Conditions (6S°F, 29.92 In Hg)

    2. Volume Water Vapor Collected, Standard Conditions

    3. Proportion Water Vapor, By Volume

    4. Molecular Weight of Stack Gas, Dry Conditions

    Md - (0.44xC02) + (0.32~0,) + (0.28x(N2 + CO)) Md - (0.44x4.0) + (0.32x16.0) + (0.28 x80.0)-29.28

    5. Molecular Weight of Stack Gas, Stack Conditions

  • 6. Stack Gas Velocity, fps

    7. Stack Gas Flow Rate, acfm

    8. Stack Gas Flow Rate, dscf

    9. Isonkinetic Variation, %

    10. Filterable Particulate Concentration, grldscf

  • 11. Filterable Particulate Concentration, lb,dscf

    12. Filterable Particulate Emission Rate, lb/hr

    13. Condensible Particulate Concentration, grldscf

    14. Condensible Particulate Concentration, lb,dscf

    15. Condensible Particulate Emission Rate, lbhr

    16. Total Particulate Emission Rate, lbhr

  • I 1 7 F N T /Pt?T).TF( . T ki : . R a r r e t t ! e h a n o n 766 r)07 SAMPI-E LOOAT ION : tiashouse o u t l e t DATE/TIME: 5/10/94 0719-0826 RUN # : 1

    5iATIC PRESSURE( " H Z 0 ) : BAROMETRIC( "HG ) :

    SAMPLE TIME(min) : ACTlJAL METER VOLUME :

    S Q . ROCT /\P: PVG O R I F I C E /\Hz

    AVG STACK TEMP OF: A V G METER TEMP OF:

    CP PITOT : NOZZLE DIR.( i n c h e s ) :

    METER GAMMA: LEAK RATE(IF)0.02) :

    C I R C STACK? 1 = Y ,O=N: DIA OR UIr.1 ( i n c h e s ) :

    % 02 : % C02 :

    VOL CONDENSATE( rnl ) : FILTER GAIN( mg ):

    RINSE GAIN( mg ): ANALYTE #1 :

    ORGANIC GAIN ( m g ) : INORGANIC GAIN (mg):

    ANALYTE #2 : rurnl. GRIN (rng):

    * * * * * * * * * * * * * * * * * * * *X

    Gas V e l o c i t y ( Vs ):

    Stack Gas F low (Qs) :

    S tack Gas Temp : M o i s t u r e (H20) :

    I s o k i n e t i c :

    -0 -31 " HG 29.48 29 -50 60 -00 Vm( c o r r ) 46.023

    46.023 DSCF 47.477 0.750

    2 .17 219.9 OR 679 - 9

    59 .6 0.84

    0.247 A n ( f t A 2 ) 3.33E-04 1.024

    0 As( f t A 2 ) 13.78 1954.50

    16.30 DRY MOLE WT 29.32 4.20 ST MOLE WT 26.63

    314 -60 % HZ0 23.77 8 - 0

    21.9 NET WT(mg) 29 - 9 Co~r(L- .ns ib le P a r t i c u l a t e

    1 .7 1 .2 NET WT(mg) 2 .9

    T o t a l P a r t i c u l a t e 32 .8

    CALCULATED RESULTS ~ x x x * x * * x ~ x * ~ * x x ~ ~ *

    41445.3 ACFM 24170 -5 DSCFM

    220 Deg F 23 -77 %

    135.66 %

    FII-TERABLE PARTICULATE SUMMARY

    C o n c e n t r a t i o n ( Cs):

    Emiss ion Ra te ( E r ) : 2 -010 l b / h r

    EMISSION DATA FOR Condens ib le P a r t i c u l a t e

    C o n c e n t r a t i o n C Cs):

    Emiss ion Ra te ( E r ): 0.195 l b / h r

    EMISSION D A T A FOR T o t a l P a r t i c u l a t e

    Emiss ion Ra te ( E r ) :

    COMMEN TS :

  • R d r r e t t ~ e b a n o n 266 -007 Bar-ratt- Lebanon 266.007 SAMI'I-E I - O O A T I O N : B a s h o u s e O u t l e t D A T E / T I M E : 5 / 1 0 / 9 4 0925-1030 RUN ti: -,

    L

    S T A T I C P F E S S U R E ( " H 2 0 ) : B A R O M E T R I C ( " H G ) :

    S A M P L E T I M E ( m i n ) : 4CTUAL M E T E R VOLUME :

    S Q . ROOT / \ P : AVG O R I F I C E / \ H :

    AVG S T A C K TEMP O F : AVG M E T E R TEMP O F :

    C p P I T O T : N O Z Z L E D I A .( i n ches ) :

    M E T E R GAMMA: LEAK R A T E ( I I z )0 .02 ) :

    C I R C S T A C K ? l = Y , O = N : D I A OR D I M ( i n ches ) :

    % 02 : % co2 :

    V O L C O N D E N S A T E ( m i ) : F I I - T E R G A I N ( m g ) :

    R I N S E G A I N ( m g ) : A N A L Y T E #1 : C o n d e n s i b l

    O R G A N I C G A I N ( m g ) : I N O R G A N I C G A I N ( m g ) :

    A N A L Y T E # 2 : T o t a l P a r t T O T A L G A I N ( m g ) :

    * * * * * * * *X***X****X*** C A L C U L A T E D

    Gas V e l o c i t y ( V s ) :

    S t a c k Gas F l o w ( Q s ) :

    S t a c k G a s T e m p : M o i s t u r e ( H 2 0 ) :

    I s o k i n e t i c :

    60.00 V m ( c o r r ) 34.113 34.113 D S C F 34 -031

    0 -721

    16 .OO D R Y M O L E WT 29.28 4.00 S T M O L E WT 2 6 . 4 7

    240 -40 % H20 24 -95 8 . 8 9.0 N E T W T ( m g ) 17 - 8

    e P a r t i c u l a t e 1 .5 8 .5 N E T W T ( m g )

    . i c u l a t e 28 -1

    R E S U L T S * * w x * * * * x x x x ~ * ~ ~ * * *

    40138.3 A C F M 22844.6 D S C F M

    226 D e g F 24.95 %

    103 -72 %

    F I L T E R A B L E P A R T I C U L A T E SUMMARY

    C o n c e n t . r a t i o n ( C s ) :

    E m i s s i o n R a t e ( E r ) : 1 -578 lb /hr

    E f 4 I S S I O N D A T A F O R C o n d e n s i b l e P a r t i c u l a t e

    C c n c e n t r a t i o n ( C s ) :

    E m i s s i o n R a t e ( E r ):

    E M I S S I O N D A T A F O R T o t a l P a r t i c u l a t e

    E m i s s i o r ~ R a t e ( E r ) :

    COMMENTS:

  • : " T l a u r y o s ~ :( OZH) aJn3sToW : dua l s e g Y 3 E l S

    % Z L ' & Z d 6aa Z Z Z

    * . x * x x x m u x x x s l l n s 3 ~ L ' L Z

    : ( eu ) N I W 9 3 I N V 9 t l O N I : (6u) N I V B 3 I N V 9 8 0

    T q ? s u a P l 1 0 3 : 5 # 3 1 A l V N V

    Z ' ET OZH % OS' T L E -IN 31014 I S 0 0 - b

    : 20 % : ( S a V a u - E N r a 80 v r a :N=O6A=T L Y 3 W 1 S 3813 : ( Z O ' O ( J 1 ) 3 1 V 8 2V3-I :WWWV9 83134 : ( s " Y 3 U ? ) ' V 1 ( I J - l / / o t / : l O l I d d 3 : d o d l 4 3 1 8313W 9AW :$o dW31 Y 3 V l S 9AW :H\ / 3313Ia0 9AW :d\/ 1008 -0s : 3 W n l O A t1313W -1trnJ 3 W :( U ? u ) 3 L 4 I L 3 l d W V S : ( 3H, , ) 3 1 8 1 3 ~ 1 0 H ~ 8 : ( OZH,, ) 3 8 ( 7 S ~ 3 8 d 3 I l V l S

  • C:L TENT/PKO:rECT # : B a r - r e t t Lebanon 266 -007 SAI- fPLE I -OCATIOI \ l : t3,3clhouse O u t l e t D A T E / T I M E : 5/10/74 1257-1402 R U N # : 4

    S T A T I C P R E S S U R E ( " H 2 0 ) : BAROPtETR I C ( " HG ) :

    S A M P L E T I M E ( m i n ) : ACTIJAI- MI-ITER VOLUME :

    S Q . ROOT / \ P : AVG O R I F I C E i \ H :

    A V G S T A C K TEMP O F : AVG M E T E R TEMP O F :

    60 -00 Vm( c o r r ) 57.643 D S C F

    0.766 3 - 3 1

    CP P I T O T : N O Z Z L E D I A .( inches ) :

    M E T E R GAMMA: L E A K R A T E ( I F > 0 . 0 2 ) :

    C I R C S T A C K ? l = Y , O = N : D I A OR D I M ( i n c h e s ) :

    % 02 : 16.50 D R Y M O L E WT 4.20 S T M O L E WT

    362.30 % H Z 0 6 - 7 8 - 7 N E T W T ( m g )

    e P a r t i c u l a t e 2 -6

    % (:02 : VOL C O N D E N S A T E ( m i j:

    F I L T E R G A I N ( m g ) : R I N S E G A I N ( m g ) :

    A N A L Y T E # 1 : C o n d e n s i b l O R G A N I C G A I N ( m g ) :

    I N O R G A N I C G A I N ( m n ) : 14 .6 NET W T ( m g ) i c u l a t e

    - . A N A L Y T E #2 : T o t a l P a r t

    T O T A L G A I N ( m g ) : * * * * * *XX* * *X* * * * * * * C A L C U L A T E D

    32.6 R E S U L T S **X*X***X*X**

    G a s V e l o c i t y ( V s ) :

    S t a c k G a s F l o w ( Q s ) : 4 2 3 3 2 -5 ACFM 24880.4 D S C F M

    S t a c k G a s T e m p : M o i s t u r e ( H 2 0 ) :

    I s o k i n e t i c :

    222 D e g F 22.91 %

    105 -16 %

    FILTERABLE PO!? r I C U L A T E SLIMMAgY

    C o n c e n t r a t i o n ( C s ):

    E m i s s i o n R a t e ( E r ): 0.882 lb /hr

    E M I S S I O N D A T A F O R C o n d e n s i b l e P a r t i c u l a t e

    C o n c e n t r a t i o n ( C s ) :

    E m i s s i o n R a t e ( E r ) : 0.985 lb /hr

    E M I S S I O N D A T A FOR T o t a l P a r t i c u l a t e

    E m i s s i o n R a t e ( E r ): 1 -866

    COMMENTS:

  • QUALITY ASSURANCE PROCEDURES AND RESULTS

    The sampling equipment used in this test series has been calibrated in accordance with procedures outlined in the USEPA Reference Methods for stationary source sampling and also in the Quality Assurance Handbook for Air Pollution Measurement Systems. All pertinent calibration data for the equipment used in this test series are included in this appendix. The following calibration procedures are employed.

    a. Probe-tips (Nozzles) Probe-tips are inspected before use to detect damage or irregularities. If the nozzle shows signs of damage, it is repaired and measured before use. The nozzle diameter is determined in the field by measuring three diameters with a precision micrometer. The average of the three measurements is the nozzle diameter.

    b. Pitot Tubes The S-type pitot tubes are built to the design specifications cited in Reference Method 2 and are calibrated annually in a wind tunnel. Standard pitot tubes are supplied from the manufacturer with a coefficient of 0.99. The pitot tubes, connecting lines, and manometers are leak-checked in the field before and after each test run.

    c. Thermocouales Thermocouples are calibrated upon receipt and annually thereafter. The thermocouples are calibrated at 32"F, ambient temperature, 212"F, and approximately 450°F.

    d. Fvrite Analyzers The fynte analyzers are leak-checked on-site and the reagents are replenished as needed.

    e. Method 5 Control Consoles The dry gas meter and the orifice in the Method 5 control consoles are calibrated at six (6) points from 0 to 4 inches of mercury. The dry gas meter coefficient (y-factor) and the orifice constant (Delta H) are established from this calibration. The dry gas meter is calibrated after each test series to confirm the y-factors is used in all sample volume calculations. Hayden Environmental participates in the USEPA Method 5 Dry Gas Meter Inter-Laboratory Performance Audit.

    f. Barometers The aneroid field barometers are calibrated with a stationary mercury column barometer prior to each use. The reference barometer is permanently mounted in the Hayden Environmental Laboratory.

  • DATE ?b/!9~ METER BOX h'O. A/13 BAROMETRIC PRESSURE 628. $5 in. H~ REFERENCE METER NO. 13 3 9633 CALIBRATOR i@.~&!d REFERENCE Y 0- 9474 I

  • Meter Box # N- 3 N-3 N-3 Date 3/21/94 3/21/94 3/21/94 R e f e r e n c e Meter # 1334637 1334637 1334637 Y R e f e r e n c e 0.9996 0.9996 0 .9996 B a r o m e t r i c P r e s s u r e 28.85 28.85 2 8 . 8 5 O r i f i c e S e t t i n g - H ( " H20) 0 . 5 1 1 . 5 T o t a l G a s Volume R e f e r e n c e 4.029 5.619 6 . 7 8 Average Temce ra tu r e R e f e r e n c e 67 6 7 68 T o t a l Gas Vclume Dry Gas Meter 3.967 5 .551 6 .674 Average Tempera tu r e D r y G a s Meter 72.5 73 7 5 . 7 5 Time (min ) 10 10 1 0 Vacumn 5 5 5

    ******* C a l c u l a t i o n s ***************************************** Meter Box Y 1.0245 1 .0208 1 . 0 2 6 5 Meter Box ^ 3@ 1.765 1.813 1 . 8 6 6

    Meter Box + N-3 N-3 N-3 Date 3/21/94 3/21/94 3/21/94 Reference Meter # 1334637 1334637 1334637 Y R e f e r e n c e 0.9996 0.9996 0 .9996 B a r o m e t r i c P r e s s u r e 28.85 28.85 28 .85 Orifice S e t t i n g ' H ( " H20) 2 3 4 T o t a l Gas Volume R e f e r e n c e 7.765 9.605 1 1 . 0 9 3 Average Tempera tu r e R e f e r e n c e 69.5 70.5 72 T o t a l G a s Volume Dry G a s M e t e r 7.658 9.424 10 .827 Average Tempera tu r e Dry Gas Meter 77 .5 78 77 .25 Time (min ) 1 0 10 1 0 V a c u m n 5 5 5

    ******* Calculations ***************************************** Meter Box Y 1.0237 1.0254 1 . 0 2 3 8 Meter Box A E@ 1 . 9 0 1 1.869 1 .882

    Average y Average d e l t a H

  • Meter Box Field Check

    Meter Box #: Date: 3/2 / / q 'f Barometric: fi- g < y: /.02'f Calibrator: a , 3w

    delta H: / ,$ 'Yq Leak Check: a,*

    Compare with Y,

    Run No.

    I

    a- 3

    Initial Volume

    C/y. L 3 r ~ 2 7 . 0 4 3

    G3y.ybJ

    Final Volume

    137.o93 LJY. $ 4 3 bqI.q/ l

    Net Volume

    7 , r l ~ T 3 7 . ~ 2 0

    7 . 4 ~

    Initial Temp.

    ? Y / 7 2 77/73

    7

    Final Temp.

    ?TI73

    9d.t~ 1 i / 7 (

    1

    Avg. Temp.

    *

    7'1.2s 7 ~ . 2 5

    7 7 , s

    Y, Comparison

    /. 03 7 5 / , u 3 7 9 /.0.?51

  • THERMOCOUPLE CALIBRATION

    THERiiIOCOUPLE I. D.:

    CALIBRATED BY:

    REFERENCE THERMOMETER: ZL L480

    SOURCE REFERENCE TEST TEMPERATURE THERMOMETER THERMOCOUPLE DIFFERENCE TEMPERATURE TEMPERATURE OF

    OF OF

    /sd. fl/n 23/ 0 " " da.5' @C o* 5 ZCe # n A I, L/ 0 . 8 0.6

    $r~lq/bo loflf* 943 0 2 - .- k / f l OIL 178.6 / B.0 0. 6

    I

  • TIEXMOCOUPLE CALIBRATION

    THERICIOCOUPLE I. I).: 5 LENGTH; 5-' DATE : //do /Y? CALIBRATED BY: A. 1,

    REFERENCE THERhlOLlETER: />YJ

    SOURCE REFERENCE TEST TEMPERATURE THERhlOMETER THERMOCOUPLE DIFFERENCE TEMPERATURE TE hlPEE-4TUEiC * C

    - %'< - -03 -r - .

    p/"f- A//?

    fee & ~ A J

    / ? d / d [ - > 0

    / /o f a /L

    25: 2

    2- /

    99.5- /6&3

    as-y

    /. ~f

    9Y- 8

    /6L f

    1

    0 . 2

    03

    0- 7

    O- 1

  • THERMOCOUPLE CALIBRATION

    Thermocouple I.D.: 4 Yo ~ e n ~ t h : s f i ~ g * d Date: S/I?~U Calibrated By: fi~~&:\344& Reference Thermometer: ' I J Y ~

    Test Thermocouple Temperature

    O F

    d ~ ( / 5 3 49. 7

    Temperature Difference

    O F

    Or I0 0.7 , .3 3.0 -

    Source

    l r

    ,Qm did Z'L /I 4,;rk. &/LI* - &?o - K C ~ F O ~ L

    I

    Reference Thermometer Temperature

    OF

    d l 7 L.0

    (00- 0

    /Ll ,o

  • THERMOCOUPLE CALIBRATION

    Thermocouple LD.: 0 v- ~ e n g t h : 0 n/ 74 t m Date: ?//~/YJ Calibrated By:

    Reference Thermometer: y/.? V$

    1 Reference 1 - Test I 11

  • THERMOCOUPLE CALIBRATION

    Thermocouple I.D.: 0 V - 2 Length: l?vcd 7-4cr.l. Date: %$7/?3

    Calibrated By:

    Reference Thermometer: 12' %'

    Sourcz

    II

    44 - ' q i ~ z c e 4 ~ 7 ~ tdOlfl9 &O - Ho'T O ~ L

    Reference Thermometer Temperature

    O F

    a5c L I ?

    (CM- 0

    fI G-- 5-

    Test Thermocouple Temperature

    O F

    2 y c 7

    ?7' 0 I&. 7

    Temperature Difference

    O F

    ~ $ 3 1 , /

    / t 0 L.7

    I

  • THERMOCOUPLE CALIBRATION

    Thermocouple I.D.: 0 1'- 3 Length:Olit~/ 74.W Date: v)?$@J Calibrated By:

    Reference Thermometer: /,243

    " I Reference Test I(

    ~ o u r c e ( Temperature Temperature I Thermometer I Themocouple T e m n e r a r ~ ~ r ~ n ; i ~ ~ ~ ~ ~ ~ ~

  • THERMOCOUPLE CALIBRATION

    Thermocouple I.D.: c V.c( Lengthflih J T!. @/--- Dare: 7 ,/ i 477 - Calibrated By:Arr/\>$~'r Reference Thermometer:

    Source

    I f

    A,%1 Z C E Q ~ T L fb,i/fl9 I, ,8

    &TO ('L

    Reference Thermometer Temperature

    O F

    50 7 , O

    (DO. 6' /I?< 7

    I

    Test Thermocouple Temperature

    O F

    Q 3 - L I 5 7 7% 1 ICS-4

    Temperature Difference

    O F

    0.1 113 0.7 0- 4