recent japanese developments on terahertz communications · 2019. 5. 15. · overview of latest...

49
Page 1 Brussels, 7 March 2019 Towards Terahertz Communications Workshop Recent Japanese Developments on Terahertz Communications Graduate School of Engineering Science Osaka University Tadao Nagatsuma 2nd Towards THz Communications Workshop

Upload: others

Post on 28-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Page 1 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Recent Japanese Developmentson Terahertz Communications

    Graduate School of Engineering ScienceOsaka University

    Tadao Nagatsuma

    2nd Towards THz Communications Workshop

    http://discoverlosangeles.com/getting-around/air/things-to-do-near-lax-los-angeles-airport.html

  • Page 2 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Overview of latest challenges and results in

    THz communications technologies in Japan

    1) Photonics-based: 600 GHz, new sources

    2) Electronic diode-based: RTD, FMB diode

    3) Si-CMOS-based challenges

    Outline

  • Page 3 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    100 Gbit/s Wireless: Coming Soon!

    Ethernet

    FTTx

    FTTH

    ISDN

    ADSL LTE

    USB2.0USB3.0

    802.11b

    WiMAX2

    802.11a802.11g Bluetooth

    802.11ad802.11ac

    WiGig

    100 G

    10 G

    1 G

    100 M UWB802.11n

    LTE-A

    10 M

    1 M

    1990 2000 2010 2020

    Wired

    Wireless

    Dat

    a R

    ate

    (bit/

    s)

    MMWTHz Wireless

  • Page 4 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    THz Communications Projects (JPN)2014 2016 20202018

    300 GHz InP-based MMICs (2011-2016)

    300 GHz CMOS-based MMICs

    300 GHz Vacuum-tube amplifier

    300 GHz Photonics-based (since 2013-2016)

    NTTFujitsu/NICT

    Kyushu U.+Osaka U.

    Hiroshima U.Panasonic, NEC/NICT

    MIC(SCOPE)

    MIC

    MIC

    JST (CREST)300 GHz~ 1 THz Resonant Tunneling Diodes

    Osaka U.RohmTokyoTech.

    JST (THz)300 GHz~ 1 THz Photodiodes/PIC

    Kyushu U.(+NTT, etc.)

    JST: Japan Science Tech.Agency

    MIC: MinistryInternal Affair& Commun.

    Horizon 2020, NICT/ThoR

  • Page 5 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Overview of latest challenges and results in

    THz communications technologies in Japan

    1) Photonics-based: 600 GHz, new sources

    2) Electronic diode-based: RTD, FMB diode

    3) Si-CMOS-based challenges

  • Page 6 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    100 200 300 400 500 600 700

    100

    10

    2

    200

    Carrier frequency (GHz)

    Dat

    a ra

    te (G

    bit/s

    )

    Electronics (DSP)

    Photonics (DSP)Photonics (real time)

    Electronics (real time)

    Research Updated@2019

    (6 ch.)

    (8 ch.)

  • Page 7 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Photonics-based Approaches

    Ultra-broadband signal generation and detection

    Ultra-low loss signal distribution by optical fibersand waveguides

    Ease of availability of components from telecom industry

    Use of science & technologies established for lightwaves

  • Page 8 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    100 200 300 400 500 600 700 800 900 1000

    Atte

    nuat

    ion

    (dB

    /km

    )

    Frequency (GHz)

    10-2

    101

    104

    105

    10-1

    100

    102

    103

    100-GHz Atmospheric Windows

    1dB/km

    1dB/10m

    325 GHz

    275 GHz

    600-GHz band: Next Target for Telecom

  • Page 9 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    WG

    Backshort

    MetalInP Quartz (100 µm) Out

    Radiator

    WG

    UTC-PD

    MSLCPW

    Ribbon wire

    Metal

    OutputOpticalinput

    Coupler

    Opticalinput

    Top view

    Side view

    CPW: coplanar waveguideMSL: microstrip line

    Conventional Structures

  • Page 10 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    InP ~100 µm thick

    Au

    Quartz (𝜀𝜀r: 4.0)

    UTC-PD Ribbon wire

    CPW MSLDielectric loss smaller ε

    Substrate effect thinner (~10 µm)

    Propagation loss shorter

    Connection loss eliminate

    Top view

    Side view

    Problems of Coupler at High Frequencies

  • Page 11 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    UTC-PD

    Microstrip line

    Polymer substrate

    InP substrate

    Radiator

    Ground metallization

    (𝜀𝜀r: 2.5)

    6 µm

    Solution: Integrated Coupler

    T. Kurokawa, T. Ishibashi, M. Shimizu, K. Kato, and T. Nagatsuma, “Over 300 GHz bandwidth UTC-PD module with 600-GHz band rectangular-waveguide output,” Electron. Lett., 54, pp. 705-706 (2018).

  • Page 12 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    UTC-PD

    Coupler Radiator

    100 µm

    Fabricated UTC-PD Chip

  • Page 13 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    WR-1.5 waveguide

    Optical fiber cableDC bias cables

    191×381 µm

    Fully Packaged Module

  • Page 14 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    - 18.96 dBm (12.7 µW)

    -40

    -35

    -30

    -25

    -20

    -15

    900850800750700650600550500450400Frequency (GHz)

    IPD= 9 mAIPD= 6 mA

    340 GHz

    Out

    put p

    ower

    (dBm

    )Evaluated Results

  • Page 15 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Data signal

    Optical signal

    generatorPD

    moduleOptical

    amplifierHorn

    antenna

    Opticalintensity

    modulator

    Driveramplifier

    Laser

    PM

    PM

    Wavelength λ Opticalfilter

    &combiner

    18 x f0

    λ

    (30~43 GHz)f0

    f0

    Sub-harmonic mixer

    LO signal

    Basebandinstruments

    (oscilloscope/bit error rate tester)

    Horn antenna

    Transmitter

    Receiver

    Basebandamplifier

    PM: Optical phase modulator

    600-GHz-band Communications

  • Page 16 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Error-free OOK 10 Gbit/s @670 GHz

    10-1210-1110-1010-910-810-710-610-510-410-3

    3.002.752.502.252.001.751.501.251.000.750.50Photocurrent (mA)

    10 Gbit/s6 Gbit/s

    Bit e

    rror r

    ate

    T. Nagatsuma et al., IMS 2018, Th1E-1.

  • Page 17 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Frequency

    0 +6-6 ・ ・ ・ ・ ・・ ・ ・ ・ ・

    25 GHz ×12 = 300 GHz

    25 GHz

    Multiplicationnumber

    Phase noise

    PM

    Synthesizer (𝑓𝑓s) Optical filter

    Laser (𝑓𝑓0)Frequency 𝑓𝑓

    𝑓𝑓0𝑓𝑓s

    … …

    Frequency 𝑓𝑓

    UTC-PD

    Phase Noise Issue: Optical Frequency Comb

  • Page 18 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    I

    Q

    Effect of Phase Noise

    Offset frequency (Hz)

    SSB

    Phas

    e N

    oise

    (dBc

    /Hz)

    0

    20 log10(𝑁𝑁)

    log10(𝑓𝑓)

    Multiplied

    Fundamental

    𝑁𝑁 = 1221.6 dB

    Change in constellation: QPSK

  • Page 19 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    19

    1

    Piezo

    EDFA 23

    PD

    PID

    PID

    Laser

    Mixer

    UTC-PD

    PID

    PID

    SHM SG

    SG

    Temp. Stab.

    Mixer

    For experiment

    Brillouin cavity

    PM

    PM

    SG

    UTC-PD:Uni-Travelling Carrier PhotoDiodeSHM:Sub-Harmonic Mixer

    Solution: Brillouin-based Fiber Lasers

  • Page 20 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Frequency Stability @ 300 GHzY. Li, A. Rolland, K. Iwamoto, N. Kuse, M. Fermann, and T. Nagatsuma, Opt.Lett., vol. 44, pp. 359-362, 2019.

  • Page 21 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Offset Frequency (Hz)

    SSB

    Phas

    e N

    oise

    (dBc

    /Hz)

    Brillouin-based Source

    Optical Frequency Comb

    Measurement Noise Floor

    SSB:Single Side Band

    Phase Noise @ 300 GHzY. Li, A. Rolland, K. Iwamoto, N. Kuse, M. Fermann, and T. Nagatsuma, Opt.Lett., vol. 44, pp. 359-362, 2019.

  • Page 22 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    300-GHz QPSK Transmission Experiments

    L. Yi et al., EuMC 2019, submitted.

  • Page 23 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Our Recent Progress with RTD

    New operation regime: injection-locked receiver32-Gbit/s error-free at 300 GHz

    Frequency stabilizatin with photonic crystal cavity

    Combination with THz fiber and transmission

  • Page 24 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Compact (~mm2) Low power consumption (~10 mW) High-frequency oscillation at room temperature (1.98 THz*) Operating as both a transmitter and receiver

    I

    VC

    urre

    nt

    Voltage

    NDR region

    NDR : Negative differential resistance

    ReceiverTransmitter

    *R. Izumi et al.IRMMW-THz (2017)

    Why Resonant Tunneling Diodes?

  • Page 25 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Side viewTop view

    Si lens

    Baseband circuit

    Schematic diagram of RTD chip

    1 cm 1 cm

    RTD chip

    Connector

    RTD

    Bowtie antenna

    MIM

    50 μm

    CPS

    Shunt resistor Signal line

    RTD

    Signal line

    MIMShuntresistor

    Packaged RTD Transmitter and Receiver

  • Page 26 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Principle of Coherent Homodyne Receiver

    RTD

    Signal line

    I

    V

    Bias withinthe NDR region

    Self-oscillating mixer

    RTD oscillation

    f

    Injection locking phenomenon

    f

    f

    Received signal

    f

    Data signal

  • Page 27 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Experimental Setup with Photonics Transmitter

    Wavelength-tunable laser #1

    Coupler

    EOM

    Wavelength-tunable laser #2

    EDFA

    UTC-PD

    Horn antenna RTD chipSi lens

    DC bias

    2 cm

    Bias-tee

    𝑓𝑓THz

    AC+DC

    DC

    Error detector

    AC

    LNA

    DEMUX

    Tx Rx

    Pulse Pattern Generator

    05

    10152025

    0 800

    Cur

    rent

    [mA]

    Voltage [mV]

    N. Nishigami et al., “Resonant Tunneling Diode Receiver for Coherent Terahertz Wireless Communication,” Tech. Dig. 2018 Asia-Pacific Microwave Conference (APMC), 2018.

  • Page 28 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    1.00E-12

    1.00E-10

    1.00E-08

    1.00E-06

    1.00E-04

    1.00E-02

    1.00E+00

    10 20 30 40 50

    100

    10-2

    10-4

    10-6

    10-8

    10-10

    10-12

    Bit

    erro

    r rat

    e

    Data rate [Gbit/s]

    Coherent detectionDirect detection

    Error free

    Error-free transmission (BER < 10-11) was achieved at 32 Gbit/s.FEC-limited data rate reached ~50 Gbit/s.

    Error free @32 Gbit/s400 mV

    0 120 ps

    @32 Gbit/s40 mV

    0 120 ps

    Tx output power : 48 μW

    Record Data Rate with RTD ReceiverN. Nishigami et al., APMC 2018.

  • Page 29 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    X: 10 ps/div Y: 50 mV/div

    Record Performance with RTD Tx/Rx

    “Error-free” >26 Gbit/s (BER < 10-12)

    Record performance among all electronic semiconductor devices including InP, GaAs, SiGe, Si-CMOS.

    It is best to make things simple!!N. Nishigami et al., The 2018 IEICE General Conference, C14-7, Mar. 2019.

  • Page 30 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Ultra-low propagating loss(< 0.1 dB/cm@300 GHz)

    K. Tsuruda et al. Opt Express, 23 (2015)

    300 μm

    200 μm

    1 cm

    Si

    Confinement by photonic bandgap

    Confinement by total internal reflection

    THz Photonic Crystal Waveguide

  • Page 31 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    1 mm

    Q > 10000@ 300 GHzK. Okamoto et al. Journal of Infrared, Millimeter,and Terahertz Waves, 49 (2017).

    2 mmPort 2

    Port 4Port 3

    Port 1

    THz Photonic Crystal Cavity

  • Page 32 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Coupling structure

    Photonic crystal waveguide

    Air hole

    Efficient Coupling Structure

  • Page 33 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    E-field distribution Integrated device

    The measured coupling efficiency between RTD and PC waveguide is ~80%.

    The measured Q value and oscillation frequency of the PC cavity is ~500 and 335.4 GHz, respectively.

    Cavity-coupled RTDX. Yu et al., “Highly Stable Terahertz Resonant Tunneling Diode Oscillator Coupled to Photonic-Crystal Cavity,” Tech. Dig. 2018 Asia-Pacific Microwave Conference (APMC), 114-116, 2018.

  • Page 34 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Free running

    The RTD oscillation frequency is locked strongly by PC cavity. The locked frequency is the same as the resonant frequency

    of PC cavity.

    335.4 GHz

    X. Yu et al., APMC 2018.

    Dependence of Frequency on DC Voltages

  • Page 35 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    The linewidth of RTD oscillator is decreased significantly from 8 MHz to 8 kHz .

    ConditionRBW(kHz): 10 kHzVBW(kHz): 10 kHz

    Average: 5

    Linewidth ReductionX. Yu et al., APMC 2018.

  • Page 36 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    RTD with THz Fiber

    Waveguide type Propagation loss Flexibility Cost

    Metallic transmission line × 〇 〇

    Metallic hollow waveguide 〇 △ △

    Photonic-crystal waveguide 〇 △ △

    Hollow fiber 〇 〇 〇

    Our recent result: loss ~2 dB/m @ 300 GHzPorous PTFE (R1 = 0.25 mm, R2 = 0.14 mm)

  • Page 37 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Dielectric Waveguide as an InterfaceX. Yu et al., “Terahertz fibre transmission link using resonant tunnelling diodes integrated with photonic-crystal waveguides,” Electron. Lett., to be published.

  • Page 38 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    RTD-RTD Transmission via THz Fiber

  • Page 39 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    4K Video Transmission

  • Page 40 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Fermi-level Management Barrier Diode

    ・Low barrier hight: 70 meVlower differential resistance high frequency operation, lower required LO as mixers

    H. Ito and T. Ishibashi, Japanese Journal of Applied Physics, Vol. 56, No. 014101, pp. 1-7, 2017.

    FMB Diode: Fermi-level Management Barrier Diode

    70 meV

  • Page 41 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    FMB Diode

    TransimpedanceAmplifier (11 GHz)

    FMBDiode

    100 µm

    Baseband SignalOutput

    DC Bias

    Packaged FMB Diode Module

  • Page 42 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    EDFAWavelength-Tunable LaserEOAM UTC-PD

    EDFA

    Wavelength-Tunable Laser

    PPG

    FMB Diode

    ModuleED

    Oscillo-scope

    LimitingAmplifier

    SBDModule

    Pre-amplifier

    Transmitter

    Receiver

    300-GHz Transmission ExperimentsTo be presented at IEEE IMS2019.

  • Page 43 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Overview of latest challenges and results in

    THz communications technologies in Japan

    1) Photonics-based: 600 GHz, new sources

    2) Electronic diode-based: RTD, FMB diode

    3) Si-CMOS-based challenges

  • Page 44 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Loss of Metallic Lines

    M. Fujishima et al., IEICE Trans. Electron., vol. E98-C, 1091 (2015).

    GHz

    GHz

  • Page 45 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    300-GHz CMOS IC TransmitterISSCC 2016, Hiroshima U., Panasonic and NICT

    IF

    RF

    LO

    5 GHz/ch17.5 Gb/s x 6CH (105 Gb/s)40-nm CMOS (fmax=280 GHz)

    32QAM (5 bit/time frame)

  • Page 46 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    300-GHz CMOS IC Transmitter

    2.76 mm

    1.88 m

    m

    [1] Song et al., TMTT, 2014. [3] Kallfass et al., IEICE Trans., 2015.[2] Boes et al., IRMMW-THz, 2014. [4] Sarmah et al., TMTT, 2016. [5] Takano et al., Electron. Lett., 2016.

    Single channel

    [1] [2] [3] [4] [5] This workTechnology 250nm

    InP35nm GaAs 35nm GaAs 0.13µm

    SiGe40nm CMOS

    40nm CMOSFreq. (GHz) 300 240 300 240 300 302 289−311Modulation QPSK 8PSK QPSK 64QAM 16QAM 32QAM 128QAMPout (dBm) − −3.5 −4 7 −14.5 −5.5

    Pdc (W) − − − 0.54 1.4 1.4Data rate (Gbit/s) 50 96 64 1.02 28 105 24.64 x 6

    Modulation 32QAMConstellation (Equalized)

    EVM 8.9%Data rate 105Gbit/s

    ISSCC 2017, Hiroshima U., Panasonic and NICT

    21Gbaud

  • Page 47 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    IEEE Std 802.15.3d: Channels

    252~325 GHz

  • Page 48 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    300-GHz CMOS IC TransceiverISSCC 2019, Hiroshima U., Panasonic and NICT

    80 Gbit/s with 16QAM by 40-nm CMOS

  • Page 49 Brussels, 7 March 2019Towards Terahertz Communications Workshop

    Summary

    Steady progress towards 100Gbit/s wireless☞ GaAs/InP/Photonics/RTD/Si-CMOS/SiGe HBT

    Interconnection is a key: hollow vs. dielectric

    Meeting network trend in fiber-wireless convergence☞ RF photonics integration is a key

    RF Si-photonics or hybrid integration

    Towards real success in market places☞ Let potential customers use THz comms

    by bringing THz outside our labs!☞ International collaboration is a key

    スライド番号 1スライド番号 2スライド番号 3スライド番号 4スライド番号 5スライド番号 6スライド番号 7スライド番号 8スライド番号 9スライド番号 10スライド番号 11スライド番号 12スライド番号 13スライド番号 14スライド番号 15スライド番号 16スライド番号 17スライド番号 18スライド番号 19スライド番号 20スライド番号 21スライド番号 22スライド番号 23スライド番号 24スライド番号 25スライド番号 26スライド番号 27スライド番号 28スライド番号 29スライド番号 30スライド番号 31スライド番号 32スライド番号 33スライド番号 34スライド番号 35スライド番号 36スライド番号 37スライド番号 38スライド番号 39スライド番号 40スライド番号 41スライド番号 42スライド番号 43スライド番号 44スライド番号 45スライド番号 46スライド番号 47スライド番号 48スライド番号 49