references - shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 ·...

33
168 REFERENCES 1. Ahmetov N. (1985), ‘Inorganic chemistry’, MIR Publ., Moskva. 2. Ahn S. and Chon H. (1997), ‘The influence of metal ions on the synthesis of MeAPO-5 (Me = Co, Mg) in the presence of acetate ions’, Micropor. Mater., Vol. 8, pp. 113-121. 3. Akolekar D.B. (1994), ‘Investigations on the CoAPO-36 molecular sieve’, Catal. Lett., Vol. 28, pp. 249-262. 4. Akolekar D.B. (1995), ‘Acidity and catalytic properties of AIPO 4 -11, SAPO-11, MAPO-11, NiAPO-11, MnAPO-11 and MnAPSO-11 molecular sieves’, J. Mol. Catal. A: Chem., Vol. 104, pp. 95-102. 5. Akolekar D.B. and Ryoo R. (1996), ‘Titanium incorporated ATS and AFI type aluminophosphate molecular sieves’, J. Chem. Soc., Faraday Trans., Vol. 92, pp. 4617-4621. 6. Angell C.L. and Howell M.V. (1969), ‘Infrared spectroscopic investigation of zeolites and adsorbed molecules. IV. Acetonitrile’, J. Phys. Chem., Vol. 73, pp. 2551-2554. 7. Arena F., Gatti G., Coluccia S., Marta G. and Parmaliana A. (2004), ‘Preparation method and structure of active sites of FeO x /SiO 2 catalysts in methane to formaldehyde selective oxidation’, Catal. Today, Vol. 91-92, pp. 305-309. 8. Arena F., Torre T., Venuto A., Frusteri F., Mezzapica A. and Paraliana A. (2002), ‘Tailoring effective FeO x /SiO 2 catalysts in methane to formaldehyde partial oxidation’, Catal. Lett., Vol. 80, pp. 69-72. 9. Ashley J.H. and Mitchell P.C.H. (1968), ‘Cobalt–molybdenum– alumina hydrodesulphurisation catalysts. Part I. A spectroscopic and magnetic study of the fresh catalyst and model compounds’, J. Chem. Soc. A, pp. 2821-2827.

Upload: others

Post on 20-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

168

REFERENCES

1. Ahmetov N. (1985), ‘Inorganic chemistry’, MIR Publ., Moskva.

2. Ahn S. and Chon H. (1997), ‘The influence of metal ions on the synthesis of MeAPO-5 (Me = Co, Mg) in the presence of acetate ions’, Micropor. Mater., Vol. 8, pp. 113-121.

3. Akolekar D.B. (1994), ‘Investigations on the CoAPO-36 molecular sieve’, Catal. Lett., Vol. 28, pp. 249-262.

4. Akolekar D.B. (1995), ‘Acidity and catalytic properties of AIPO4-11, SAPO-11, MAPO-11, NiAPO-11, MnAPO-11 and MnAPSO-11 molecular sieves’, J. Mol. Catal. A: Chem., Vol. 104, pp. 95-102.

5. Akolekar D.B. and Ryoo R. (1996), ‘Titanium incorporated ATS and AFI type aluminophosphate molecular sieves’, J. Chem. Soc., Faraday Trans., Vol. 92, pp. 4617-4621.

6. Angell C.L. and Howell M.V. (1969), ‘Infrared spectroscopic investigation of zeolites and adsorbed molecules. IV. Acetonitrile’, J. Phys. Chem., Vol. 73, pp. 2551-2554.

7. Arena F., Gatti G., Coluccia S., Marta G. and Parmaliana A. (2004), ‘Preparation method and structure of active sites of FeOx/SiO2 catalysts in methane to formaldehyde selective oxidation’, Catal. Today, Vol. 91-92, pp. 305-309.

8. Arena F., Torre T., Venuto A., Frusteri F., Mezzapica A. and Paraliana A. (2002), ‘Tailoring effective FeOx/SiO2 catalysts in methane to formaldehyde partial oxidation’, Catal. Lett., Vol. 80, pp. 69-72.

9. Ashley J.H. and Mitchell P.C.H. (1968), ‘Cobalt–molybdenum–alumina hydrodesulphurisation catalysts. Part I. A spectroscopic and magnetic study of the fresh catalyst and model compounds’, J. Chem. Soc. A, pp. 2821-2827.

Page 2: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

169

10. Astorino E., Peri J.B., Willey R.J. and Busca G. (1995), ‘Spectroscopic characterization of silicalite-1 and titanium silicalite-1’, J. Catal., Vol. 157, pp. 482-500.

11. Aurbach D., Gofer Y., Chusid O. and Eshel H. (2007), ‘On nonaqueous electrochemical behavior of titanium and Ti4+ compounds’, Electrochim. Acta, Vol. 52, pp. 2097-2101.

12. Aylor A.W., Lobree L.J., Reimer J.A. and Bell A.T. (1996), ‘An infrared study of NO reduction by CH4 over Co-ZSM-5’, Stud. Surf. Sci. Catal., Vol. 101, pp. 661-670.

13. Baerlocher Ch., Meier W.M. and Olson D.H. (2001), ‘Atlas of zeolite structure types’, Elsevier.

14. Barrett P.A., Sankar G., Catlow C.R.A. and Thomas J.M. (1996), ‘X-ray absorption spectroscopic study of Brønsted, Lewis, and redox centers in cobalt-substituted aluminum phosphate catalysts’, J. Phys. Chem., Vol. 100, pp. 8977-8985.

15. Barrett P.A., Sankar G., Jones R.H., Catlow C.R.A. and Thomas J.M. (1997), ‘Interaction of acetonitrile with cobalt-containing aluminophosphates: an X-ray absorption investigation’, J. Phys. Chem. B, Vol. 101, pp. 9555-9562.

16. Batista J., K 1992), ‘On the formation of CoAPSO-44’, Zeolites, Vol. 12, pp. 925-928.

17. Bedioui F., Briot E., Devynck J., Balkus Jr. K.J. (1997), ‘Electrochemical characterization of vanadium molecular sieve-VAPO-5’, Inorg. Chim. Acta, Vol. 254, pp. 151-155.

18. Bennett J.M. and Marcus B.K. (1988), ‘The crystal structures of several metal aluminophosphate molecular sieves’, Stud. Surf. Sci. Catal., Vol. 37, pp. 269-279.

19. Bennett J.M., Dytrych W.J., Pluth J.J., Richardson Jr. J.W. and Smith J.V. (1986), ‘Structural features of aluminophosphate materials with Al/P = 1’, Zeolites, Vol. 6, pp. 349-360.

20. Berlier G., Bonino F., Zecchina A., Bordiga S. and Lamberti C. (2003), ‘Anchoring Fe ions to amorphous and crystalline oxides: a means to tune the degree of Fe coordination’, Chem. Phys. Chem., Vol. 4, pp. 1073-1078.

Page 3: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

170

21. Berlier G., Pourny M., Bordiga S., Spoto G., Zecchina A. and Lamberti C. (2005a), ‘Coordination and oxidation changes undergone by iron species in Fe-MCM-22 upon template removal, activation and redox treatments: an in situ IR, EXAFS and XANES study’, J. Catal., Vol. 229, pp. 45-54.

22. Berlier G., Ricchiardi G., Bordiga S. and Zecchina A. (2005), ‘Catalytic activity of Fe ions in iron-based crystalline and amorphous systems: role of dispersion, coordinative unsaturation and Al content’, J. Catal., Vol. 229, pp. 127-135.

23. Berlier G., Spoto G., Bordiga S., Ricchiardi G., Fisicaro P., Zecchina A., Rossetti I., Selli E., Forni L., Giamello E. and Lamberti C. (2002), ‘Evolution of extraframework iron species in Fe silicalite. 1. Effect of Fe content, activation temperature and interaction with redox agents’, J. Catal., Vol. 208, pp. 64-82.

24. Berndt H., Martin A. and Zhang Y. (1996), ‘Study on the nature and the redox properties of cobalt species located in CoAPO molecular sieves’, Micropor. Mater., Vol. 6, pp. 1-12.

25. Blasco T., Concepción P., Grotz P., Nieto J.M.L. and Martinez-Arias A. (2000), ‘On the nature of V and Mg ions in V, Mg-containing AlPO4-5 catalysts’, J. Mol. Catal. A: Chem., Vol. 162, pp. 267-273.

26. Blasco T., Concepción P., Nieto J.M.L. and Pérez-pariente J. (1995), ‘Preparation, characterization, and catalytic properties of VAPO-5 for the oxydehydrogenation of propane’, J. Catal., Vol. 152, pp. 1-17.

27. Blasco T., Fernanez L., Martinez-Arias A., Sanchez-Sanchez M., Concepción P., Grotz P. and Nieto J.M.L. (2000a), ‘Magnetic resonance studies on V-containing, and V, Mg-containing AFI aluminophosphates’, Micropor. Mesopor. Mater., Vol. 39, pp. 219-228.

28. Blatter F., Moraeau H. and Frei H. (1994), ‘Diffuse reflectance spectroscopy of visible alkene 2 charge-transfer absorptions in zeolite Y and determination of photooxygenation quantum efficiencies’, J. Phys. Chem., Vol. 98, pp. 13403-13407.

29. Boccuti M.R., Rao K.M., Zecchina A., Leofanti G. and Petrini G. (1989), ‘Spectroscopic characterization of silicalite and titanium-silicalite’, Stud. Surf. Sci. Catal., Vol. 48, pp. 133-144.

Page 4: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

171

30. Boccuzzi F., Guglielminotti E., Pinna F. and Signoretto M. (1995), ‘Surface composition of Pd–Fe catalysts supported on silica’, J. Chem. Soc., Faraday Trans., Vol. 91, pp. 3237-3244.

31. Bonino F., Damin A., Bordiga S., Lamberti C. and Zecchina A. (2003), ‘Interaction of CD3CN and pyridine with the Ti(IV) centers of TS-1 catalysts: a spectroscopic and computational study’, Langmuir, Vol. 19, pp. 2155-2161.

32. Bordiga S., Buzzoni R., Geobaldo F., Lamberti C., Giamello E., Zecchina A., Leofanti G., Petrini G., Tozzola G. and Vlaic G. (1996), ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods’, J. Catal., Vol. 158, pp. 486-501.

33. Bordiga S., Coluccia S., Lamberti C., Marchese L., Zecchina A., Boscherini F., Buffa F., Genoni F., Leofanti G., Petrini G. and Vlaic G. (1994), ‘XAFS study of Ti-silicalite: structure of framework Ti(IV) in the presence and absence of reactive molecules (H2O, NH3) and comparison with ultraviolet-visible and IR results’, J. Phys. Chem., Vol. 98, pp. 4125-4132.

34. Breck D.W. (1974), ‘Zeolite molecular sieves: structure, chemistry and use’, Wiley-Interscience, New York.

35. Bruckner A., Lohse U. and Mehner H. (1998), ‘The incorporation of iron ions in AlPO4-5 molecular sieves after microwave synthesis studied by EPR and Mössbauer spectroscopy’, Micropor. Mesopor. Mater., Vol. 20, pp. 207-215.

36. Busca G. and Lorenzelli V. (1981), ‘Infrared study of the adsorption of nitrogen dioxide, nitric oxide and nitrous oxide on hematite’, J. Catal., Vol. 72, pp. 303-313.

37. Cable J.W., Nyholm R.S. and Sheline R.K. (1954), ‘The spectra and structure of dicobaltoctacarbonyl’, J. Am. Chem. Soc., Vol. 76, pp. 3373-3376.

38. Camblor M.A., Corma A., Martinez A. and Pérez-Pariente J. (1992), ‘Synthesis of a titanium silicoaluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules’, J. Chem. Soc., Chem. Commun., pp. 589-590.

39. Canesson L. and Tuel A. (1997), ‘Synthesis and characterization of CoAPO4-39 molecular sieves’, Zeolites, Vol. 18, pp. 260-268.

Page 5: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

172

40. Canesson L. and Tuel A. (1997a), ‘The first observation of NMR-invisible phosphorus in cobalt-substituted aluminophosphate molecular sieves’, Chem. Commun., pp. 241-242.

41. Cardile C.M., Tapp N.J. and Milestone N.B. (1990), ‘Synthesis and characterization of an iron-substituted aluminophosphate molecular sieve’, Zeolites, Vol. 10, pp. 90-94.

42. Carl R., Gerlach S. and Russel C. (2007), ‘The effect of composition on UV vis NIR spectra of iron doped glasses in the systems Na2O/MgO/SiO2 and Na2O/MgO/Al2O3/SiO2’, J. Non-Cryst. Solids, Vol. 353, pp. 244-249.

43. Carotta M.C., Gherardi S., Guidi V., Malagu’ C., Martinelli G., Vendemiati B., Sacerdoti M., Ghiotti G., Morandi S., Bismuto A., Maddalena P. and Setaro A. (2008), ‘(Ti, Sn)O2 binary solid solutions for gas sensing: spectroscopic, optical and transport properties’, Sens. Actuators B: Chem., Vol. 130, pp. 38-45.

44. Catana G., Pelgrims J. and Schoonheydt R.A. (1995), ‘Electron spin resonance study of the incorporation of iron in ferrisilicalite and FAPO-5’, Zeolites, Vol. 15, pp. 475-480.

45. Centeno M.A., Garrizosa I. and Odriozola J.A. (2001), ‘NO–NH3coadsorption on vanadia/titania catalysts: determination of the reduction degree of vanadium’, Appl. Catal. B: Environ., Vol. 29, pp. 307-314.

46. Centi G., Perathoner S., Trifiro F., Aboukais A., Aissi C.F. and GueltonM. (1992), ‘Physicochemical characterization of V-silicalite’, J. Phys. Chem., Vol. 96, pp. 2617-2629.

47. Chang Z. and Kevan L. (2002), ‘Photoionization of tetraphenylporphyrin in mesoporous SiMCM-48, AlMCM-48, and TiMCM-48 molecular sieves’, Langmuir, Vol. 18, pp. 911-916.

48. Chang Z. and Kevan L. (2002a), ‘Electron spin resonance evidence for isomorphous substitution of titanium into titanosilicate TiMCM-48 mesoporous materials’, Phys. Chem. Chem. Phys., Vol. 4, pp. 5649-5654.

49. Chao K.J., Sheu S.P. and Sheu H.S. (1992), ‘Structure and chemistry of cobalt in CoAPO-5 molecular sieve’, J. Chem. Soc., Faraday Trans., Vol. 88, pp. 2949-2954.

Page 6: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

173

50. Chao K.J., Wei A.C., Wu H.C. and Lee J.F. (1999), ‘Characterisation of metal-incorporated molecular sieves’, Catal. Today, Vol. 49, pp. 277-284.

51. Chao K.J., Wu C.N., Chang H., Lee L.J. and Hu S.F. (1997), ‘Incorporation of vanadium in mesoporous MCM-41 and microporous AFI zeolites’, J. Phys. Chem. B, Vol. 101, pp. 6341-6349.

52. Chaudhari K., Das T.K., Chandwadkar A.J., Chandwadkar J.G. and Sivasanker S. (1996), ‘Synthesis, characterization and catalytic properties of vanadium containing VPI-5’, Stud. Surf. Sci. Catal., Vol. 105, pp. 253-260.

53. Cheetham A.K., Férey G. and Loiseau T. (1999), ‘Open-framework inorganic materials’, Angew. Chem., Int. Ed., Vol. 38, pp. 3268-3292.

54. Chen J., Pang W. and Xu R. (1999), ‘Mixed-bonded open-framework aluminophosphates and related layered materials’, Top. Catal., Vol. 9, pp. 93-103.

55. Chen J., Thomas J.M. and Sankar G. (1994), ‘IR spectroscopic study of CD3CN adsorbed on ALPO-18 molecular sieve and the solid acid catalysts SAPO-18 and MeAPO-18’, J. Chem. Soc., Faraday Trans., Vol. 90, pp. 3455-3459.

56. Chen S.H., Shau S.P. and Chao K.J. (1992), ‘A 31P NMR study of cobalt in cobalt–aluminophosphate molecular sieves’, J. Chem. Soc., Chem. Commun., pp. 1504-1505.

57. Cheng H.Y., Yang E., Chao K.J., Wei A.C. and Liu P.H. (2000a), ‘Studies of the structure of vanadium species in VAPO-5 molecular sieves via density functional theory computation and Raman spectroscopy’, J. Phys. Chem. B, Vol. 104, pp. 10293-10297.

58. Cheng H.Y., Yang E., Lai C.J., Chao K.J., Wei A.C. and Lee J.F. (2000), ‘Density functional theory calculation and X-ray absorption spectroscopy studies of structure of vanadium-containing aluminophosphate VAPO-5’, J. Phys. Chem. B, Vol. 104, pp. 4195-4203.

59. Choudhary V.R. and Akolekar D.B. (1987), ‘Site energy distribution and catalytic properties of microporous crystalline AlPO4-5’, J. Catal., Vol. 103, pp. 115-125.

Page 7: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

174

60. Concepción P., Corma A., Nieto J.M.L. and Pérez-Paricnte T. (1996), ‘Selective oxidation of hydrocarbons on V- and/or Co-containing aluminophosphate (MeAPO-5) using molecular oxygen’, Appl. Catal. A: Gen., Vol. 143, pp. 17-28.

61. Concepción P., Hadjiivanov K.I. and Knözinger H. (1999), ‘Low-temperature CO adsorption on V-containing aluminophosphates: an FTIR study’, J. Catal., Vol. 184, pp. 172-179.

62. Concepción P., Nieto J.M.L. and Pérez-Pariente J. (1993), ‘The selective oxidative dehydrogenation of propane on vanadium aluminophosphate catalysts’, Catal. Lett., Vol. 19, pp. 333-337.

63. Concepción P., Nieto J.M.L. and Pérez-pariente J. (1995), ‘Oxidative dehydrogenation of propane on VAPO-5, V2O5/ALPO4-5 and V2O5/MgO catalysts. Nature of selective sites’, J. Mol. Catal. A: Chem., Vol. 97, pp. 173-182.

64. Concepción P., Reddy B.M. and Knözinger H. (1999a), ‘FTIR study of low-temperature CO adsorption on pure Al2O3–TiO2 and V/Al2O3–TiO2 catalysts’, Phys. Chem. Chem. Phys., Vol. 1, pp. 3031-3037.

65. Cooper E.R., Andrews C.D., Wheatley P.S., Webb P.B., Wormald P. and Morris R.E. (2004), ‘Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues’, Nature, Vol. 430, pp. 1012-1016.

66. Corà F. and Catlow C.R.A. (2001), ‘Ionicity and framework stability of crystalline aluminophosphates’, J. Phys. Chem. B, Vol. 105, pp. 10278-10281.

67. ‘Adsorption on new and modified inorganic sorbents’, Amsterdam.

68. Das J., Satyanaryana C.V.V., Chakrabarty D.K., Piramanayagam S.N. and Shringi S.N. (1992), ‘Substitution of Al in the AlPO4-5 and AlPO4-11 frameworks by Si and Fe: a study by Mössbauer, magic-angle-spinning nuclear magnetic resonance and electron paramagnetic resonance spectroscopies and chemical probes’, J. Chem. Soc., Faraday Trans., Vol. 88, pp. 3255-3261.

69. Davis M.E. and Lobo R.F. (1992), ‘Zeolite and molecular sieve synthesis’, Chem. Mater., Vol. 4, pp. 756-768.

Page 8: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

175

70. Davydov A.A. (1984), ‘IR Spectroscopy in the surface chemistry of oxides’, Nauka, Novosibirsk.

71. Davydov A.A. (1990), ‘IR Spectroscopy of adsorbed species on the surface of transition metal oxides’, Wiley, Chichester, New York.

72. Davydov A.A. (1993), ‘Study of vanadium-oxide compositions on supports by optical spectroscopy’, Kinet. Katal., Vol. 34, pp. 1056-1067.

73. Davydov A.A. (1993a), ‘Investigation of the state of transition metal cations on catalyst surfaces by means of IR spectroscopy of adsorbed probe molecules. IX. Vanadium ions on the surface of vanadium-containing catalysts’, Kinet. Katal., Vol. 34, pp. 333-340.

74. Davydov A.A. (1994), ‘Mechanism of interaction of NO with NH3 on vanadium-containing catalysts based on IR spectroscopic data’, Russ. Chem. Bull., Vol. 43, pp. 214-218.

75. Davydov A.A. and Shepot’ko M. (1990), ‘Study of surface properties of vanadium solid solutions in SnO2 by IR spectroscopy’, Teor. Eksp. Khim., Vol. 26, pp. 505-509.

76. Davydov A.A. and Shepot’ko M.L. (1991), ‘IR spectroscopic study of iron cation complexation with NO and CO in an oxide matrix’, Koord. Khim., Vol. 17, pp. 1505-1509.

77. de Navarro C.U., Machado F., López M., Maspero D. and Perez-Pariente J. (1995), ‘A SEM/EDX study of the cobalt distribution in CoAPO-type materials’, Zeolites, Vol. 15, pp. 157-163.

78. Delmon B., Jacobs P.A., Maggi R., Martens J.A., Grange P. and Poncelet G. (1998), ‘Preparation of catalysts VII’, Amsterdam.

79. Deo G., Turek A.M., Wachs I.E., Huybrechts D.R.C. and Jacobs P.A. (1993), ‘Characterization of titania silicalites’, Zeolites, Vol. 13, pp. 365-373.

80. Dines T.J., Rochester C.H. and Ward A.M. (1991), ‘Infrared and Raman study of the adsorption of nitrogen oxides on titania-supported vanadia catalysts’, J. Chem. Soc., Faraday Trans., Vol. 87,pp. 1617-1622.

Page 9: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

176

81. Dubkov K.A., Ovanesyan N.S., Shteinman A.A., Strarokon E.V. and Panov G.I. (2002), ‘Evolution of iron states and formation of sites upon activation of FeZSM-5 zeolites’, J. Catal., Vol. 207, pp. 341-352.

82. Duffy J.A. (1983), ‘ -metal ions in simple compounds’, J. Chem. Soc., Dalton Trans., pp. 1475-1478.

83. Duke C.V.A., Hill S.J. and Williams C.D. (1994), ‘Synthesis of MnAPO-20 and CoAPO-20 using tetrahedral metal species’, J. Chem. Soc., Chem. Commun., pp. 2633-2637.

84. Dzwigaj S. (2003), ‘Recent advances in the incorporation and identification of vanadium species in microporous materials’, Curr. Opin. Solid State Mater. Sci., Vol. 7, pp. 461-470.

85. Dzwigaj S., Matsuoka M., Anpo M. and Che M. (2000), ‘Evidence of three kinds of tetrahedral vanadium (V) species in VSi zeolite by diffuse reflectance UVspectroscopies’, J. Phys. Chem. B, Vol. 104, pp. 6012-6020.

86. Dzwigaj S., Matsuoka M., Franck R., Anpo M. and Che M. (1998), ‘Probing different kinds of vanadium species in the Vsi zeolite by diffuse reflectance UV-Visible and photoluminescence spectroscopies’, J. Phys. Chem. B, Vol. 102, pp. 6309-6312.

87. Eischens R.P., Pliskin W.A. and Francis S.A. (1954), ‘Infrared spectra of chemisorbed carbon monoxide’, J. Chem. Phys., Vol. 22, pp. 1786-1787.

88. Elangovan S.P. and Murugesan V. (1997), ‘Catalytic transformation of cyclohexanol over aluminophosphate-based molecular sieves’, J. Mol. Catal. A: Chem., Vol. 118, pp. 301-309.

89. Ernst S., Puppe L. and Weitkamp J. (1989), ‘Synthesis and characterization of CoAPO and CoAPSO molecular sieves’, Stud. Surf. Sci. Catal., Vol. 49, pp. 447-458.

90. Ertl G., Knözinger H. and Weitkamp J. (1997), ‘Handbook of heterogeneous catalysis’, Wiley-VCH, Weinheim.

91. Fan W., Fan B., Song M., Chen T., Li R., Dou T., Tatsumi T. and Weckhuysen B.M. (2006), ‘Synthesis, characterization and catalysis of (Co, V)-, (Co, Cr)- and (Cr, V)APO-5 molecular sieves’, Micropor. Mesopor. Mater., Vol. 94, pp. 348-357.

Page 10: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

177

92. Feng P., Bu X. and Stucky G. (1997), ‘Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate’, Nature, Vol. 388, pp. 735-741.

93. Fernandez A., Leyrer J., González-Elipe A.R., Munuera G. and Knözinger H. (1988), ‘Spectroscopic characterization of TiO2/SiO2catalysts’, J. Catal., Vol. 112, pp. 489-494.

94. Figgis B.N. (1967), ‘Introduction to ligand fields’, Wiley-Interscience, New York, pp. 203-247.

95. Flanigen E.M., Lok B.M., Patton R.L. and Wilson S.T. (1986), ‘Aluminophosphate molecular sieves and the periodic table’, Stud. Surf. Sci. Catal., Vol. 28, pp. 103-112.

96. Flanigen E.M., Lok B.M.T., Patton R.L. and Wilson S.T. (1988a), US Patent, 4759919.

97. Flanigen E.M., Patton R.L. and Wilson S.T. (1988), ‘Structural, synthetic and physicochemical concepts in aluminophosphate-based molecular sieves’, Stud. Surf. Sci. Catal., Vol. 37, pp. 13-27.

98. Frunza L., Voort P.V.D., Vansant E.F., Schoonheydt R.A. and Weckhuysen B.M. (2000), ‘On the synthesis of vanadium containing molecular sieves by experimental design from a VOSO4·5H2O·Al(iPrO)3·Pr2NH·H2O gel: occurrence of VAPO-41 as a secondary structure in the synthesis of VAPO-11’, Micropor. Mesopor. Mater., Vol. 39, pp. 493-507.

99. Geobaldo F., Onida B., Rivolo P., Di Renzo P.R.F., Fajula F. and Garrone E. (2001), ‘Nature and reactivity of Co species in a cobalt-containing beta zeolite: an FTIR study’, Catal. Today, Vol. 70, pp. 107-119.

100. Gianotti E., Bisio C., Marchese L., Guidotti M., Ravasio N., Psaro R. and Coluccia S. (2007), ‘Ti(IV) catalytic centers grafted on different silicious materials: spectroscopic and catalytic study’, J. Phys. Chem. C, Vol. 111, pp. 5083-5089.

101. Gianotti E., Frache A., Coluccia S., Thomas J.M., Maschmayer T. and Marchese L. (2003), ‘The identity of titanium centres in microporous aluminophosphates compared with Ti-MCM-41 mesoporous catalyst and titanosilsesquioxane dimer molecular complex: a spectroscopic study’, J. Mol. Catal. A: Chem., Vol. 204-205, pp. 483-489.

Page 11: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

178

102. Gianotti E., Marchese L., Martra G. and Coluccia S. (1999), ‘The interaction of NO with Co2+/Co3+ redox centres in CoAPOs catalysts: FTIR and UV–VIS investigations’, Catal. Today, Vol. 54, pp. 547-552.

103. Gianotti E., Oliveira E.C., Coluccia S., Pastore H.O. and Marchese L. (2003a), ‘Synthesis and surface properties of Ti-containing mesoporous aluminophosphates a comparison with Ti-grafted mesoporous silica Ti-MCM-41’, Inorg. Chim. Acta, Vol. 349, pp. 259-264.

104. Girnus I., Hoffmann K., Marlow F., Caro J. and Döring G. (1994), ‘Large CoAPO-5 single crystals: microwave synthesis and anisotropic optical absorption’, Micropor. Mater., Vol. 2, pp. 543-555.

105. Gómez-Hortigüela L., Blasco T. and Pérez-Pariente J. (2007), ‘(S)-( -N-benzylpyrrolidine-2-methanol: a new and efficient structure directing agent for the synthesis of crystalline microporous aluminophosphates with AFI-type structure’, Micropor. Mesopor. Mater., Vol. 100, pp. 55-62.

106. González J.G., de la Cruz Alcaz J., Ruiz-Salvador A.R., Gómez A., Dago A. and de las Pozas C. (1999), ‘Computational study of substitution of Al by Fe3+ in the AlPO4-5 framework’, Micropor. Mesopor. Mater., Vol. 29, pp. 361-367.

107. Griffiths P.R. (1992), ‘Strong-men, connes-men, and block-busters or how Hertz raised the Mertz.’, Anal. Chem., Vol. 64, pp. 868A-875A.

108. Guglielminotti E. (1994), ‘Spectroscopic characterization of the Fe/ZrO2 system. 2. NO adsorption and CO-NO reaction’, J. Phys. Chem., Vol. 98, pp. 9033-9038.

109. Guglielminotti E. and Boccuzzi F. (1996), ‘Study of the NO, reaction with reducing gases on Fe/ZrO2 catalyst’, Appl. Catal. B: Environ., Vol. 8, pp. 375-390.

110. Haanepen M.J. and van Hooff J.H.C. (1997), ‘VAPO as catalyst for liquid phase oxidation reactions Part I: preparation, characterisation and catalytic performance’, Appl. Catal. A: Gen., Vol. 152, pp. 183-201.

111. Hadjiivanov K.I, Concepción P. and Knözinger H. (2000), ‘Analysis of oxidation states of vanadium in vanadia–titania catalysts by the IR spectra of adsorbed NO’, Top. Catal., Vol. 11-12, pp. 123-130.

Page 12: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

179

112. Hadjiivanov K.I., Ivanova E., Daturi M., Saussey J. and Lavalley J.C. (2003), ‘Nitrosyl complexes on Co–ZSM-5: an FTIR spectroscopic study’, Chem. Phys. Lett., Vol. 370, pp. 712-718.

113. Hadjiivanov K.I., Reddy B.M. and Knözinger H. (1999a), ‘FTIR study of low-temperature adsorption and co-adsorption of 12CO and 13CO on a TiO2–SiO2 mixed oxide’, Appl. Catal. A: Gen., Vol. 188, pp. 355-360.

114. Hadjiivanov K.I. (2000), ‘Identification of neutral and charged NxOysurface species by IR spectroscopy’, Catal. Rev. Sci. Eng., Vol. 42, pp. 71-144.

115. Hadjiivanov K.I. and Klissurski D.G. (1996), ‘Surface chemistry of titania (anatase) and titania-supported catalysts’, Chem. Soc. Rev., Vol. 25, pp. 61-69.

116. Hadjiivanov K.I., Knözinger H., Tsyntsarski B. and Dimitrov L. (1999), ‘Effect of water on the reduction of NOx with propane on Fe-ZSM-5. An FTIR mechanistic study’, Catal. Lett., Vol. 62, pp. 35-40.

117. Han H.S. and Chon H. (1994), ‘Application of a photoacoustic spectroscopic technique to a CoAPO-44 molecular sieve’, Micropor. Mater., Vol. 3, pp. 331-335.

118. Hanlan L.A., Huber H., Kundig E.P., McCarvey B.R. and Ozin G.A. (1975), ‘Chemical synthesis using metal atoms. Matrix infrared, Raman, ultraviolet-visible, and electron spin resonance studies of the binary carbonyls of cobalt, Co(CO)n (where n = 1-4), and the distortion problem in tetracarbonylcobalt’, J. Am. Chem. Soc., Vol. 97, pp. 7054-7068.

119. Hartmann M. and Kevan L. (1999), ‘Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves: location, interaction with adsorbates and catalytic properties’, Chem. Rev., Vol. 99, pp. 635-664.

120. Hentit H., Bachari K., Quali M.S., Womes M., Benaichouba B. and Jumas J.C. (2007), ‘Alkylation of benzene and other aromatics by benzyl chloride over iron containing aluminophosphate molecular sieves’, J. Mol. Catal. A: Chem., Vol. 275, pp. 158-166.

Page 13: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

180

121. Hess C. (2007), ‘Direct correlation of the dispersion and structure in vanadium oxide supported on silica SBA-15’, J. Catal., Vol. 248, pp. 120-123.

122. Hill S.J., Williams C.D. and Duke C.V.A. (1996), ‘The synthesis of high cobalt-containing CoAPO-34’, Zeolites, Vol. 17, pp. 291-296.

123. Holmes A.J., Kirkby S.J., Ozin G.A. and Young D. (1994), ‘Raman spectra of the unidimensional aluminophosphate molecular sieves AlPO4-11, AlPO4-5, AlPO4-8, and VPI-5’, J. Phys. Chem., Vol. 98, pp. 4677-4682.

124. Hoppe R., Schulz-Ekloff G., Wohlrab S. and Wöhrle D. (1995), ‘Kristallisationseinschluß des Redox-Paars Fe(II)/Methylenblau in das Molekularsieb FAPO-5’, Chem. Ing. Tech., Vol. 67, pp. 350-351.

125. Hsu B.Y. and Cheng S. (1998), ‘Pinacol rearrangement over metal-substituted aluminophosphate molecular sieves’, Micropor. Mesopor. Mater., Vol. 21, pp. 505-515.

126. Huang Q. and Hwu S.J. (1999), ‘Cs2Al2P2O9: an exception to Löwenstein’s rule. Synthesis and characterization of a novel layered aluminophosphate containing linear Al–O–Al linkages’, Chem. Commun., pp. 2343-2344.

127. Huo Q., Xu R., Li S., Ma Z., Thomas J.M., Jones R.H. and Chippindale A.M. (1992), ‘Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20’, J. Chem. Soc., Chem. Commun., pp. 875-876.

128. Huybrechts D.R.C., Buskens P.L. and Jacobs P.A. (1992), ‘Physicochemical and catalytic properties of titanium silicalites’, J. Mol. Catal., Vol. 71, pp. 129-147.

129. Iton L.E., Beal R.B. and Hodul D.T. (1983), ‘A new approach to the generation of metal-bearing, medium-pore, shape-selective zeolites for Fischer-Tropsch catalysis: spectroscopic studies of zeolites’, J. Mol. Catal., Vol. 21, pp. 151-171.

130. Iton L.E., Choi I., Desjardin J.A. and Maroni V.A. (1989), ‘Stabilization of Co (III) in aluminophosphate molecular sieve frameworks’, Zeolites, Vol. 9, pp. 535-538.

Page 14: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

181

131. Ivanova E., Hadjiivanov K.I., Dzwigaj S. and Che M. (2006), ‘FT-IR study of CO and NO adsorption on a VSiBEA zeolite’, Micropor. Mesopor. Mater., Vol. 89, pp. 69-77.

132. Jänchen J., Peeters M.P.J., van Wolput J.H.M.C., Wothuizen J.P., van Hooff J.H.C. and Lohse U. (1994), ‘CoAPO molecular sieve acidity investigated by adsorption calorimetry and IR spectroscopy’, J. Chem. Soc., Faraday Trans., Vol. 90, pp. 1033-1039.

133. Jhung S.H., Uh Y.S. and Chon H. (1990), ‘Synthesis and characterization of the vanadium-incorporated molecular sieve VAPO-5’, Appl. Catal., Vol. 62, pp. 61-72.

134. Johnston C., Jorgensen N. and Rochester C.H. (1988), ‘Infrared study of ammonia and nitric oxide adsorption on silica-supported iron catalysts’, J. Chem. Soc., Faraday Trans. 1, Vol, 84, pp. 2001-2012.

135. Jonson B., Rebenstorf B., Larsson R. and Andersson S.L.T. (1988), ‘Activity measurements and spectroscopic studies of the catalytic oxidation of toluene over silica-supported vanadium oxides’, J. Chem. Soc., Faraday Trans. 1, Vol. 84, pp.1897-1910.

136. Jørgensen C.K. (1970), ‘Electron transfer spectra’, Prog. Inorg. Chem., Vol. 12, pp. 101-158.

137. Kadinov G., Bonev C., Todorova S. and Palazov A. (1998), ‘IR spectroscopy study of CO adsorption and of the interaction between CO and hydrogen on alumina-supported cobalt’, J. Chem. Soc., Faraday Trans., Vol. 94, pp. 3027-3031.

138. Kazansky V.B., Borovkov V.Y. and Zhidomirov G.M. (1975), ‘Nuclear magnetic resonance studies of complexes formed by adsorbed molecules and tetrahedral Co2+ and Ni2+ ions’, J. Catal., Vol. 39, pp. 205-212.

139. Keshavaraja A., Ramaswamy V., Soni H.S., Ramaswamy A.V. and Ratnasamy P. (1995), ‘Synthesis, characterization, and catalytic properties of micro-mesoporous, amorphous titanosilicate catalysts’, J. Catal., Vol. 157, pp. 501-511.

140. Khodakov A.Y., Lynch J., Bazin D., Rebours B., Zanier N., Moisson B. and Chaumette P. (1997), ‘Reducibility of cobalt species in silica-supported Fischer–Tropsch catalysts’, J. Catal., Vol. 168, pp. 16-25.

Page 15: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

182

141. Kim B.Y., Yu J.S. and Lee C.W. (2000), ‘Paramagnetic cupric ions ion exchanged into TAPO-5 and TAPO-11 molecular sieves’, Bull. Korean Chem. Soc., Vol. 21, pp. 251-258.

142. Klaas J., Schulz-Ekloff G. and Jaeger N.I. (1997), ‘UVreflectance spectroscopy of zeolite-hosted mononuclear titanium oxide species’, J. Phys. Chem. B, Vol. 101, pp. 1305-1311.

143. Klein S., Weckhuysen B.M., Martens J.A., Maier W.F. and Jacobs P.A. (1996), ‘Homogeneity of titania-silica mixed oxides: on UV-DRS studies as a function of titania content’, J. Catal., Vol. 163, pp. 489-491.

144. Klier K. (1971), ‘Stereospecific adsorption of nitrous oxide, cyclopropane, water, and ammonia on the Co(II) a molecular sieve zeolite’, Adv. Chem. Ser., Vol. 101, pp. 480-489.

145. Knözinger H. and Huber S. (1998), ‘IR spectroscopy of small and weakly interacting molecular probes for acidic and basic zeolites’,J. Chem. Soc., Faraday Trans., Vol. 94, pp. 2047-2059.

146. Kortum G. (1969), ‘Reflectance Spectroscopy’, Springer, Berlin.

147. Kozlov D.V., Paukshtis E.A. and Savinov E.N. (2000), ‘The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method’, Appl. Catal. B: Environ., Vol. 24, pp. L7-L12.

148. Kraushaar-Czarnetzki B., Hoogervorst W.G.M., Andréa R.R., Emeis C.A. and Stork W.H.J. (1991), ‘Characterisation of CoII and CoIII in CoAPO molecular sieves’, J. Chem. Soc., Faraday Trans., Vol. 87, pp. 891-895.

149. Kraushaar-Czarnetzki B., Hoogervorst W.G.M., Andréa R.R., Emeis C.A. and Stork W.H.J. (1991a), ‘Acidity, redox behaviour and stability of CoAPO molecular sieves of structure types 5, 11, 34 and 16’, Stud. Surf. Sci. Catal., Vol. 69, pp. 231-240.

150. Kubelkova L., Kotrla J. and Florian J. (1995), ‘H-bonding and interaction energy of acetonitrile neutral and pyridine ion-pair surface complexes in zeolites of various acidity: FTIR and ab initio study’, J. Phys. Chem., Vol. 99, pp. 10285-10293.

Page 16: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

183

151. Kulkarni S.J., Rao R.R., Subrahmanyam M., Farsinavis S., Rao P.K. and Rao A.V.R. (1995), ‘Oxidation and ammoxidation of picolines over vanadium-silico-alumino-phosphate molecular sieves’, Stud. Surf. Sci. Catal., Vol. 98, pp. 161-162.

152. Kumar M.S., Pérez-Ramírez J., Debbagh M.N., Smarsly B., Bentrup U. and Brückner A. (2006a), ‘Evidence of the vital role of the pore network on various catalytic conversions of N2O over Fe-silicalite and Fe-SBA-15 with the same iron constitution’, Appl. Catal. B: Environ., Vol. 62, pp. 244-254.

153. Kumar M.S., Schwidder M., Grünert W. and Brückner A. (2004), ‘On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: new insights by a combined EPR and UV/VIS spectroscopic approach’, J. Catal. Vol. 227, pp. 384-397.

154. Kumar M.S., Schwidder M., Grünert W., Bentrup U. and Brückner A. (2006), ‘Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: Part II. Assessing the function of different Fe sites by spectroscopic in situ studies’, J. Catal., Vol. 239, pp. 173-186.

155. Kurshev V., Kevan L., Parillo D.J. and Gorte R.J. (1995), ‘Stability of the Co(II) valence state in aluminophosphate-5 molecular sieve to calcination from low temperature electron spin resonance’, Stud. Surf. Sci. Catal., Vol. 98, pp. 79-80.

156. Kurshev V., Kevan L., Parillo D.J., Pereira C., Kokotailo G.T. and Gorte R.J. (1994), ‘An investigation of framework substitution of cobalt into aluminophosphate-5 using electron spin resonance and temperature-programmed desorption measurements’, J. Phys. Chem., Vol. 98, pp. 10160-10166.

157. Kustov L. (1997), ‘New trends in IR-spectroscopic characterization of acid and basic sites in zeolites and oxide catalysts’, Top. Catal., Vol. 4, pp. 131-144.

158. Kuznicki S.M., Thrush K.A., Allen F.M., Levine S.M., Hamil M.M., Hayhurst D.T. and Mansour M. (1992), ‘Synthesis of microporous materials: molecular sieves’, Van Nostrand-Reinhold, New York, Vol. 1, pp. 427-453.

Page 17: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

184

159. Le Noc L., Trong On D., Solomykina S., Echchahed B., Béland F., Cartier dit Moulin C. and Bonneviot L. (1996), ‘Characterization of two different framework titanium sites and quantification of extra-framework species in TS-1 silicalites’, Stud. Surf. Sci. Catal., Vol. 101, pp. 611-620.

160. Lee S.O., Raja R., Harris K.D.M., Thomas J.M., Johnson B.F.G. and Sankar G. (2003), ‘Mechanistic insight into the conversion of cyclohexane to adipic acid by H2O2 in the presence of TAPO-5 catalyst’, Angew. Chem. Int. Ed., Vol. 42, pp. 1520-1523.

161. Lee Y.J. and Chon H. (1996), ‘Interaction of alkenes with CoAPO molecular sieves’, J. Chem. Soc., Faraday Trans., Vol. 92, pp. 3453-3457.

162. Lehman G. (1969), ‘Interstitial incorporation of di- and trivalent cobalt in quartz’, J. Phys. Chem. Solids, Vol. 30, pp. 395-399.

163. Lehmann G. (1970), ‘Ligand field and charge transfer spectra of iron(III)-oxygen complexes’, Z. Phys. Chem. Neue Folge, Vol. 72, pp. 279-297.

164. Lever A.B.P. (1982), ‘Electronic absorption spectroscopy of transitionmetal ions’, Elsevier, Amsterdam.

165. Lewis D.W., Catlow C.R.A. and Thomas J.M. (1996), ‘Influence of organic templates on the structure and on the concentration of framework metal ions in microporous aluminophosphate catalysts’, Chem. Mater., Vol. 8, pp. 1112-1118.

166. Li C. and Stair P.C. (1996), ‘Ultraviolet Raman spectroscopy characterization of sulfated zirconia catalysts: fresh, deactivated and regenerated’, Catal. Lett., Vol. 36, pp. 119-223.

167. Li C., Xiong G., Liu J.K., Ying P.L., Xin Q. and Feng Z.C. (2001), ‘Identifying framework titanium in TS-1 zeolite by UV resonance raman spectroscopy’, J.Phys. Chem. B, Vol. 105, pp. 2993-2997.

168. Li H.X., Martens J.A., Jacobs P.A., Schubert S., Schmidt F., Ziethen H.M. and Trautwein A.X. (1988), ‘Synthesis and characterization of FAPO-5 molecular sieves’, Stud. Surf. Sci. Catal., Vol. 37, pp. 75-83.

169. Li Y., Slager T.L. and Armor J.N. (1994), ‘Selective reduction of NOxby methane on Co-ferrierites : II. Catalyst characterization’, J. Catal., Vol. 150, pp. 388-399.

Page 18: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

185

170. Lim S., Wang C., Yang Y., Ciuparu D., Pfefferle L. and Haller G.L. (2007), ‘Evidence for anchoring and partial occlusion of metallic clusters on the pore walls of MCM-41 and effect on the stability of the metallic clusters’, Catal. Today, Vol. 123, pp. 122-132.

171. Lin D.H., Coudurier G. and Vedrine J.C. (1989), ‘Iron incorporation into FAPO-5 molecular sieves’, Stud. Surf. Sci. Catal., Vol. 49, pp. 227-236.

172. Lohse U., Bertram R., Jancke L., Kurzawski I., Parlitz B., Löuffler E. and Schreier E. (1995), ‘Acidity of aluminophosphate structures. Part 2.—Incorporation of cobalt into CHA and AFI by microwave synthesis’, J. Chem. Soc., Faraday Trans., Vol. 91, pp. 1163-1172.

173. Lohse U., Brückner A., Kintscher K., Parlitz B. and Schreier E. (1995a), ‘Synthesis and characterization of VAPSO-44 and VAPSO-5’, J. Chem. Soc., Faraday Trans., Vol. 91, pp. 1173-1178.

174. Lohse U., Parlitz B., Müller D., Schreier E., Bertram R. and Fricke R. (1997), ‘MgAPO molecular sieves of CHA and AFI structure - Acidity and Mg ordering’, Micropor. Mater., Vol. 12, pp. 39-49.

175. Lok B.M., Cannan T.R. and Messina C.A. (1983), ‘The role of organic molecules in molecular sieve synthesis’, Zeolites, Vol. 3, pp. 282-291.

176. Lok B.M., Marcus B.K. and Flanigen E.M. (1985), European Patent, 158350.

177. Lok B.M., Marcus B.K. and Flanigen E.M. (1985a), European Patent, 161490.

178. Lok B.M., Marcus B.K. and Flanigen E.M. (1985c), European Patent, 161489.

179. Lok B.M., Messina C.A., Patton R.L., Gajek R.T., Cannan T.R. and Flanigen E.M. (1984), US Patent, 4440871.

180. Lok B.M., Messina C.A., Patton R.L., Gajek R.T., Cannan T.R. and Flanigen E.M. (1984a), ‘Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids’, J. Am. Chem. Soc., Vol. 106, pp. 6092-6093.

181. Lok B.M., Vail D.L. and Flanigen E.M. (1985b), European Patent, 158975.

Page 19: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

186

182. Louis C., Marchese L., Coluccia S. and Zecchina A. (1989), ‘Infrared investigation of CO adsorption on thermally reduced silica-supported molybdenum catalysts’, J. Chem. Soc., Faraday Trans. 1, Vol. 85, pp. 1655-1669.

183. Löwenstein W. (1954), ‘The distribution of aluminium in the tetrahedra of silicates and aluminates’, Am. Mineral., Vol. 39, pp. 92-94.

184. Luan Z. and Kevan L. (1997), ‘Electron spin resonance and diffuse reflectance ultravioletimmobilized at surface titanium centers of titanosilicate mesoporous TiMCM-41 molecular sieves’, J. Phys. Chem. B, Vol. 101, pp. 2020-2027.

185. Luan Z., Maes E.M., van der Heide P.A.W., Zhao D., Czernuszewicz R.S. and Kevan L. (2000), ‘Incorporation of titanium into mesoporous silica molecular sieve SBA-15’, Chem. Mater., Vol. 11, pp. 3680-3686.

186. Lund A., Nicholson D.G., Parish R.V. and Wright J.P. (1994), ‘Fe Mössbauer spectroscopic studies of the ferrocene molecular reorientation in AlPO4-5 and AlPO4-8 frameworks’, Acta Chem. Scand., Vol. 48, pp. 738-741.

187. Ma J., Fan B., Li R. and Cao J. (1994), ‘Characteristics of Fe/AlPO4-5 catalyst prepared with organic solution’, Catal. Lett., Vol. 23, pp. 189-194.

188. Madey T.E. and Yates Jr. J.T. (1987), ‘Vibrational spectroscopy of molecules on surfaces’, New York.

189. 31P spin-lattice relaxation in cobalt-containing aluminophosphate molecular sieves’, Solid State Nucl. Magn. Reson., Vol. 12, pp. 243-249.

190. Marchese L., Chen J., Thomas J.M., Coluccia S. and Zecchina A. (1994), ‘Bronsted, Lewis, and redox centers on CoAPO-18 catalysts. 1. Vibrational modes of adsorbed water’, J. Phys. Chem., Vol. 98, pp. 13350-13356.

191. Marchese L., Gianotti E., Damilano N., Coluccia S. and Thomas J.M.(1996a), ‘Assessing the Brønsted acidity of CoAPO-18 catalysts by using N2 as molecular probe’, Catal. Lett., Vol. 37, pp. 107-111.

Page 20: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

187

192. Marchese L., Gianotti E., Dellarocca V., Maschmeyer T., Rey F., Coluccia S. and Thomas J.M. (1999), ‘Structure–functionality relationships of grafted Ti-MCM41 silicas. Spectroscopic and catalytic studies’, Phys. Chem. Chem. Phys., Vol. 1, pp. 585-592.

193. Marchese L., Gianotti E., Maschmeyer T., Martra G., Coluccia S. and Thomas J.M. (1997a), ‘Spectroscopic tools for probing the isolated titanium centres in MCM41 mesoporous catalysts’, Nuovo Cimento D, Vol. 19, pp. 1707-1718.

194. Marchese L., Martra G., Damilano N., Coluccia S. and Thomas J.M. (1996), ‘Elucidating the nature of the cobalt centres in CoAPO-18 acid catalysts’, Stud. Surf. Sci. Catal., Vol. 101, pp. 861-870.

195. Marchese L., Maschmeyer T., Gianotti E., Coluccia S. and Thomas J.M. (1997), ‘Probing the titanium sites in Tireflectance and photoluminescence UVChem. B, Vol. 101, pp. 8836-8838.

196. Martens J.A. and Jacobs P.A. (1994), ‘Crystalline microporous phosphates: a family of versatile catalysts and adsorbents’, Stud. Surf. Sci. Catal., Vol. 85, pp. 653-685.

197. McCusker L.B., Baerlocher Ch., Jahn E. and Bülow M. (1991), ‘The triple helix inside the large-pore aluminophosphate molecular sieve VPI-5’, Zeolites, Vol. 11, pp. 308-313.

198. Messina C.A., Lok B.M. and Flanigen E.M. (1985), US Patent, 4544143.

199. Messina C.A., Lok B.M. and Flanigen E.M. (1985a), European Patent, 131946.

200. Meusinger J., Vinek H. and Lercher J. (1994), ‘Cracking of n-hexane and n-butane over SAPO5, MgAPO5 and CoAPO5’, J. Mol. Catal., Vol. 87, pp. 263-273.

201. Mihaylova A., Hadjiivanov K.I., Dzwigaj S. and Che M. (2006), ‘Remarkable effect of the preparation technique on the state of cobalt ions in BEA zeolites evidenced by FTIR spectroscopy of adsorbed CO and NO, TPR and XRD’, J. Phys. Chem. B, Vol. 110, pp. 19530-19536.

202. Miller F.A. (1992), ‘Environmental analysis by direct aqueous injection’, Anal. Chem., Vol. 64, pp. 824A-831A.

Page 21: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

188

203. Milling A.J. (1999), ‘Surface characterization methods: principles, techniques, and applications’, New York.

204. Millini R., Massara E.P., Perego G. and Bellussi G. (1992), ‘Framework composition of titanium silicalite-1’, J. Catal., Vol. 137, pp. 497-503.

205. Miyata H., Konishi S., Ohno T. and Hatayama F. (1995), ‘FTIR studies of adsorption of NO, NO2 and N2O on layered V2O5/ZrO2’, J. Chem. Soc., Faraday. Trans., Vol. 91, pp. 1557-1562.

206. Miyata H., Nakagawa Y., Miyagawa S. and Kubokawa Y. (1988), ‘Adsorption of nitrogen monoxide on iron oxides supported on various supports and its carrier effects’, J. Chem. Soc., Faraday Trans. 1, Vol. 84, pp. 2129-2134.

207. Moen A., Nicholson D.G., Rønning M., Lamble G.M., Lee J.F. and Emerich H. (1997), ‘X-ray absorption spectroscopic study at the cobalt K-edge on the calcination and reduction of the microporous cobalt silicoaluminophosphate catalyst CoSAPO-34’, J. Chem. Soc., Faraday Trans., Vol. 93, pp. 4071-4077.

208. Montes C., Davis M.E., Murray B. and Narayana M. (1990), ‘Isolated redox centers within microporous environments. 1. Cobalt-containing aluminophosphate molecular sieve five’, J. Phys. Chem., Vol. 94, pp. 6425-6430.

209. Montes C., Davis M.E., Murray B. and Narayana M. (1990a), ‘Isolated redox centers within microporous environments. 2. Vanadium-containing aluminophosphate molecular sieve five’, J. Phys. Chem., Vol. 94, pp. 6431-6435.

210. Moser W.R. (1996), ‘Advanced catalysts and nanostructured materials’, New York.

211. Naccache C., Vishnetskaya M. and Chao K.J. (1997), ‘Chemistry of CoAPO-11 and VAPO-5: ESR studies of molecular oxygen adducts’, Stud. Surf. Sci. Catal., Vol. 105, pp. 795-800.

212. Nakamoto K. (1970), ‘Infrared spectra of inorganic and coordination compounds’, Wiley-Interscience, New York.

213. Nakashiro K. and Ono Y. (1993), ‘Coordination environment and redox property of Co(II) in the framework of CoAPO-36 molecular sieve’, Bull. Chem. Soc. Jpn., Vol. 66, pp. 9-17.

Page 22: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

189

214. Nechita M.T., Berlier G., Ricchiardi G., Bordiga S. and Zecchina A. (2005), ‘New precursor for the post-synthesis preparation of Fe-ZSM-5 zeolites with low iron content’, Catal. Lett., Vol. 103, pp. 33-41.

215. Norby P. and Hanson J.C. (1998), ‘Hydrothermal synthesis of the microporous aluminophosphate CoAPO-5; in situ time-resolved synchrotron X-ray powder diffraction studies’, Catal. Today, Vol. 39, pp. 301-309.

216. Ojo A.F. and McCusker L.B. (1991), ‘AIPO4-based molecular sieves synthesized in the presence of di-n-propylamine: are the structures related?’, Zeolites, Vol. 11, pp. 460-465.

217. Ojo A.F., Dwyer J. and Parish R.V. (1989), ‘Iron Incorporation into Fapo-5 Molecular Sieves’, Stud. Surf. Sci. Catal., Vol. 49, pp. 227-236.

218. Okamoto M., Luo L., Labinger J.A. and Davis M.E. (2000), ‘Oxydehydrogenation of propane over vanadyl ion-containing VAPO-5 and CoAPO-5’, J. Catal., Vol. 192, pp. 128-136.

219. Okuhara T., Inumaru K., Misono M. and Matsubayashi N. (1993), ‘Highly active V2O5 thin films prepared by chemical vapor deposition on silica for oxidative dehydrogenation of alcohols’, Vol. 75,pp. 1767-1770.

220. Oyama S.T., Went G.T., Lewis K.B., Bell A.T. and Somorjai G.A. (1989), ‘Oxygen chemisorption and laser Raman spectroscopy of unsupported and silica-supported vanadium oxide catalysts’, J. Phys. Chem., Vol. 93, pp. 6786-6790.

221. Park J.W. and Chon H. (1992), ‘Isomorphous substitution of iron ions into aluminophosphate molecular sieve, AlPO4-5’, J. Catal., Vol. 133, pp. 159-169.

222. Parnham E.R., Wheatley P.S. and Morris R.E. (2006), ‘The ionothermal synthesis of SIZ-6 - a layered aluminophosphate’, Chem. Commun., pp. 380-382.

223. Pastore H.O., Coluccia S. and Marchese L. (2005), ‘Porous aluminophosphates: from molecular sieves to designed acid catalysts’, Annu. Rev. Mater. Res., Vol. 35, pp. 351-395.

224. Patton R.L., Wilson S.T. and Flanigen E.M. (1985), European Patent, 158349.

Page 23: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

190

225. Peeters M.P.J., van de Ven L.J.M., de Haan J.W. and van Hooff J.H.C. (1993), ‘Distribution of cobalt in CoAPO-5 and CoAPO-11 studied by 31P NMR’, Colloid Surf. A: Physicochem. Eng. Aspect, Vol. 72, pp. 87-104.

226. Pelmenschikov A.G., van Santen R.A., Jänchen J. and Meijer E. (1993), ‘CD3CN as a probe of Lewis and Brønsted acidity of zeolites’, J. Phys. Chem., Vol. 97, pp. 11071-11074.

227. Pérez-Ramírez J., Groen J.C., Brückner A., Kumar M.S., Bentrup U., Debbagh M.N. and Villaescusa L.A. (2005), ‘Evolution of isomorphously substituted iron zeolites during activation: comparison of Fe-beta and Fe-ZSM-5’, J. Catal., Vol. 232, pp. 318-334.

228. Pillai U.R. and Sahle-Demessie E. (2004), ‘Mesoporous iron phosphate as an active, selective and recyclable catalyst for the synthesis of nopol by Prins condensation’, Chem. Commun., pp. 826-827.

229. Prakash A.M. and Kevan L. (1999), ‘Location and adsorbate interactions of vanadium in VAPO-5 molecular sieve studied by electron spin resonance and electron spin echo modulation spectroscopies’, J. Phys. Chem. B, Vol. 103, pp. 2214-2222.

230. Prakash A.M., Chilukuri S.V.V., Ashtekar S. and Chakrabarty D.K.(1996), ‘Synthesis and characterization of large-pore molecular sieves CoSAPO-36 and CoSAPO-46’, J. Chem. Soc., Faraday Trans., Vol. 92, pp. 1257-1262.

231. Prakash A.M., Hartmann M. and Kevan L. (1997), ‘Synthesis, characterization and adsorbate interactions of CoAPO-41 and CoAPSO-41 molecular sieves’, J. Phys. Chem. B, Vol. 101, pp. 6819-6826.

232. Prakash A.M., Hartmann M., Zhu Z. and Kevan L. (2000), ‘Incorporation of transition metal ions into MeAPO/MeAPSO molecular sieves’, J. Phys. Chem. B, Vol. 104, pp. 1610-1616.

233. Prakash A.M., Kevan L., Zahedi-Niaki M.H. and Kaliaguine S. (1999), ‘Electron spin resonanace and electron spin echo modulation evidence for the isomorphous substitution of titanium in titanium aluminophosphate molecular sieves’, J. Phys. Chem. B, Vol. 103, pp. 831-837.

Page 24: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

191

234. Prakash A.M., Kurshev V. and Kevan L. (1997a), ‘Electron spin resonance and electron spin echo modulation evidence for the isomorphous substitution of Ti in TAPO-5 molecular sieve’, J. Phys. Chem. B, Vol. 101, pp. 9794-9799.

235. Prakash A.M., Rao K.V. and Unnikrishnan S. (1993), ‘Synthesis and characterization of CoAPO-5 molecular sieve using N,N-dimethylbenzylamine as template’, Indian J. Chem., Sec. A, Vol. 32, pp. 947-951.

236. Prasad S. and Balakrishnan I. (1991), ‘Bifunctional catalytic centres in cobalt substituted aluminophosphate molecular sieve, CoAPO-11’, Catal. Lett., Vol. 11, pp. 105-110.

237. Prasad S., Shinde R.F. and Balakrishnan I. (1994), ‘Electron paramagnetic resonance spectroscopic studies of calcined FAPO-11 molecular sieve’, Micropor. Mater., Vol. 2, pp. 159-162.

238. Raja R., Sankar G. and Thomas J.M. (1999), ‘Powerful redox molecular sieve catalysts for the selective oxidation of cyclohexane in air’, J. Am. Chem. Soc., Vol. 121, pp. 11926-11927.

239. A study of the Mn, Co and Ni environment in the as-synthesized and rehydrated-calcined aluminophosphate with chabazite-like topology’, Croat. Chem. Acta, Vol. 72, pp. 645-661.

240. Thermal investigations of CoAPO materials prepared by using piperidine as a structure-directing agent’, Thermochim. Acta, Vol. 351, pp. 119-124.

241. The structure directing role of 1, 3-diaminopropane in the hydrothermal synthesis of iron(III) phosphate’, J. Serb. Chem. Soc., Vol. 69, pp. 179-186.

242. 2), ‘Preparation and characterization of iron(III) phosphate–oxalate using 1,2-diaminopropane as the structure-directing agent’, Micropor. Mesopor. Mater., Vol. 55, pp. 313-319.

243. Rao K.M., Spoto G. and Zecchina A. (1988), ‘IR investigation of CO adsorbed on Co particles obtained via Co2(CO)8 adsorbed on MgO and SiO2’, J. Catal., Vol. 113, pp. 466-474.

Page 25: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

192

244. Ratnasamy P. and Knözinger H. (1978), ‘Infrared and optical spectroscopic study of Co-Mo-Al2O3 catalysts’, J. Catal., Vol. 54, pp. 155-165.

245. Reddy J.S., Kumar R. and Ratnasamy P. (1990), ‘Titanium silicalite-2: synthesis, characterization and catalytic properties’, Appl. Catal., Vol. 58, pp. L1-L4.

246. Rethwisch D. and Dumesic J.A. (1986), ‘Adsorptive and catalytic properties of supported metal oxides: II. Infrared spectroscopy of nitric oxide adsorbed on supported iron oxides’, J. Phys. Chem., Vol. 90, pp. 1625-1630.

247. Rigutto M.S. and van Bekkum H. (1991), ‘Synthesis and characterization of a thermally stable vanadium-containing silicalite’, Appl. Catal., Vol. 68, pp. L1-L7.

248. Rigutto M.S. and van Bekkum H. (1993), ‘Vanadium site in VAPO-5: characterization and catalytic properties in liquid-phase alkene epoxidation and benzylic oxidation’, J. Mol. Catal., Vol. 81, pp. 77-98.

249. Riou-Cavellec M., Riou D. and Férey G. (1999), ‘Magnetic iron phosphates with an open framework’, Inorg. Chim. Acta, Vol. 291, pp. 317-325.

250. -Strarzyk F., Large-pore FAPO-36:

synthesis and characterization’, Chem. Mater., Vol. 15, pp. 3643-3649.

251. Rodrigues E.L. and Bueno J.M.C. (2002), ‘Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde II: influence of the Co surface structure on selectivity’, Appl. Catal. A : Gen., Vol. 232, pp. 147-158.

252. Rudzinski W. and Everett D.H. (1991), ‘Adsorption of gases on heterogeneous surfaces’, New York.

253. Sankar G., Thomas J.M., Chen J., Wright P.A., Barrett P.A., Greaves G.N. and Catlow C.R.A. (1995), ‘EXAFS investigation of divalent metal ion substituted AlPOs’, Nucl. Instr. and Meth. B, Vol. 97, pp. 37-40.

Page 26: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

193

254. Sato K., Inoue Y., Kojima I., Miyazaki E. and Yasumori I. (1984), ‘Infrared and X-ray photoelectron spectroscopy studies of carbon monoxide adsorbed on silica-supported cobalt catalysts’, J. Chem. Soc., Faraday Trans. 1, Vol. 80, pp. 841-850.

255. Schoonheydt R.A. (1984), ‘Characterization of heterogeneous catalysts’, New York.

256. Schoonheydt R.A., De Vos R., Pelgrims J. and Leeman H. (1989), ‘Spectroscopy of cobalt in COAPO-5’, Stud. Surf. Sci. Catal., Vol. 49, pp. 559-568.

257. Schwartz V., Prins R., Wang X. and Sachtler W.M.H. (2002), ‘Characterization by EXAFS of Co/MFI catalysts prepared by sublimation’, J. Phys. Chem. B, Vol. 106, pp. 7210-7217.

258. Segawa K.C., Chen Y., Kubsh J.E., Delgass W.N., Dumesic J.A. and Hall W.K. (1982), ‘Infrared and mössbauer spectroscopic studies of the interaction of nitric oxide with Fe-Y zeolite’, J. Catal., Vol. 76, pp. 112-132.

259. Selig H. and Claassen H.H. (1966), ‘Infrared spectra of VOF3 and POF3’, J. Chem. Phys., Vol. 44, pp. 1404-1406.

260. Sempels R.E. and Rouxhet P.G. (1976), ‘Infrared study of the adsorption of benzene and acetonitrile on silica - alumina gels: acidity properties and surface heterogeneity’, J. Colloid Interface Sci., Vol. 55, pp. 263-273.

261. Serrano D.P., Li H.X. and Davis M.E. (1992), ‘Synthesis of titanium-containing ZSM-48’, J. Chem. Soc., Chem. Commun., pp. 745-747.

262. Shen G.C., Shido T. and Ichikawa M. (1996), ‘Cobalt clusters in NaY zeolite cages: synthesis and characterization’, J. Phys. Chem., Vol. 100, pp. 16947-16956.

263. Shiju N.R., Fiddy S., Sonntag O., Stockenhuber M. and Sankar G. (2006), ‘Selective oxidation of benzene to phenol over FeAlPO catalyst using nitous oxide as oxidant’, Chem. Commun., pp. 4955-4957.

264. Shiralkar V.P., Saldarriaga C.H., Perez J.O., Clearfield A., Chen M., Antony R.G. and Donohue J.A. (1989), ‘Synthesis and characterization of CoAPO-5, a cobalt-containing AlPO4-5’, Zeolites, Vol. 9, pp. 474-482.

Page 27: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

194

265. Singh P.S., Bandyopadhyay R. and Rao B.S. (1995a), ‘Spectroscopic studies of vanadium incorporated SAPO-11’, J. Mol. Catal. A: Chem., Vol. 104, pp. 103-110.

266. Singh P.S., Shaikh R.A., Bandyopadhyay R. and Rao B.S. (1995), ‘Synthesis of CoVPI-5 with bifunctional catalytic activity’, J. Chem. Soc., Chem. Commun., pp. 2255-2257.

267. Sobalic Z., Kozlowski R. and Haber J. (1991), ‘Structure of monolayer vanadia -alumina catalysts as revealed by IR spectra of probe molecules’, J. Catal., Vol. 127, pp. 665-674.

268. Solomon E., Brunold T.C., Davis M.I., Kemsley J.N., Lee S.K., Lehnert N., Neese F., Skulan A.J., Yang Y.S. and Zhou J. (2000), ‘Geometric and electronic structure/function correlations in non-heme iron enzymes’, Chem. Rev., Vol. 100, pp. 235-350.

269. Song M.K., Yeom Y.H., Kim S.J. and Uh Y.S. (1993), ‘Vanadium oxide loading on aluminophosphate molecular sieve by vapor adsorption’, Appl. Catal. A: Gen., Vol. 102, pp. 93-103.

270. Spinacé E.V., Cardoso D. and Schuchardt U. (1997), ‘Incorporation of iron(III) and chromium(III) in SAPO-37’, Zeolites, Vol. 19, pp. 6-12.

271.‘Coordination and properties of cobalt in the molecular sieves CoAPO-5 and -11’, Micropor. Mesopor. Mater., Vol. 37, pp. 117-127.

272. Suëtaka W. and Yates Jr. J.T. (1995), ‘Surface infrared and Raman spectroscopy: methods and applications’, New York, pp. 1-270.

273. Thomas J.M. (1999), ‘Design, synthesis and in situ characterization of new solid catalysts’, Angew. Chem., Int. Ed., Vol. 38, pp. 3588-3628.

274. Thomas J.M., Greaves G.N., Sankar G., Wright P.A., Chen J., Dent A.J. and Marchese L. (1994), ‘Untersuchungen zur Struktur des aktiven Zentrums im sauren Feststoffkatalysator CoAPO-18’, Angew. Chem., Vol. 106, pp. 1922-1925.

275. Thomas J.M., Raja R., Sankar G. and Bell R.G. (1999), ‘Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen’, Nature, Vol. 398, pp. 227-230.

Page 28: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

195

276. Thomas J.M., Raja R., Sankar G. and Bell R.G. (2001), ‘Molecular sieve catalysts for the regioselective and shape selective oxyfunctionalization of alkanes in air’, Acc. Chem. Res., Vol. 34, pp. 191-200.

277. Thomson S., Luca V. and Howe R. (1999), ‘Framework Co(II) in CoAPO-5’, Phys. Chem. Chem. Phys., Vol. 1, pp. 615-619.

278. Trong On D., Kaliaguine S. and Bonneviot L. (1995), ‘Titanium boralites with MFI structure characterized using XRD, XANES, IR, and UV-visible techniques: effect of hydrogen peroxide on the preparation’, J. Catal., Vol. 157, pp. 235-243.

279. Trukhan N.N., Panchenko A.A., Roduner E., Mel’gunov M.S., Kholdeeva O.A., Mrowiec-spectroscopic study of titanium-containing mesoporous silicate materials’, Langmuir, Vol. 21, pp. 10545-10554.

280. Tuel A. (1995), ‘Synthesis, characterization, and catalytic properties of titanium silicoaluminophosphate TAPSO-5’, Zeolites, Vol. 15, pp. 228-235.

281. -(2001), ‘Isomorphous substitution of framework atoms by titanium in VPI-5 aluminophosphate molecular sieve’, Croat. Chem. Acta, Vol. 74, pp. 837-849.

282. Ulagappan N. and Frei H. (2000), ‘Redox chemistry of gaseous reactants inside photoexcited FeAlPO4 molecular sieve’, J. Phys. Chem. A, Vol. 104, pp. 490-496.

283. Ulagappan N. and Krishnasamy V. (1995), ‘Titanium substitution in silicon-free molecular sieves : anatase-free TAPO4-5 and TAPO4-11 synthesis and characterisation for hydroxylation of phenol’, J. Chem. Soc., Chem. Commun., pp. 373-374.

284. Ulagappan N. and Krishnasamy V. (1996), ‘Synthesis and characterization of titanium aluminophosphate molecular sieves of AFI and AEL topologies’, Indian J. Chem., Sect. A: Inorg. Phys. Theor. Anal. Chem., Vol. 35, pp. 920-924.

285. Uytterhoeven M.G. and Schoonheydt R.A. (1994), ‘Diffuse reflectance spectroscopy of cobalt in wet and dry gels for probing the synthesis of CoAPO-5 and CoAPO-34’, Micropor. Mater., Vol. 3, pp. 265-279.

Page 29: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

196

286. van Breukelen H.F.W.J., Kraaijveld G.J.C., van de Ven L.J.M., de Haan J.W. and van Hooff J.H.C. (1997), ‘Clustering of cobalt in CoAPO-5 molecular sieves’, Micropor. Mater., Vol. 12, pp. 313-322.

287. van der Pol A.J.H.P., Verduyn A.J. and van Hooff J.H.C. (1992), ‘Why are some titanium silicalite-1 samples active and others not?’, Appl. Catal. A: Gen., Vol. 92, pp. 113-130.

288. Venkatathri N. (2006), ‘Synthesis, characterisation and catalytic properties of vanadium auminophosphate molecular sieves VAPO-31 and VAPSO-Amr from non-aqueous media’, Appl. Catal. A: Gen., Vol. 310, pp. 31-29.

289. Venkatathri N. and Shetty V.N. (2006), ‘Synthesis and characterization of TAPO-31 molecular sieves using tripropylamine template’, Catal. Commun., Vol. 7, pp. 1015-1021.

290. Venkatathri N., Hedge S.G. and Sivasanker S. (1995), ‘Synthesis and characterization of a novel vanadium analogue of ALPO-31’, J. Chem. Soc., Chem. Commun., pp. 151-152.

291. Venkateswarlu P. (1951), ‘The rotation-vibration spectrum of methyl -

pp. 293-298.

292. Venkov T.V., Hess C. and Jentoft F.C. (2007), ‘Redox properties of vanadium ions in SBA-15 supported vanadium oxide: an FTIR spectroscopic study’, Langmuir, Vol. 23, pp. 1768-1777.

293. Verberckmoes A.A., Uytterhoeven M.G. and Schoonheydt R.A. (1997), ‘Framework and extra-framework Co2+ in CoAPO-5 by diffuse reflectance spectroscopy’, Zeolites, Vol. 19, pp. 180-189.

294. Verberckmoes A.A., Weckhuyen B.M. and Schoonheydt R.A. (1998), ‘Spectroscopy and coordination chemistry of cobalt in molecular sieves’, Micropor. Mesopor. Mater., Vol. 22, pp. 165-178.

295. Vomscheid R., Briend M., Peltre M.J., Man P.P. and Barthomeuf D. (1994), ‘The role of the template in directing the Si distribution in SAPO zeolites’, J. Phys. Chem., Vol. 98, pp. 9614-9618.

296. Vuurman M.A. and Wachs I.E. (1992), ‘In situ Raman spectroscopy of alumina-supported metal oxide catalysts’, J. Phys. Chem., Vol. 96, pp. 5008-5016.

Page 30: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

197

297. Wang N., Tang Z.K., Li G.D. and Chen J.S. (2000), ‘Materials science: single-walled 4 Å carbon nanotube arrays’, Nature, Vol. 408,pp. 50-51.

298. Weckhuyen B.M., Verberckmoes A.A., Uytterhoeven M.G., Mabbs F.E., Collison D., de Boer E. and Schoonheydt R.A. (2000), ‘Electron spin resonance of high-spin cobalt in microporous crystalline cobalt-containing aluminophosphates’, J. Phys. Chem. B, Vol. 104, pp. 37-42.

299. Weckhuysen B.M., Bensalem A. and Schoonheydt R.A. (1998), ‘Insitu UV–VIS diffuse reflectance spectroscopy–on-line activity measurements: significance of Crn+ species (n=2, 3 and 6) in n-butane dehydrogenation catalyzed by supported chromium oxide catalysts’, J. Chem. Soc., Faraday Trans., Vol. 94, pp. 2011-2014.

300. Weckhuysen B.M., Rao R.R., Martins J.A. and Schoonheydt R.A. (1999), ‘Transition metal ions in microporous crystalline aluminophosphates: isomorphous substitution’, Eur. J. Inorg. Chem., Vol. 1999, pp. 565-577.

301. Weckhuysen B.M., Vannijvel I.P. and Schoonheydt R.A. (1995), ‘Chemistry and spectroscopy of vanadium in VAPO-5 molecular sieves’, Zeolites, Vol. 15, pp. 482-489.

302. Weckhuysen B.M., Verberckmoes A.A., Debaere J., Ooms K., Langhans I. and Schoonheydt R.A. (2000a), ‘In situ UV–Vis diffuse reflectance spectroscopy — on line activity measurements of supported chromium oxide catalysts: relating isobutane dehydrogenation activity with Cr-speciation via experimental design’, J. Mol. Catal. A: Chem., Vol. 151, pp. 115-131.

303. Wei W., Moulijn J.A. and Mul G. (2008), ‘Effect of steaming of iron containing AlPO-5 on the structure and activity in N2O decomposition’, Micropor. Mesopor. Mater., Vol. 112, pp. 193-201.

304. Wenqin P., Shilun Q., Quibin K., Zhiyun W. and Shaoyt P. (1989), ‘Synthesis and characterization of Fapo-5 crystallized from clear homogeneous solutions’, Stud. Surf. Sci. Catal., Vol. 49, pp. 281-289.

305. Whittington B.I. and Anderson J.R. (1993), ‘Nature and activity of some vanadium catalysts’, J. Phys. Chem., Vol. 97, pp. 1032-1041.

Page 31: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

198

306. Wilks Jr. P.A. (1992), ‘The evolution of commercial IR spectrometers and the people who made it happen’, Anal. Chem., Vol. 64, pp. 833A-838A.

307. Wilson S.T. (1991), ‘B. Synthesis of AlPO4,-based molecular sieves’, Stud. Surf. Sci. Catal., Vol. 58, pp. 137-151.

308. Wilson S.T. (2001), ‘Chapter 5B Phosphate-based molecular sieves: novel synthetic approaches to new structure and compositions’, Stud. Surf. Sci. Catal., Vol. 137, pp. 229-260.

309. Wilson S.T. and Flanigen E.M. (1986), US Patent, 4567029.

310. Wilson S.T., Lok B.M. and Flanigen E.M. (1982a), US Patent, 4310440.

311. Wilson S.T., Lok B.M., Messina C.A., Cannan T.R. and Flanigen E.M. (1982), ‘Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids’, J. Am. Chem. Soc., Vol. 104, pp. 1146-1147.

312. Wingrave J.A. (2001), ‘Oxide surfaces’, Marcel Dekker, New York.

313. Wu C.N., Chao K.J., Chang H., Lee L.J. and Naccache C. (1997), ‘Study of oxygen-binding cobalt species on CoAPO-11 molecular sieve under redox treatment’, J. Chem. Soc., Faraday Trans., Vol. 93, pp. 3551-3553.

314. Xiong G., Li C., Li H.Y., Xin Q. and Feng Z.C. (2000), ‘Direct spectroscopic evidence for vanadium species in V-MCM-41 molecular sieve characterized by UV resonance Raman spectroscopy’, Chem. Commun., pp. 677-678.

315. Xu Y., Maddox P.J. and Couves J.W. (1990), ‘The synthesis of SAPO-34 and CoSAPO-34 from a triethylamine–hydrofluoric acid–watersystem’, J. Chem. Soc., Faraday Trans., Vol. 86, pp. 425-429.

316. Yokomori Y. and Kawachi Y. (1995), ‘Synthesis of large single crystals of CoAPO-5 molecular sieves’, Zeolites, Vol. 15, pp. 637-639.

317. Yu J. and Xu R. (2003), ‘Rich structure chemistry in the aluminophosphate family’, Acc. Chem. Res., Vol. 36, pp. 481-490.

Page 32: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

199

318. Yu J., Li M., Liu Z., Feng Z., Xin Q. and Li C. (2002), ‘Comparitive study of the vanadium species in VAPO-5 and VAPSO-5 molecular sieves’, J. Phys. Chem. B, Vol. 106, pp. 8937-8943.

319. Zahedi-Niaki M.H., Beland F., Bonneviot L. and Kaliaguine S. (2002), ‘XANES and XPS studies of titanium aluminophosphate molecular sieves’, Stud. Surf. Sci. Catal., Vol. 142, pp. 125-133.

320. Zahedi-Niaki M.H., Joshi P.N. and Kaliaguine S. (1996), ‘Synthesis and characterization of a novel titanium aluminophosphate molecular sieve with ATS structure: TAPO-36’, Chem. Commun., pp. 47-48.

321. Zahedi-Niaki M.H., Joshi P.N. and Kaliaguine S. (1997), ‘A comparative study of titanium-containing aluminophosphate molecular sieves TAPO-5, TAPO-11 and TAPO-36’, Stud. Surf. Sci. Catal., Vol. 105, pp. 1013-1020.

322. Zahedi-Niaki M.H., Kapoor M.P. and Kaliaguine S. (1998), ‘H2O2 oxidation and epoxidation of hydrocarbons and alcohols over titanium aluminophosphates TAPO-5, TAPO-11, and TAPO-36’, J. Catal., Vol. 177, pp. 231-239.

323. Zahedi-Niaki M.H., Zaidi S.M. and Kaliaguine S. (1999), ‘Acid properties of titanium aluminophosphate molecular sieves’, Micropor. Mesopor. Mater., Vol. 32, pp. 251-255.

324. Zahedi-Niaki M.H., Zaidi S.M.J. and Kaliaguine S. (2000), ‘Comparative study of vanadium aluminophosphate molecular sieves VAPO-5, -11, -17 and -31’, Appl. Catal. A: Gen., Vol. 196, pp. 9-24.

325. Zaki M.I. and Knözlngem H. (1987), ‘Characterization of oxide surfaces by adsorption of carbon monoxide - a low temperature infrared spectroscopy study’, Spectrochim. Acta A, Vol. 43, pp. 1455-1459.

326. Zaki M.I., Vielhaber B. and Knözinger H. (1986), ‘Low-temperature carbon monoxide adsorption and state of molybdena supported on alumina, titania, ceria, and zirconia. An infrared spectroscopic investigation’, J. Phys. Chem. Vol. 90, pp. 3176-3183.

327. Zecchina A., Geobaldo F., Lamberti C., Bordiga S., Turnes-Palomino G. and Otero-Arean C. (1996), ‘Infrared studies of the interaction of carbon monoxide and dinitrogen with ferrisilicate MFI-type zeolites’, Catal. Lett., Vol. 42, pp. 25-33.

Page 33: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../30922/10/10_references.pdf · 2018-07-02 · ‘Structure and reactivity of framework and extraframework iron in Fe-silicalite

200

328. Zecchina A., Marchese L., Bordiga S., Pazé C. and Gianotti E. (1997), ‘Vibrational spectroscopy of NH4

+ ions in zeolitic materials: an IR study’, J. Phys. Chem. B, Vol. 101, pp. 10129-10135.

329. Zecchina A., Rivallan M., Berlier B., Lamberti C. and Ricchiardi G. (2007), ‘Structure and nuclearity of active sites in Fe-zeolites: comparision with iron sites in enzymes and homogeneous catalysts’, Phys. Chem. Chem. Phys., Vol. 9, pp. 3483-3499.

330. Zecchina A., Scarano D., Bordiga S., Spoto G. and Lamberti C. (2001), ‘Surface structures of oxides and halides and their relationships to catalytic properties’, Adv. Catal., Vol. 46, pp. 265-397.

331. Zenonos C., Sankar G., Corà F., Lewis D.W., Pankhurst Q.A., Catlow C.R.A. and Thomas J.M. (2002), ‘On the nature of iron species in iron substituted aluminophosphates’, Phys. Chem. Chem. Phys., Vol. 4, pp. 5421-5429.

332. Zhang G. and Harris T.V. (1995), ‘X-ray absorption studies of cobalt aluminophosphate zeolites (CoAPO-5)’, Physica B, Vol. 208-209, pp. 697-698.

333. Zhang W. and Pinnavaia J.T. (1996), ‘Transition metal substituted derivatives of cubic MCM-48 mesoporous molecular sieves’, Catal. Lett., Vol. 38, pp. 261-265.

334. Zhou W., Chen J.G., Fang K.G. and Sun Y.H. (2006), ‘The deactivation of Co/SiO2 catalyst for Fischer–Tropsch synthesis at different ratios of H2 to CO’, Fuel Process. Technol., Vol. 87, pp. 609-616.

335. Zones S.I., Nakagawa Y., Yuen L.T. and Harris T.V.J. (1996), ‘Guest/host interactions in high silica zeolite synthesis: [5.2.1.02.6]tricyclodecanes as template molecule’, J. Am. Chem. Soc., Vol. 118, pp. 7558-7567.