references978-1-4020-9613-6/1.pdf · dordrecht, the netherlands: d. reidel, 1973, pp. 131–149....

21
References 1. A. A. Agrachev and D. Liberzon, “Lie-algebraic stability criteria for switched sys- tems,” SIAM J. Control Opt., vol. 40, pp. 253–259, 2001. 2. F. Albertini and D. D’Alessandro, “The Lie algebra structure of spin systems and their controllability properties,” in Proc. 40th IEEE Conf. Decis. Contr. New York: IEEE Pubs., 2001, pp. 2599–2604. 3. F. Albertini and D. D’. Alessandro, “Notions of controllability for quantum mechan- ical systems,” in Proc. 40th IEEE Conf. Decis. Contr. New York: IEEE Pubs., 2001, pp. 1589–1594. 4. C. Altafini, “Controllability of quantum mechanical systems by root space decomposition of su(n),” J. Math. Phys., vol. 43, no. 5, pp. 2051–2062, 2002. [Online]. Available: http://link.aip.org/link/?JMP/43/2051/1 5. C. Altafini, “The reachable set of a linear endogenous switching system,” Syst. Control Lett., vol. 47, no. 4, pp. 343–353, 2002. 6. C. Altafini, “Explicit Wei-Norman formulae for matrix Lie groups via Putzer’s method,” Syst. Control Lett., vol. 54, no. 11, pp. 1121–1130, 2006. [Online]. Available: http://www.sissa.it/~altafini/papers/wei-norman.pdf 7. P. Antsaklis and A. N. Michel, Linear Systems. New York: McGraw-Hill, 1997. 8. M. A. Arbib and E. G. Manes, “Foundations of system theory: The Hankel matrix.” J. Comp. Sys. Sci., vol. 20, pp. 330–378, 1980. 9. L. Arnold and W. Kliemann, “Qualitative theory of stochastic systems,” in Probabilis- tic Analysis and Related Topics, Vol. 3, A. T. Bharucha-Reid, Ed. New York: Academic Press, 1983, pp. 1–79. 10. V. Arnol’d, Ordinary Dierential Equations. New York: Springer-Verlag, 1992. 11. V. Ayala and L. A. B. San Martín, “Controllability of two-dimensional bilinear sys- tems: restricted controls and discrete-time,” Proyecciones, vol. 18, no. 2, pp. 207–223, 1999. 12. V. Ayala and J. Tirao, “Linear systems on Lie groups and controllability,” in Dierential Geometry and Control, G. Ferreyra, R. Gardner, H. Hermes, and H. Sussmann, Eds. Providence: AMS, 1999, pp. 47–64. 13. A. Bacciotti, “On the positive orthant controllability of two-dimensional bilinear systems,” Syst. Control Lett., vol. 3, pp. 53–55, 1983. 14. A. Bacciotti and P. Boieri, “A characterization of single-input planar bilinear systems which admit a smooth stabilizer,” Syst. Control Lett., vol. 16, 1991. 15. A. Bacciotti and P. Boieri, “Stabilizability of oscillatory systems: a classical ap- proach supported by symbolic computation,” Matematiche (Catania), vol. 45, no. 2, pp. 319–335 (1991), 1990. D.L. Elliott, Bilinear Control Systems, Applied Mathematical Sciences 169, 259 DOI 10.1007/978-1-4020-9613-6_13, c Springer Science+Business Media B.V. 2009

Upload: ngokhuong

Post on 07-Dec-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

References

1. A. A. Agrachev and D. Liberzon, Lie-algebraic stability criteria for switched sys-tems, SIAM J. Control Opt., vol. 40, pp. 253259, 2001.

2. F. Albertini and D. DAlessandro, The Lie algebra structure of spin systems andtheir controllability properties, in Proc. 40th IEEE Conf. Decis. Contr. New York:IEEE Pubs., 2001, pp. 25992604.

3. F. Albertini and D. D. Alessandro, Notions of controllability for quantum mechan-ical systems, in Proc. 40th IEEE Conf. Decis. Contr. New York: IEEE Pubs., 2001,pp. 15891594.

4. C. Altafini, Controllability of quantum mechanical systems by root spacedecomposition of su(n), J. Math. Phys., vol. 43, no. 5, pp. 20512062, 2002. [Online].Available: http://link.aip.org/link/?JMP/43/2051/1

5. C. Altafini, The reachable set of a linear endogenous switching system, Syst. ControlLett., vol. 47, no. 4, pp. 343353, 2002.

6. C. Altafini, Explicit Wei-Norman formulae for matrix Lie groups via Putzersmethod, Syst. Control Lett., vol. 54, no. 11, pp. 11211130, 2006. [Online]. Available:http://www.sissa.it/~altafini/papers/wei-norman.pdf

7. P. Antsaklis and A. N. Michel, Linear Systems. New York: McGraw-Hill, 1997.8. M. A. Arbib and E. G. Manes, Foundations of system theory: The Hankel matrix.

J. Comp. Sys. Sci., vol. 20, pp. 330378, 1980.9. L. Arnold and W. Kliemann, Qualitative theory of stochastic systems, in Probabilis-

tic Analysis and Related Topics, Vol. 3, A. T. Bharucha-Reid, Ed. New York: AcademicPress, 1983, pp. 179.

10. V. Arnold, Ordinary Differential Equations. New York: Springer-Verlag, 1992.11. V. Ayala and L. A. B. San Martn, Controllability of two-dimensional bilinear sys-

tems: restricted controls and discrete-time, Proyecciones, vol. 18, no. 2, pp. 207223,1999.

12. V. Ayala and J. Tirao, Linear systems on Lie groups and controllability, in DifferentialGeometry and Control, G. Ferreyra, R. Gardner, H. Hermes, and H. Sussmann, Eds.Providence: AMS, 1999, pp. 4764.

13. A. Bacciotti, On the positive orthant controllability of two-dimensional bilinearsystems, Syst. Control Lett., vol. 3, pp. 5355, 1983.

14. A. Bacciotti and P. Boieri, A characterization of single-input planar bilinear systemswhich admit a smooth stabilizer, Syst. Control Lett., vol. 16, 1991.

15. A. Bacciotti and P. Boieri, Stabilizability of oscillatory systems: a classical ap-proach supported by symbolic computation, Matematiche (Catania), vol. 45, no. 2,pp. 319335 (1991), 1990.

D.L. Elliott, Bilinear Control Systems, Applied Mathematical Sciences 169, 259DOI 10.1007/978-1-4020-9613-6_13, c Springer Science+Business Media B.V. 2009

http://link.aip.org/link/?JMP/43/2051/1http://www.sissa.it/~altafini/papers/wei-norman.pdf

260 References

16. J. Baez, The octonions, Bull. Amer. Math. Soc., vol. 39, no. 2, pp. 145205, 2001,errata: Bull. Amer. Math. Soc., vol. 42, p. 213 (2005).

17. J. Baillieul, Geometric methods for nonlinear optimal control problems. J. Optim.Theory Appl., vol. 25, pp. 519548, 1978.

18. J. A. Ball, G. Groenewald, and T. Malakorn, Structured noncommutative multi-dimensional linear systems, SIAM J. Control Optim., vol. 44, no. 4, pp. 14741528(electronic), 2005.

19. J. M. Ball and M. Slemrod, Feedback stabilization of distributed semilinear controlsystems. Appl. Math. Optim., vol. 5, no. 2, pp. 169179, 1979.

20. H. T. Banks, R. P. Miech, and D. J. Zinberg, Nonlinear systems in models for enzymecascades, in Variable Structure Systems with Applications to Economics and Biology.(Proceedings 2nd U.S. Italy Seminar, Portland, Oregan, A. Ruberti and R. R. Mohler,Eds., Berlin: Springer-Verlag, 1974, pp. 265277.

21. E. A. Barbashin [Barbain], Introduction to the Theory of Stability, T. Lukes, Ed.Groningen: Wolters-Noordhoff Publishing, 1970, translation of Vvedenie v teoriyuustoichivosti.

22. E. A. Barbain, Vvedenie v teoriyu ustoichivosti [Introduction to the Theory of Stability].Izdat. Nauka, Moscow, 1967.

23. C. J. B. Barros, J. R. Gonalves Filho, O. G. do Rocio, and L. A. B. San Martin, Con-trollability of two-dimensional bilinear systems, Proyecciones Revista de Matematica,vol. 15, 1996.

24. R. H. Bartels and G. W. Stewart, Solution of the equation AX + XB =C, Comm.Assoc. Comp. Mach., vol. 15, pp. 820826, 1972.

25. R. E. Bellman, Introduction to Matrix Analysis. New York: McGraw-Hill, (Reprint of1965 edition) 1995.

26. V. D. Blondel and A. Megretski, Eds., Unsolved Problems in Mathematical Systems &Control Theory. Princeton, NJ: Princeton University Press, 2004. [Online]. Available:http://www.inma.ucl.ac.be/~blondel/books/openprobs/

27. J. Bochnak, M. Coste, and M.-F. Roy, Gomtrie Algbrique relle. Berlin: Springer-Verlag, 1987.

28. B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet, Transitivity of families of invariantvector fields on the semidirect products of Lie groups, Trans. Amer. Math. Soc., vol.271, no. 2, pp. 525535, 1982.

29. W. M. Boothby, A transitivity problem from control theory. J. Differ. Equ., vol. 17,no. 296307, 1975.

30. W. M. Boothby, Some comments on positive orthant controllability of bilinear sys-tems. SIAM J. Control Optim., vol. 20, pp. 634644, 1982.

31. W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry,2nd ed. New York: Academic Press, 2003.

32. W. M. Boothby and E. N. Wilson, Determination of the transitivity of bilinear sys-tems, SIAM J. Control Optim., vol. 17, pp. 212221, 1979.

33. A. Borel, Le plan projectif des octaves et les sphres comme espaces homognes,C. R. Acad. Sci. Paris, vol. 230, pp. 13781380, 1950.

34. R. W. Brockett, Differential geometric methods in control, Division of Engineeringand Applied Physics, Harvard University, Tech. Rep. 628, 1971.

35. R. W. Brockett, On the algebraic structure of bilinear systems. in Theory andApplications of Variable Structure Systems, R. Mohler and A. Ruberti, Eds., New York:Academic Press, 1972, pp. 153168.

36. R. W. Brockett, System theory on group manifolds and coset spaces. SIAM J. ControlOptim., vol. 10, pp. 265284, 1972.

37. R. W. Brockett, Lie theory and control systems defined on spheres. SIAM J. Appl.Math., vol. 25, pp. 213225, 1973.

38. R. W. Brockett, Volterra series and geometric control theory. AutomaticaJ. IFAC,vol. 12, pp. 167176, 1976.

http://www.inma.ucl.ac.be/~blondel/books/openprobs/

References 261

39. R. W. Brockett, On the reachable set for bilinear systems, in Variable StructureSystems with Applications to Economics and Biology. (Proceedings 2nd U.S. Italy Seminar,Portland, Oregan, A. Ruberti and R. R. Mohler, Eds., Berlin: Springer-Verlag, 1975,pp. 5463.

40. H. W. Broer, KAM theory: the legacy of A. N. Kolmogorovs 1954 paper, Bull. Amer.Math. Soc. (N.S.), vol. 41, no. 4, pp. 507521 (electronic), 2004.

41. W. C. Brown, Matrices over Commutative Rings. New York: Marcel Dekker Inc., 1993.42. C. Bruni, G. D. Pillo, and G. Koch, On the mathematical models of bilinear systems,

Ricerche Automat., vol. 2, no. 1, pp. 1126, 1971.43. C. Bruni, Bilinear systems: an appealing class of nearly linear systems in theory and

application. IEEE Trans. Automat. Control, vol. AC-19, pp. 334348, 1974.44. A. D. Brunner and G. D. Hess, Potential problems in estimating bilinear time-series

models, J. Econ. Dyn. Control, vol. 19, pp. 663681, 1995. [Online]. Available:http://ideas.repec.org/a/eee/dyncon/v19y1995i4p663-681.html

45. R. L. Bryant. Remarks on spinors in low dimension. [Online]. Available:http://www.math.duke.edu/~bryant/Spinors.pdf

46. V. I. Buyakas, Optimal control of systems with variable structure. Automat. RemoteControl, vol. 27, pp. 579589, 1966.

47. G. Cairns and . Ghys, The local linearization problem for smooth SL(n)-actions,Enseign. Math. (2), vol. 43, no. 12, pp. 133171, 1997.

48. F. Cardetti and D. Mittenhuber, Local controllability for linear systems on Liegroups, J. Dyn. Control Syst., vol. 11, no. 3, pp. 353373, 2005.

49. S. Celikovsk, On the stabilization of the homogeneous bilinear systems, Syst.Control Lett., vol. 21, pp. 503510, 1993.

50. S. Celikovsk, On the global linearization of nonhomogeneous bilinear systems,Syst. Control Lett., vol. 18, no. 18, pp. 397402, 1992.

51. S. Celikovsk and A. Vanecek, Bilinear systems and chaos, Kybernetika (Prague),vol. 30, pp. 403424, 1994.

52. R. Chabour, G. Sallet, and J. C. Vivalda, Stabilization of nonlinear two-dimensionalsystems: A bilinear approach. Math. Control Signals Systems, vol. 6, no. 3, pp. 224246,1993.

53. K.-T. Chen, Integrations of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. Math., vol. 65, pp. 163178, 1957.

54. K.-T. Chen, Equivalence and decomposition of vector fields about an elementarycritical point, Amer. J. Math., vol. 85, pp. 693722, 1963.

55. K.-T. Chen, Algebras of iterated path integrals and fundamental groups, Trans.Amer. Math. Soc., vol. 156, pp. 359379, 1971.

56. G.-S. J. Cheng, Controllability of discrete and continuous-time bilinear systems,Sc.D. Dissertation, Washington University, St. Louis, Missouri, December 1974.

57. G.-S. J. Cheng, T.-J. Tarn, and D. L. Elliott, Controllability of bilinear systems,in Variable Structure Systems with Applications to Economics and Biology. (Proceedings2nd U.S. Italy Seminar, Portland, Oregan, A. Ruberti and R. R. Mohler, Eds., Berlin:Springer-Verlag, 1975, pp. 83100.

58. C. Chevalley, Theory of Lie Groups. I. Princeton, NJ: Princeton University Press, 1946.59. W. L. Chow, ber systeme von linearen partiellen differential-gleichungen erster

ordnung, Math. Annalen, vol. 117, pp. 98105, 1939.60. J. M. C. Clark, An introduction to stochastic differential equations on manifolds,

in Geometric Methods in System Theory. Dordrecht, The Netherlands: D. Reidel, 1973,pp. 131149.

http://ideas.repec.org/a/eee/dyncon/v19y1995i4p663-681.htmlhttp://www.math.duke.edu/~bryant/Spinors.pdf

262 References

61. J. W. Clark, Control of quantum many-body dynamics: Designing quantum scis-sors, in Condensed Matter Theories, Vol. 11, E. V. Ludea, P. Vashishta, and R. F.Bishop, Eds. Commack, NY: Nova Science Publishers, 1996, pp. 319.

62. F. H. Clarke, Y. S. Ledyaev, and R. J. Stern, Asymptotic stability and smoothLyapunov functions, J. Differ. Equ., vol. 149, no. 1, pp. 69114, 1998.

63. F. Colonius and W. Kliemann, The Dynamics of Control. Boston: Birkhuser, 1999.64. L. Conlon, Differentiable Manifolds: A First Course. Boston, MA: Birkhuser, 1993.65. M. J. Corless and A. E. Frazho, Linear Systems and Control: An Operator Perspective.

New York: Marcel Dekker, 2003.66. J. Corts, Discontinuous dynamical systems: A tutorial on solutions, nonsmooth

analysis and stability, IEEE Contr. Syst. Magazine, vol. 28, no. 3, pp. 3673, June2008.

67. D. Cox, J. Little, and D. OShea, Ideals, Varieties, and Algorithms, 2nd ed. New York:Springer-Verlag, 1997.

68. P. dAlessandro, Bilinearity and sensitivity in macroeconomy, in Variable StructureSystems with Applications to Economics and Biology. (Proceedings 2nd U.S. Italy Seminar,Portland, Oregan, A. Ruberti and R. R. Mohler, Eds., Berlin: Springer-Verlag, 1975.

69. P. dAlesandro, A. Isidori, and A. Ruberti, Realization and structure theory of bilin-ear systems. SIAM J. Control Optim., vol. 12, pp. 517535, 1974.

70. D. DAlessandro, Small time controllability of systems on compact Lie groups andspin angular momentum, J. Math. Phys., vol. 42, pp. 44884496, 2001.

71. D. DAlessandro, Introduction to Quantum Control and Dynamics. Boca Raton: Taylor& Francis, 2007.

72. D. DAlessandro and M. Dahleh, Optimal control of two-level quantum systems,IEEE Trans. Automat. Control, vol. 46, pp. 866876, 2001.

73. G. Dirr and H. K. Wimmer, An Enestrm-Kakeya theorem for Hermitian polynomialmatrices, IEEE Trans. Automat. Control, vol. 52, no. 11, pp. 21512153, November2007.

74. J. D. Dollard and C. N. Friedman, Product Integration with Applications to DifferentialEquations. Reading: Addison-Wesley, 1979.

75. O. G. do Rocio, L. A. B. San Martin, and A. J. Santana, Invariant cones and convexsets for bilinear control systems and parabolic type of semigroups, J. Dyn. ControlSyst., vol. 12, no. 3, pp. 419432, 2006.

76. G. Dufrnot and V. Mignon, Recent Developments in Nonlinear Cointegration withApplications to Macroeconomics and Finance. Berlin: Springer-Verlag, 2002.

77. J. J. Duistermaat and J. A. Kolk, Lie Groups. Berlin: Springer-Verlag, 2000.78. E. B. Dynkin, Normed Lie Algebras and Analytic Groups. Providence, RI: American

Mathematical Society, 1953.79. M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy. Springer-

Verlag: Lec. Notes in Biomath. 30, 1979.80. D. L. Elliott, A consequence of controllability. J. Differ. Equ., vol. 10, pp. 364370,

1971.81. D. L. Elliott, Controllable nonlinear systems driven by white noise, Ph.D.

Dissertation, University of California at Los Angeles, 1969. [Online]. Available:https://drum.umd.edu/dspace/handle/1903/6444

82. D. L. Elliott, Diffusions on manifolds, arising from controllable systems, in Geo-metric Methods in System Theory. Dordrecht, The Netherlands: D. Reidel, 1973, pp.285294.

83. D. L. Elliott, Bilinear systems, in Wiley Encyclopedia of Electrical Engineering,J. Webster, Ed. New York: Wiley, 1999, vol. 2, pp. 308323.

84. D. L. Elliott, A controllability counterexample, IEEE Trans. Automat. Control, vol. 50,no. 6, pp. 840841, June 2005.

https://drum.umd.edu/dspace/handle/1903/6444

References 263

85. D. L. Elliott and T.-J. Tarn, Controllability and observability for bilinear systems,SIAM Natl. Meeting, Seattle, Washington, Dec. 1971; Report CSSE-722, Dept. ofSystems Sci. and Math., Washington University, St. Louis, Missouri, 1971.

86. G. Escobar, R. Ortega, H. Sira-Ramirez, J.-P. Vilain, and I. Zein, An experimentalcomparison of several nonlinear controllers for power converters, IEEE Contr. Syst.Magazine, vol. 19, no. 1, pp. 6682, February 1999.

87. M. E. Evans and D. N. P. Murthy, Controllability of a class of discrete time bilinearsystems, IEEE Trans. Automat. Control, vol. 22, pp. 7883, February 1977.

88. W. Favoreel, B. De Moor, and P. Van Overschee, Subspace identification of bilin-ear systems subject to white inputs, IEEE Trans. Automat. Control, vol. 44, no. 6,pp. 11571165, 1999.

89. G. Ferreyra, R. Gardner, H. Hermes, and H. Sussmann, Eds., Differential Geometry andControl, (Proc. Symp. Pure Math. Vol. 64). Providence: Amer. Math. Soc., 1999.

90. A. F. Filippov, Differential equations with discontinuous right-hand side, in Amer.Math. Soc. Translations, 1964, vol. 42, pp. 199231.

91. M. Flato, G. Pinczon, and J. Simon, Nonlinear representations of Lie groups, Ann.Scient. c. Norm. Sup. (4th ser.), vol. 10, pp. 405418, 1977.

92. M. Fliess, Un outil algbrique: les sries formelles non commutatives. in Mathe-matical Systems Theory, G. Marchesini and S. K. Mitter, Eds. Berlin: Springer-Verlag,1975, pp. 122148.

93. M. Fliess, Fonctionelles causales non linaires et indtermins noncommutatives.Bull. Soc. Math. de France, vol. 109, no. 1, pp. 340, 1981. [Online]. Available:http://www.numdam.org./item?id=BSMF_1981__109__3_0

94. E. Fornasini and G. Marchesini, Algebraic realization theory of bilinear discrete-time input-output maps, J. Franklin Inst., vol. 301, no. 12, pp. 143159, 1976, recenttrends in systems theory.

95. E. Fornasini and G. Marchesini, A formal power series approach to canonical real-ization of bilinear input-output maps, in Mathematical Systems Theory, G. Marchesiniand S. K. Mitter, Eds. Berlin: Springer_Verlag, 1976, pp. 149164.

96. M. Frayman, Quadratic differential systems; a study in nonlinear systems theory,Ph.D. dissertation, University of Maryland, College Park, Maryland, June 1974.

97. M. Frayman, On the relationship between bilinear and quadratic systems, IEEETrans. Automat. Control, vol. 20, no. 4, pp. 567568, 1975.

98. A. E. Frazho, A shift operator approach to bilinear system theory. SIAM J. ControlOptim., vol. 18, no. 6, pp. 640658, 1980.

99. B. A. Frelek and D. L. Elliott, Optimal observation for variablestructure systems,in Proc. VI IFAC Congress, Boston, Mass., vol. I, 1975, paper 29.5.

100. S. Friedland, Simultaneous similarity of matrices, Adv. Math., vol. 50, pp. 189265,1983.

101. F. R. Gantmacher, The Theory of Matrices. AMS Chelsea Pub. [Reprint of 1977 ed.],2000, vol. I and II.

102. J. Gauthier and G. Bornard, Controlabilit des systmes bilinaires, SIAM J. ControlOpt., vol. 20, pp. 377384, 1982.

103. J.-P. Gauthier and I. Kupka, A separation principle for bilinear systems with dissi-pative drift, IEEE Trans. Automat. Control, vol. 37, no. 12, pp. 19701974, 1992.

104. S. Gibson, A. Wills, and B. Ninness, Maximum-likelihood parameter estimationof bilinear systems, IEEE Trans. Automat. Control, vol. 50, no. 10, pp. 15811596,October 2005.

105. T. Goka, T.-J. Tarn, and J. Zaborszky, Controllability of a class of discrete-timebilinear systems. AutomaticaJ. IFAC, vol. 9, pp. 615622, 1973.

106. W. M. Goldman, Re: Stronger version, personal communication, March 16 2004.107. M. Goto, On an arcwise connected subgroup of a Lie group, Proc. Amer. Math. Soc.,

vol. 20, pp. 157162, 1969.

http://www.numdam.org./item?id=BSMF_1981__109__3_0

264 References

108. O. M. Grasselli and A. Isidori, Deterministic state reconstruction and reachability ofbilinear control processes. in Proc. Joint Automatic Control Conf., San Francisco, June22-25, 1977. New York: IEEE Pubs., June 2225 1977, pp. 14231427.

109. O. M. Grasselli and A. Isidori, An existence theorem for observers of bilinear sys-tems. IEEE Trans. Automat. Control, vol. AC-26, pp. 12991300, 1981, erratum, sameTransactions AC-27:284 (February 1982).

110. G.-M. Greuel, G. Pfister, and H. Schnemann, Singular 2.0. A Computer AlgebraSystem for Polynomial Computations, Centre for Computer Algebra, University ofKaiserslautern, 2001. [Online]. Available: http://www.singular.uni-kl.de

111. K. I. Gross, The Plancherel transform on the nilpotent part of G2 and some applica-tion to the representation theory of G2, Trans. Amer. Math. Soc., vol. 132, pp. 411446,1968.

112. V. W. Guillemin and S. Sternberg, Remarks on a paper of Hermann, Trans. Amer.Math. Soc., vol. 130, pp. 110116, 1968.

113. W. Hahn, Stability of Motion. Berlin: Springer-Verlag, 1967.114. O. Hjek, Bilinear control: rank-one inputs, Funkcial. Ekvac., vol. 34, no. 2, pp. 355

374, 1991.115. B. C. Hall, An Elementary Introduction to Groups and Representations. New York:

Springer-Verlag, 2003.116. M. Hall, A basis for free Lie rings, Proc. Amer. Math. Soc., vol. 1, pp. 575581, 1950.117. P. Hartman, Ordinary Differential Equations. New York: Wiley, 1964; 1973 [paper,

authors reprint].118. G. W. Haynes, Controllability of nonlinear systems, Natl. Aero. & Space Admin.,

Tech. Rep. NASA CR-456, 1965.119. G. W. Haynes and H. Hermes, Nonlinear controllability via Lie theory, SIAM J.

Control Opt., vol. 8, pp. 450460, 1970.120. S. Helgason, Differential Geometry and Symmetric Spaces. New York: Academic Press

1972.121. P. Henrici, Applied and Computational Complex Analysis. New York: Wiley, 1988, vol.

I: Power Series-Integration-Conformal Mapping-Location of Zeros.122. R. Hermann, On the accessibility problem in control theory, in Int. Symp. on Non-

linear Differential Equations and Nonlinear Mechanics, J. LaSalle and S. Lefschetz, Eds.New York: Academic Press, 1963.

123. R. Hermann, Differential Geometry and the Calculus of Variations. New York: AcademicPress, 1968, Second edition: Math Sci Press, 1977.

124. R. Hermann, The formal linearization of a semisimple Lie algebra of vector fieldsabout a singular point, Trans. Amer. Math. Soc., vol. 130, pp. 105109, 1968.

125. H. Hermes, Lie algebras of vector fields and local approximation of attainable sets,SIAM J. Control Optim., vol. 16, no. 5, pp. 715727, 1978.

126. R. Hide, A. C. Skeldon, and D. J. Acheson, A study of two novel self-excitingsingle-disk homopolar dynamos: Theory, Proc. Royal Soc. (London), vol. A 452,pp. 13691395, 1996.

127. J. Hilgert, K. H. Hofmann, and J. D. Lawson, Lie Groups, Convex Cones, and Semigroups.Oxford: Clarendon Press, 1989.

128. J. Hilgert and K.-H. Neeb, Lie Semigroups and their Applications. Berlin: Springer-Verlag: Lec. Notes in Math. 1552, 1993.

129. G. Hochschild, The Structure of Lie Groups. San Francisco: Holden-Day, 1965.130. L. Hrmander, Hypoelliptic second order differential equations, Acta Mathematica,

vol. 119, pp. 147171, 1967.131. R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University

Press, 1985, 1993.132. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge, UK: Cambridge

University Press, 1991.

http://www.singular.uni-kl.de

References 265

133. G. M. Huang, T. J. Tarn, and J. W. Clark, On the controllability of quantum-mechanical systems, J. Math. Phys., vol. 24, no. 11, pp. 26082618, 1983.

134. T. Huillet, A. Monin, and G. Salut, Minimal realizations of the matrix transition liegroup for bilinear control systems: explicit results, Syst. Control Lett., vol. 9, no. 3,pp. 267274, 1987.

135. J. E. Humphreys, Linear Algebraic Groups. New York: Springer-Verlag, 1975.136. L. R. Hunt, Controllability of Nonlinear Hypersurface Systems. Amer. Math. Soc., 1980,

pp. 209224.137. L. R. Hunt, n-dimensional controllability with (n1) controls, IEEE Trans. Automat.

Control, vol. AC-27, no. 1, pp. 113117, 1982.138. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes.

Amsterdam North-Holland/Kodansha, 1981.139. A. Isidori, Direct construction of minimal bilinear realizations from nonlinear input

output maps. IEEE Trans. Automat. Control, vol. AC-18, pp. 626631, 1973.140. A. Isidori, Nonlinear Control Systems, 3rd ed. London: Springer-Verlag, 1995.141. A. Isidori and A. Ruberti, Realization theory of bilinear systems. in Geometric

Methods in System Theory. Dordrecht, The Netherlands: D. Reidel, 1973, pp. 83110.142. A. Isidori and A. Ruberti, Time-varying bilinear systems, in Variable Structure

Systems with Application to Economics and Biology. Berlin: Springer-Verlag: LectureNotes in Econom. and Math. Systems 111, 1975, pp. 4453.

143. N. Jacobson, Lie Algebras, ser. Tracts in Math., No. 10. New York: Wiley, 1962.144. M. Johansson, Piecewise Linear Control Systems. Berlin: Springer-Verlag: Lec. Notes

in Control and Information Sciences 284, 2003.145. I. Jo and N. M. Tuan, On controllability of bilinear systems. II. Controllability in

two dimensions, Ann. Univ. Sci. Budapest. Etvs Sect. Math., vol. 35, pp. 217265,1992.

146. K. Josic and R. Rosenbaum, Unstable solutions of nonautonomous linear differentialequations, SIAM Rev., vol. 50, no. 3, pp. 570584, 2008.

147. V. Jurdjevic, Geometric Control Theory. Cambridge, UK: Cambridge University Press,1996.

148. V. Jurdjevic and I. Kupka, Control systems subordinated to a group action: Acces-sibility, J. Differ. Equ., vol. 39, pp. 186211, 1981.

149. V. Jurdjevic and J. Quinn, Controllability and stability. J. Differ. Equ., vol. 28,pp. 381389, 1978.

150. V. Jurdjevic and G. Sallet, Controllability properties of affine systems, SIAM J.Control Opt., vol. 22, pp. 501508, 1984.

151. V. Jurdjevic and H. J. Sussmann, Controllability on Lie groups. J. Differ. Equ., vol. 12,pp. 313329, 1972.

152. T. Kailath, Linear Systems. Englewood Cliffs, N.J.: Prentice-Hall, 1980.153. G. Kallianpur and C. Striebel, A stochastic differential equation of Fisk type for

estimation and nonlinear filtering problems, SIAM J. Appl. Math., vol. 21, pp. 6172,1971.

154. R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory. NewYork: McGraw-Hill, 1969.

155. N. Kalouptsidis and J. Tsinias, Stability improvement of nonlinear systems by feed-back, IEEE Trans. Automat. Control, vol. AC-28, pp. 364367, 1984.

156. H. Khalil, Nonlinear Systems. Upper Saddle River, N.J.: Prentice Hall, 2002.157. N. Khaneja, S. J. Glaser, and R. Brockett, Sub-Riemannian geometry and time opti-

mal control of three spin systems: quantum gates and coherence transfer, Phys. Rev.A (3), vol. 65, no. 3, part A, pp. 032 301, 11, 2002.

158. A. Y. Khapalov and R. R. Mohler, Reachability sets and controllability of bilineartime-invariant systems: A qualitative approach, IEEE Trans. Automat. Control, vol. 41,no. 9, pp. 13421346, 1996.

266 References

159. T. Kimura, Introduction to Prehomogeneous Vector Spaces. Providence, RI: AmericanMathematical Society, 2002, Trans. of Japanese edition: Tokyo, Iwanami Shoten, 1998.

160. M. K. Kinyon and A. A. Sagle, Quadratic dynamical systems and algebras, J. Differ.Equ., vol. 117, no. 1, pp. 67126, 1995.

161. H. Kraft, Algebraic automorphisms of affine space. in Topological Methods in Al-gebraic Transformation Groups: Proc. Conf. Rutgers University, H. Kraft, T. Petrie, andG. W. Schwartz, Eds. Boston, Mass.: Birkhuser, 1989.

162. L. Kramer, Two-transitive Lie groups, J. Reine Angew. Math., vol. 563, pp. 83113,2003.

163. N. N. Krasovskii, Stability of Motion. Stanford, Calif.: Stanford University Press,1963.

164. A. J. Krener, On the equivalence of control systems and the linearization of nonlinearsystems, SIAM J. Control Opt., vol. 11, pp. 670676, 1973.

165. A. J. Krener, A generalization of Chows theorem and the bang-bang theorem tononlinear control problems, SIAM J. Control Opt., vol. 12, pp. 4352, 1974.

166. A. J. Krener, Bilinear and nonlinear realizations of inputoutput maps. SIAM J.Control Optim., vol. 13, pp. 827834, 1975.

167. J. Kucera, Solution in large of control problem x = (A(1-u)+Bu)x. Czechoslovak Math.J, vol. 16 (91), pp. 600623, 1966, see The control problem x = (A(1 u) + Bu)x: acomment on an article by J. Kucera.

168. J. Kucera, Solution in large of control problem x = (Au +Bv)x, Czechoslovak Math.J, vol. 17 (92), pp. 9196, 1967.

169. J. Kucera, On accessibility of bilinear systems. Czechoslovak Math. J, vol. 20,pp. 160168, 1970.

170. M. Kuranishi, On everywhere dense embedding of free groups in Lie groups,Nagoya Math. J., vol. 2, pp. 6371, 1951.

171. A. G. Kunirenko, An analytic action of a semisimple lie group in a neighborhoodof a fixed point is equivalent to a linear one (russian), Funkcional. Anal. i Priloen[trans: Funct. Anal. Appl.], vol. 1, no. 2, pp. 103104, 1967.

172. G. Lafferriere and H. J. Sussmann, Motion planning for controllable systems with-out drift, in Proc. IEEE Conf. Robotics and Automation, Sacramento, CA, April 1991.Piscataway, N.J.: IEEE Pubs., 1991, pp. 11481153.

173. J. Lawson, Geometric control and Lie semigroup theory, in Differential Geometryand Control, G. Ferreyra, R. Gardner, H. Hermes, and H. Sussmann, Eds. Providence:AMS, 1999, pp. 207221.

174. J. D. Lawson and D. Mittenhuber, Controllability of Lie systems, in ContemporaryTrends in Nonlinear Geometric Control Theory and Its Applications (Mxico City, 2000).Singapore: World Scientific, 2002, pp. 5376.

175. U. Ledzewicz and H. Schttler, Analysis of a class of optimal control problemsarising in cancer chemotherapy, in Proc. Joint Automatic Control Conf., Anchorage,Alaska, May 8-10, 2002. AACC, 2002, pp. 34603465.

176. U. Ledzewicz and H. Schttler, Optimal bang-bang controls for a two-compartmentmodel in cancer chemotherapy, J. Optim. Theory Appl., vol. 114, no. 3, pp. 609637,2002.

177. E. B. Lee and L. Markus, Foundations of Optimal Control Theory. New York: JohnWiley & Sons Inc., 1967.

178. E. B. Lee and L. Markus, Foundations of Optimal Control Theory, 2nd ed. Melbourne,FL: Robert E. Krieger Publishing Co. Inc., 1986.

179. K. Y. Lee, Optimal bilinear control theory applied to pest management, in RecentDevelopments in Variable Structure Systems, Economics and Biology. (Proc. U.S. ItalySeminar, Taormina, Sicily, 1977), R. R. Mohler and A. Ruberti, Eds. Berlin: Springer-Verlag. 1978, pp. 173188.

180. F. S. Leite and P. E. Crouch, Controllability on classical lie groups, Math. ControlSig. Sys., vol. 1, pp. 3142, 1988.

References 267

181. N. L. Lepe, Geometric method of investigation of the controllability of second-orderbilinear systems, Avtomat. i Telemekh., no. 11, pp. 1925, 1984.

182. D. Liberzon, Switching in Systems and Control. Boston, MA: Birkhuser, 1993.183. D. Liberzon, Lie algebras and stability of switched nonlinear systems, in Unsolved

Problems in Mathematical Systems & Control Theory, V. D. Blondel and A. Megretski,Eds. Princeton, NJ: Princeton University Press, 2004, ch. 6.4, pp. 203207.

184. D. Liberzon, J. P. Hespanha, and A. S. Morse, Stability of switched systems: a Lie-algebraic condition, Syst. Control Lett., vol. 37, no. 3, pp. 117122, 1999.

185. W. Lin and C. I. Byrnes, KYP lemma, state feedback and dynamic output feedbackin discrete-time bilinear systems, Syst. Control Lett., vol. 23, no. 2, pp. 127136, 1994.

186. W. Liu, An approximation algorithm for nonholonomic systems, SIAM J. ControlOpt., vol. 35, pp. 13281365, 1997.

187. E. S. Livingston, Linearization of analytic vector fields with a common criticalpoint, Ph.D. Dissertation, Washington University, St. Louis, Missouri, 1982.

188. E. S. Livingston and D. L. Elliott, Linearization of families of vector fields. J. Differ.Equ., vol. 55, pp. 289299, 1984.

189. C. Lobry, Contrllabilit des systmes non linaires, SIAM J. Control Opt., vol. 8,pp. 573605, 1970.

190. C. Lobry, Controllability of nonlinear systems on compact manifolds, SIAM J.Control, vol. 12, pp. 14, 1974.

191. H. Logemann and E. P. Ryan, Asymptotic behaviour of nonlinear systems, Amer.Math. Monthly, vol. 11, pp. 864889, December 2004.

192. R. Longchamp, Stable feedback control of bilinear systems, IEEE Trans. Automat.Control, vol. AC-25, pp. 302306, April 1980.

193. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sciences, vol. 20,pp. 130148, 1963.

194. R. Luesink and H. Nijmeijer, On the stabilization of bilinear systems via constantfeedback, Linear Algebra Appl., vol. 122/123/124, pp. 457474, 1989.

195. W. Magnus, On the exponential solution of differential equations for a linear oper-ator, Comm. Pure & Appl. Math., vol. 7, pp. 649673, 1954.

196. A. Malcev, On the theory of lie groups in the large, Rec. Math. [Mat. Sbornik], vol. 16(58), pp. 163190, 1945.

197. G. Marchesini and S. K. Mitter, Eds., Mathematical Systems Theory. Berlin: Springer-Verlag: Lec. Notes in Econ. and Math. Systems 131, 1976, proceedings of InternationalSymposium, Udine, Italy, 1975.

198. M. Margaliot, Stability analysis of switched systems using variational principles:an introduction, AutomaticaJ. IFAC, vol. 42, no. 12, pp. 20592077, 2006. [Online].Available: http://www.eng.tau.ac.il/~michaelm/survey.pdf

199. M. Margaliot, On the reachable set of nonlinear control systems with a nilpotentLie algebra, in Proc. 9th European Control Conf. (ECC07), Kos, Greece, 2007,pp. 42614267. [Online]. Available: www.eng.tau.ac.il/~michaelm

200. L. Markus, Quadratic differential equations and non-associative algebras, in Con-tributions to the Theory of Nonlinear Oscillations, Vol. V. Princeton, N.J.: PrincetonUniv. Press, 1960, pp. 185213.

201. L. Markus, Exponentials in algebraic matrix groups, Advances in Math., vol. 11,pp. 351367, 1973.

202. P. Mason, U. Boscain, and Y. Chitour, Common polynomial Lyapunov functionsfor linear switched systems, SIAM J. Control Opt., vol. 45, pp. 226245, 2006.[Online]. Available: http://epubs.siam.org/fulltext/SICON/volume-45/61314.pdf

203. D. Q. Mayne and R. W. Brockett, Eds., Geometric Methods in System Theory. Dordrecht,The Netherlands: D. Reidel, 1973.

http://www.eng.tau.ac.il/~michaelm/survey.pdfwww.eng.tau.ac.il/~michaelmhttp://epubs.siam.org/fulltext/SICON/volume-45/61314.pdf

268 References

204. R. Mohler and A. Ruberti, Eds., Theory and Applications of Variable Structure Systems.New York: Academic Press, 1972.

205. R. R. Mohler, Controllability and Optimal Control of Bilinear Systems. Englewood Cliffs,N.J.: Prentice-Hall, 1970.

206. R. R. Mohler, Bilinear Control Processes. New York: Academic Press, 1973.207. R. R. Mohler, Nonlinear Systems: Volume II, Applications to Bilinear Control. Englewood

Cliffs, N.J.: Prentice-Hall, 1991.208. R. R. Mohler and R. E. Rink, Multivariable bilinear system control. in Advances in

Control Systems, C. T. Leondes, Ed. New York: Academic Press, 1966, vol. 2.209. R. R. Mohler and A. Ruberti, Eds., Recent Developments in Variable Structure Systems,

Economics and Biology. (Proc. U.S. Italy Seminar, Taormina, Sicily, 1977). Berlin:Springer-Verlag, 1978.

210. R. Mohler and W. Kolodziej, An overview of bilinear system theory and applica-tions. IEEE Trans. Syst., Man Cybern., vol. SMC-10, no. 10, pp. 683688, 1980.

211. C. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponentialof a matrix, twenty-five years later, SIAM Rev., vol. 45, pp. 349, 2003.

212. D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of Math.,vol. 44, pp. 454470, 1943.

213. D. Montgomery and L. Zippin, Topological Transformation Groups. New York: Inter-science Publishers, 1955, reprinted by Robert E. Krieger, 1974.

214. C. B. Morrey, The analytic embedding of abstract real-analytic manifolds, Ann. ofMath. (2), vol. 68, pp. 159201, 1958.

215. S. Nonoyama, Algebraic aspects of bilinear systems and polynomial systems, D.Sc.Dissertation, Washington University, St. Louis, Missouri, August 1976.

216. O. A. Oleinik and E. V. Radkevich, On local smoothness of generalized solutions andhypoellipticity of second order differential equations, Russ. Math. Surveys, vol. 26,pp. 139156, 1971.

217. A. I. Paolo dAllessandro and A. Ruberti, Realization and structure theory of bilineardynamical systems, SIAM J. Control Opt., vol. 12, pp. 517535, 1974.

218. M. A. Pinsky, Lectures on Random Evolution. Singapore: World Scientific, 1991.219. H. Poincar, uvres. Paris: Gauthier-Villars, 1928, vol. I.220. L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishchenko, The Mathematical

Theory of Optimal Processes. New York: MacMillan, 1964.221. C. Procesi, The invariant theory of n n matrices, Adv. in Math., vol. 19, no. 3,

pp. 306381, 1976.222. S. M. Rajguru, M. A. Ifediba, and R. D. Rabbitt, Three-dimensional

biomechanical model of benign paroxysmal positional vertigo, Ann.Biomed. Eng., vol. 32, no. 6, pp. 831846, 2004. [Online]. Available:http://dx.doi.org/10.1023/B:ABME.0000030259.41143.30

223. C. Reutenauer, Free Lie Algebras. London: Clarendon Press, 1993.224. R. E. Rink and R. R. Mohler, Completely controllable bilinear systems. SIAM J.

Control Optim., vol. 6, pp. 477486, 1968.225. W. Rossmann, Lie Groups: An Introduction Through Linear Groups. Oxford: Oxford

University Press, 2003. Corrected printing: 2005.226. H. Rubenthaler, Formes reles des espaces prhomognes irrducibles de type

parabolique, Ann. Inst. Fourier (Grenoble), pp. 138, 1986.227. A. Ruberti and R. R. Mohler, Eds., Variable Structure Systems with Applications to

Econonomics and Biology. (Proceedings 2nd U.S. Italy Seminar, Portland, Oregon, 1974).Berlin: Springer-Verlag: Lec. Notes in Econ. and Math. Systems 111, 1975.

228. W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener Approach. Bal-timore: Johns Hopkins University Press, 1981. [Online]. Available:http://www.ece.jhu.edu/~rugh/volterra/book.pdf

229. Y. L. Sachkov, On invariant orthants of bilinear systems, J. Dynam. Control Syst.,vol. 4, no. 1, pp. 137147, 1998.

http://dx.doi.org/10.1023/B:ABME.0000030259.41143.30http://www.ece.jhu.edu/~rugh/volterra/book.pdf

References 269

230. Y. L. Sachkov, Controllability of affine right-invariant systems on solvable Liegroups, Discrete Math. Theor. Comput. Sci., vol. 1, pp. 239246, 1997.

231. Y. L. Sachkov, On positive orthant controllability of bilinear systems in small codi-mensions. SIAM J. Control Optim., vol. 35, no. 1, pp. 2935, January 1997.

232. Y. L. Sachkov, Controllability of invariant systems on Lie groups and homogeneousspaces, J. Math. Sci. (New York), vol. 100, pp. 23552477, 2000.

233. L. A. B. San Martin, On global controllability of discrete-time control systems,Math. Control Signals Systems, vol. 8, no. 3, pp. 279297, 1995.

234. M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vectorspaces, Proc. Nat. Acad. Sci. USA, vol. 69, no. 2, pp. 10811082, May 1972.

235. L. I. Schiff, Quantum Mechanics. New York: McGraw-Hill, 1968.236. S. G. Schirmer and A. I. Solomon, Group-theoretical aspects of control of quantum

systems, in Proceedings 2nd Intl Symposium on Quantum Theory and Symmetries(Cracow, Poland, July 2001). Singapore: World Scientific, 2001. [Online]. Available:http://cam.qubit.org/users/sonia/research/papers/2001Cracow.pdf

237. J. L. Sedwick, The equivalence of nonlinear and bilinear control systems, Sc.D.Dissertation, Washington University, St. Louis, Missouri, 1974.

238. J. L. Sedwick and D. L. Elliott, Linearization of analytic vector fields in the transitivecase, J. Differ. Equ., vol. 25, pp. 377390, 1977.

239. P. Sen, On the choice of input for observability in bilinear systems. IEEE Trans.Automat. Control, vol. AC-26, no. 2, pp. 451454., 1981.

240. J.-P. Serre, Lie Algebras and Lie Groups. New York: W.A. Benjamin, Inc., 1965.241. R. Shorten, F. Wirth, O. Mason, K. Wulf, and C. King, Stability criteria for switched

and hybrid systems, SIAM Rev., vol. 49, no. 4, pp. 545592, December 2007.242. H. Sira-Ramirez, Sliding motions in bilinear switched networks, IEEE Trans. Cir-

cuits Syst., vol. CAS-34, no. 8, pp. 919933, 1987.243. M. Slemrod, Stabilization of bilinear control systems with applications to noncon-

servative problems in elasticity. SIAM J. Control Optim., vol. 16, no. 1, pp. 131141,January 1978.

244. E. D. Sontag, Polynomial Response Maps. Berlin: Springer-Verlag: Lecture Notes inControl and Information Science 13, 1979.

245. E. D. Sontag, Realization theory of discrete-time nonlinear systems: Part I thebounded case, IEEE Trans. Circuits Syst., vol. CAS-26, no. 4, pp. 342356, 1979.

246. E. D. Sontag, On the observability of polynomial systems, I: Finite time problems.SIAM J. Control Optim., vol. 17, pp. 139151, 1979.

247. E. D. Sontag, A remark on bilinear systems and moduli spaces of instantons,Systems Control Lett., vol. 9, pp. 361367, 1987.

248. E. D. Sontag, A Chow property for sampled bilinear systems, in Analysis and Controlof Nonlinear Systems, C. Byrnes, C. Martin, and R. Saeks, Eds. Amsterdam: NorthHolland, 1988, pp. 205211.

249. E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Sys-tems, 2nd ed. New York: Springer-Verlag, 1998. [Online]. Available: http://www.math.rutgers.edu/~sontag/FTP_DIR/sontag_mathematical_control_theory_springer98.pdf

250. E. D. Sontag, Y. Wang, and A. Megretski, Input classes for identification of bilinearsystems, IEEE Trans. Automat. Control, to appear.

251. P. Stefan and J. B. Taylor, A remark on a paper of D. L. Elliott, J. Differ. Equ., vol. 15,pp. 210211, 1974.

252. S. Sternberg, Lectures on Differential Geometry. Englewood Cliffs, N.J.: Prentice-Hall,1964.

253. R. L. Stratonovich, A new representation for stochastic integrals and equations,SIAM J. Control, vol. 4, pp. 362371, 1966.

254. H. K. Struemper, Motion control for nonholonomic systems on matrix lie groups,Sc.D. Dissertation, University of Maryland, College Park, Maryland, 1997.

http://cam.qubit.org/users/sonia/research/papers/2001Cracow.pdfhttp://www.math.rutgers.edu/~sontag/FTP_DIR/sontag_mathematical_control_theory_springer98.pdf

270 References

255. B. Sturmfels, What is a Grbner basis? Notices Amer. Math. Soc., vol. 50, no. 2,pp. 23, November 2005.

256. H. J. Sussmann, The bang-bang problem for certain control systems in GL(n,R).SIAM J. Control Optim., vol. 10, no. 3, pp. 470476, August 1972.

257. H. J. Sussmann, The control problem x = (A(1 u) + Bu)x: a comment on an articleby J. Kucera, Czech. Math. J., vol. 22, pp. 423426, 1972.

258. H. J. Sussmann, Orbits of families of vector fields and integrability of distributions,Trans. Amer. Math. Soc., vol. 180, pp. 171188, 1973.

259. H. J. Sussmann, An extension of a theorem of Nagano on transitive Lie algebras,Proc. Amer. Math. Soc., vol. 45, pp. 349356, 1974.

260. H. J. Sussmann, On the number of directions necessary to achieve controllability.SIAM J. Control Optim., vol. 13, pp. 414419, 1975.

261. H. J. Sussmann, Semigroup representations, bilinear approximation of input-outputmaps, and generalized inputs. in Mathematical Systems Theory, G. Marchesini andS. K. Mitter, Eds. Berlin: Springer-Verlag, 1975, pp. 172191.

262. H. J. Sussmann, Minimal realizations and canonical forms for bilinear systems.J. Franklin Inst., vol. 301, pp. 593604, 1976.

263. H. J. Sussmann, On generalized inputs and white noise, in Proc. 1976 IEEE Conf.Decis. Contr., vol. 1. New York: IEEE Pubs., 1976, pp. 809814.

264. H. J. Sussmann, On the gap between deterministic and stochastic differential equa-tions, Ann. Probab., vol. 6, no. 1, pp. 1941, 1978.

265. H. J. Sussmann, Single-input observability of continuous-time systems. Math. Sys-tems Theory, vol. 12, pp. 371393, 1979.

266. H. J. Sussmann, A product expansion for the Chen series, in Theory and Applicationsof Nonlinear Control Systems, C. I. Byrnes and A. Lindquist, Eds. North Holland:Elsevier Science Publishers B. V., 1986, pp. 323335.

267. H. J. Sussmann, A continuation method for nonholonomic path-finding problems, in Proc. 32nd IEEE Conf. Decis. Contr.New York: IEEE Pubs., 1993, pp. 27182723. [Online]. Available:https://www.math.rutgers.edu/~sussmann/papers/cdc93-continuation.ps.gz

268. H. J. Sussmann, Geometry and optimal control, in Mathematical ControlTheory. New York: Springer-Verlag, 1999, pp. 140198. [Online]. Available: http://math.rutgers.edu/~sussmann/papers/brockettpaper.ps.gz[includescorrections]

269. H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems. J. Differ. Equ.,vol. 12, pp. 95116, 1972.

270. H. J. Sussmann and W. Liu, Limits of highly oscillatory controls and the approx-imation of general paths by admissible trajectories, in Proc. 30th IEEE Conf. Decis.Contr. New York: IEEE Pubs., December 1991, pp. 437442.

271. H. J. Sussmann and W. Liu, Lie bracket extensions and averaging: the single-bracketcase, in Nonholonomic Motion Planning, ser. ISECS, Z. X. Li and J. F. Canny, Eds.Boston: Kluwer Acad. Publ., 1993, pp. 109148.

272. H. J. Sussmann and J. Willems, 300 years of optimal control: from the brachys-tochrone to the maximum principle, IEEE Contr. Syst. Magazine, vol. 17, no. 3,pp. 3244, June 1997.

273. M. Suzuki, On the convergence of exponential operatorsthe Zassenhaus formula,BCH formula and systematic approximants, Comm. Math. Phys., vol. 57, no. 3,pp. 193200, 1977.

274. T.-J. Tarn, D. L. Elliott, and T. Goka, Controllability of discrete bilinear systems withbounded control. IEEE Trans. Automat. Control, vol. 18, pp. 298301, 1973.

275. T.-J. Tarn and S. Nonoyama, Realization of discrete-time internally bilinear sys-tems. in Proc. 1976 IEEE Conf. Decis. Contr. New York: IEEE Pubs., 1976,pp. 125133;.

276. T.-J. Tarn and S. Nonoyama, An algebraic structure of discrete-time biaffine sys-tems, IEEE Trans. Automat. Control, vol. AC-24, no. 2, pp. 211221, April 1979.

https://www.math.rutgers.edu/~sussmann/papers/cdc93-continuation.ps.gzhttp://math.rutgers.edu/~sussmann/papers/brockettpaper.ps.gz [includes corrections]

References 271

277. J. Tits, Tabellen zu den Einfachen Lie gruppen und ihren Darstellungen. Springer-Verlag:Lec. Notes Math. 40, 1967.

278. M. Torres-Torriti and H. Michalska, A software package for Lie algebraic computa-tions, SIAM Rev., vol. 47, no. 4, pp. 722745, 2005.

279. G. Turinici and H. Rabitz, Wavefunction controllability for finite-dimensional bilin-ear quantum systems, J. Phys. A, vol. 36, no. 10, pp. 25652576, 2003.

280. V. I. Utkin, Variable structure systems with sliding modes, IEEE Trans. Automat.Control, vol. AC-22, no. 2, pp. 212222, 1977.

281. V. J. Utkin, Sliding Modes in Control and Optimization. Berlin: Springer-Verlag, 1992,translated and revised from the 1981 Russian original.

282. V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations., 2nd ed., ser.GTM, Vol. 102. Berlin and New York: Springer-Verlag, 1988.

283. W. C. Waterhouse, Re: n-dimensional group actions on Rn, personal communica-tion, May 7 2003.

284. J. Wei and E. Norman, Lie algebraic solution of linear differential equations. J. Math.Phys., vol. 4, pp. 575581, 1963.

285. J. Wei and E. Norman, On global representations of the solutions of linear differentialequations as products of exponentials. Proc. Amer. Math. Soc., vol. 15, pp. 327334,1964.

286. R. M. Wilcox, Exponential operators and parameter differentiation in quantumphysics. J. Math. Phys., vol. 8, pp. 962982, 1967.

287. D. Williamson, Observation of bilinear systems with application to biological con-trol. AutomaticaJ. IFAC, vol. 13, pp. 243254, 1977.

288. R. L. Winslow, Theoretical Foundations of Neural Modeling:BME 580.681. Baltimore: Unpublished, 1992. [Online]. Available:http://www.ccbm.jhu.edu/doc/courses/BME_580.681/Book/book.ps

289. F. Wirth, A converse Lyapunov theorem for linear parameter-varying and linearswitching systems, SIAM J. Control Optim., vol. 44, no. 1, pp. 210239, 2005.

http://www.ccbm.jhu.edu/doc/courses/BME_580.681/Book/book.ps

Index

Symbols

0i, j, i j zero matrix 120, 215A, associative algebra 217219A see conjugate transposeAff(n,R) see Lie group, affineBmL, generated Lie algebra 40, 42, 45, 51,

64B 40, 45, 47, 51, 57Bm, matrix list 10, 172Cr 240C see smoothC see real-analyticF,Fn,Fnn 215G see groupGL(n,R) 19, 4453GL+(n,R) 19, 4554H see quaternions

I, radical see ideal, polynomialIn, identity matrix 215,, imaginary part 215LI see input, locally integrableMn see manifoldPd, positive dminors property 93P(t; u), discrete transition matrix 130PC see input, piecewise continuousPK see input, piecewise constantPA, minimum polynomial of A 219Q, rationals 215R

n see punctured space

Rn+, positive orthant 17, 166

R see controllability matrixRn+, nonnegative reals 215, real part 7, 215S see semigroupS see time-shiftSL(n,Z) 19, 199

SU(n) see group, special unitaryS11, unit circle 129S, sphere 217Symm(n) 7S see semigroup, concatenationU see input, historyV0 61X(t; u), transition matrix 14, 147Y see output history(A; t), integral of etA 6d(A; t) 6LyA see operator, Lyapunov, constraint set 9, transition-matrix group 19, Kronecker sum 31, 222pA, characteristic polynomial 4(A, j), special sum 163, 222, composition of mappings 231det, determinant 216| , such that 4, n2 30, 38, 221+

x see successor-related 188x see generic rankP, principal polynomial 6270

see shufflespec(A), eigenvalues of A 5, concatenation 17Symm(n) 132, 216 see semidirect product see Kronecker producttr, trace 216a, vector field 36, 238 empty set 22(u + iv) see representationmax(A), real spectrum bound 27adA see adjoint

D.L. Elliott, Bilinear Control Systems, Applied Mathematical Sciences 169, 273DOI 10.1007/978-1-4020-9613-6_14, c Springer Science+Business Media B.V. 2009

274 Index

adg, adjoint representation 229aff(n,R) see Lie algebra, affine, 121U, boundary 22U, closure of U 22(X,Y) see CartanKilling formdminor 216i, j, Kronecker delta 215, transition-matrix group 3351f t see trajectoryf, Jacobian matrix 188, 232, 233, 237, matrix-to-vector 30, 31, 38, 43, 221, sharp (vector-to-matrix) 55, sharp (vector-to-matrix) 44, 221g, derived subalgebra 230ij,k see structure tensorg, Lie algebra 3582, 225238H0 see homogeneous rational functions

U, interior of U 22, set intersection 239

null(X), nullity of X see nullityn2 69|U, restricted to U 234 see similaritysl(2,R) 37, 69, 70sl(k,C) 254sl(k,H) 257sl(n,R), special linear 64, 81, 257so(n) see Lie algebra, orthogonalspec(A), spectrum of A 4, 7, 31, 217

, disjoint union 235, union 232

A

Abels relation 5, 18absolute stability 179accessibility 22, 100116, 118

strong 22, 23, 100, 102, 103action of a group 34, 122, 223, 239, 240,

242, 244, 253, 258adjoint, Ad 38, 39, 62transitive 90, 244, 252, 253

ad-condition 100, 102121multi-input 103weak 102, 103, 106, 110, 152

adjoint 37, 39, 101108, 121, 192, 193, 229adjoint representation see representationaffine variety 53, 6061, 67, 224, 248250

invariant 63, 64, 68, 78singular 61, 64, 65

algebraassociative see associative algebraLie see Lie algebra

algebraic geometry, real 65, 249algorithmAlgTree 81LieTree 43, 64, 82, 90, 92, 96Buchberger 61Euclid, GCD 62

alpha representation see representationarc 234, 236, 237, 245arc-wise connected 234associative algebra 5, 81, 216

Abelian 218conjugate 217generators 218

atlas 44, 46, 47, 232attainable set 21, 22, 23, 32, 47, 67,

90100, 116, 136, 139, 141, 179181,212

B

biaffine systems 12, 140, 143, 151, 153,161, 162, 170, 175

controllability 119124discrete-time 140, 156stabilization 119

bilinear (2-D) systems 13bilinear system

approximation property 162inhomogeneous see control system,

biaffinerotated semistable 89

boost converter, DCDC 173Borel subalgebra 230Brownian motion see Wiener process

C

CampbellBakerHausdorff see Theoremcanonical form

Jordan 5, 7, 38, 219real 220

Carleman approximation 164CartanKilling form 87, 178, 230category 161causal 161, 203, 206CCK1 see coordinates, first canonicalCCK2 see coordinates, second canonicalcentralizer, z 220, 231, 253character 62, 240charts, coordinate 44, 4850, 232, 234, 238charts, global 72chemical reactions 185ChenFliess series 201, 204205compartmental analysis 170

Index 275

competition, VerhulstPearl model 172completed system 45complex structure 254composition 231composition of maps 233composition property 20concatenation 17, 150cone 248

invariant 96conjugacy see similarityconjugate transpose 177, 216, 217, 219Continuation Lemma 22, 106, 132, 139,

142control 9, 10

feedback 10, 32open-loop 10, 11switching 9, 199

control set, invariant see trapcontrol system

biaffine see biaffine systemsbilinear 10linear 810, 116linearized 12matrix 55, 56, 179nonlinear 21positive 166stabilizable 83switching 13, 172179time-invariant 10variable structure 12, 32, 174

control system: causal 10controllability 21, 85, 89122

discrete-time 129139of bilinear system 2224of linear system 20of symmetric systems 34on positive orthant 168

controllability matrix 21, 32, 134136,155

controllable see controllabilitycontrollable pair 21, 123controlled switching 172convex cone 166

open 166convex set 21coordinate transformation 49

linear 36coordinates

first canonical 48, 7274manifold 232second canonical 50, 7375, 185

coset space 239Cremona group 191

D

delay operator z 155dendrite, Rall model 171dense subgroup 46derivation 234, 237derived series 74, 230diffeomorphism 50, 72, 139, 187, 188, 190,

192, 232of manifolds 233

difference equation 3difference equations 12, 22, 28, see

discrete-time systems, 146, 147, 150differential 231differential generator 212diffusions 210213direct product 243discrete-time systems 12, 127142

affine 6linear 31, 154156

discretization 28Euler 29, 141midpoint 29sampled-data 28, 118

domainnegative 104positive 104

drift term 11, 91dynamical polysystem 13, 14, 190, 237dynamical system 2, 236

affine 6discrete-time 3linear 24positive 166

dynamics 3linear 3

E

economics 166eigenvalues 217embedding, regular 233endpoint map 236enzyme kinetics 171equilibrium 24

stable 7unstable 7

equivalence, C 188euclidean motions 182Euler angles 74Euler operator 56events, probabilistic 207exponent

Floquet 27

276 Index

Lyapunov 27, 28, 178, 209exponential polynomial 5

F

feedback control 11, 83field

complex, C 215quaternion, H 251rationals, Q 215real, R 215

finite escape time 3, 115, 236Flatten 221flow 28, 235, 236formal power series

rational 204, 206frames on Rn 24, 72

G

gauge function 25, 26, 89, 93, 112, 128,139, 169

GCD, greatest common divisor 62generators 218generic 58, 153

rank 58, 60, 61, 64, 68good at 57Grbner basis see ideal, polynomialgroup 16, 238

Abelian 241algebraic 53analytic 240complex Lie 45diagonal 46fundamental, 1 91general linear 19Lie 3666, 240matrix 1920, 24matrix Lie 45, 242simple see simplesolvable 119special linear 46special orthogonal 46special unitary 77topological 239transition matrices 33transitive 34unipotent 74upper triangular 46

H

Hausdorff space 232, 243Heisenberg algebra 225

helicoid surface 23homogeneous function 56, 111homogeneous space 71, 78, 243homomorphism 19

group 239semigroup 16

Hurwitz property see matrixhybrid systems 176hypersurface system 99

I

idealLie algebra 71, 226zero-time 92, 93

ideal, polynomial 61, 247basis 61Grbner basis 59, 61, 64, 65, 92radical 61, 249real radical 249

identification of system parameters 154independence, stochastic 207, 209, 210,

213index

polynomial 15indistinguishable 150inner product 252input 9

concatenated 17generalized 203history 10, 13, 28locally integrable, LI 18, 201piecewise constant 9, 33, 35, 50, 148piecewise continuous 9piecewise continuous, PC 14, 18, 162stochastic 211switching 13universal 150, 152

input history 138inputoutput

mapping 154, 156, 158, 160, 162relation 144, 154

intertwining equation 188, 238invariant

function 56linear function 57polynomial 55, 57, 62relative 56set 26subset 24, 34subspace 9, 57variety 64

involutive see real-involutiveirreducible 220, 253

Index 277

isomorphismgroup 239Lie algebra 226, 238, 257Lie group 240

isotropysubalgebra 71, 82subgroup 71, 78

J

Jacobi axioms 35, 225Jacobian Conjecture 191Jordan canonical see canonical formJordan decomposition 194JQ system 108, 109111JurdjevicQuinn systems see JQ system

K

Kalman criterioncontrollability 21, 120, 179observability 143, 179

Killing form (X,Y) see CartanKillingform

Kolmogorovaxioms for probability 207backward equation 200, 209backward operator see differential

generatorKronecker delta 6, 215Kronecker power 222Kronecker product 128, 131, 220223, 252Kronecker sum 31

L

LARC matrix 58, 6062, 65LARC, Lie algebra rank condition 34, 58,

102, 121, 168LaSalles invariance principle 26, 108,

113left-invariant see vector fieldlexicographic (lex) order 247Lie algebra 33, 225231

Abelian 225affine 120center of 38, 231, 254compact 253derived 56, 230direct sum 226exceptional 256free 40, 227generated 4043, 192, 226generators 40

homomorphism 226isomorphic 36nilpotent 74, 76, 230of a Lie group 240, 241orthogonal 37, 57, 60orthonormal basis 47rank condition see LARCreductive 81, 231, 253semisimple see semisimplesolvable 73, 75, 81, 88, 185, 230special linear 36transitive 251258

Lie bracket 3435, 225vector field 237

Lie derivative 25Lie group see group, LieLie monomials 40, 227

left normalized 41, 42standard 227

Lie saturate 116Lie subgroup 242Lie wedge 119Lie, S. 33LieWord 43, 80local rank condition 139locally integrable, LI 9, 20, 146, 201203Lyapunov equation 8, 26, 105

discrete-time 128Lyapunov function 25, 26, 175

quadratic 107, 178Lyapunov spectrum 27Lyapunovs direct method 7, 104, 131

M

machine (in a category) 161manifold 26, 36, 4447, 55, 70, 72, 166,

182, 211, 232234mass action 171Mathematica 65

scripts 43, 59, 68, 104, 124, 125matrix 215217

analytic function 46augmented 65cyclic 21elementary 36exponential 430Hankel 155161Hermitian 216Hurwitz 7, 8, 29, 85Metzler 167neutral 97107nilpotent 128, 194, 218nonnegative 17

278 Index

orthogonal 216Pauli 77pencil 84permutation-reducible 117positive 167SchurCohn 129skew-Hermitian 77, 216skew-symmetric 97, 216strongly regular 95, 96, 117, 168symmetric 216totally positive 95transition 1424transition (discrete) 130133triangular 5, 17, 31, 88, 218, 221, 230unipotent 218unitary 216, 219

matrix control system 14, 33, 35, 51, 67matrix Lie algebra 227

conjugacy 36, 226matrix logarithm 6, 48minor 61, 63, 92, 216

positive 93, 95principal 7, 216

module, V(Mn) 234monoid 16, 94multi-index 192, 247

N

negative definite 7, 25, 26, 105neutral see matrixnil radical 230nilpotent Lie algebra see Lie algebranon-resonance 189norm

Frobenius 47, 217, 221operator 3, 217uniform 213vector 217

nullity of adA 38nullspace 38, 57, 134, 215numerical methods see discretizations

O

observability 147of bilinear systems 146, 148, 156

observability Gram matrix 151observability matrix, O(C; A) 143observable dynamical system 143, 147observable pair 143, 147octonions 257operator

adjoint see adjoint

Euler 27Lyapunov 8, 221Sylvester 8, 221

optimal control 180181orbit 236

of group 3457, 243of semigroup 84zero-time 92, 93

order, lexicographic 193, 204, 216output feedback 10output history 147output mapping 9output tracking 182

P

parameter estimation 166Partition 44path planning 182, 236Peano-Baker series 15, 162Philip Hall basis PH(r) 227polynomial

characteristic 85, 87, 217Hurwitz 85minimum 5, 219

polysystem see dynamical polysystempositive definite 7, 25, 61, 65, 114, 128,

177positive systems 165172

discrete 133prehomogeneous vector space 78probability space 207problems 16, 32, 67, 72, 79, 81, 82, 99, 100,

107, 109, 113, 136, 178, 198, 258product integral 14proper rational function 155pullback formula 38, 51, 101punctured space 22

transitivity on 24

Q

Q-ball 106quantum mechanics 184185quasicommutativity 123quaternions 55, 251

pure 252, 258

R

radially unbounded 26range 8, 142, 215rank

Lie 5767

Index 279

of a matrix 37, 43, 57of mapping 233

rank-one controls 134continuous-time 179

reachability matrix, R 157160reachable 21, see span-reachablereachable set see attainable setreal-analytic 40, 44, 49, 50, 55, 56,

232240real-involutive 36, 40, 42, 51realization

minimal 156of inputoutput relation 143, 153, 154,

162realization, group 78, 241representation, group 77, 240, 243, 253

adjoint 38, 55, 62representation, Lie algebra 6870, 227,

243, 251257 (alpha) 44, 67, 77, 251 (beta) 251adjoint 38, 229faithful 37, 227, 231, 253, 255

representation, semigroup 18resonance 7, 128, 219right-invariant see vector field

S

sans-serif type 2Schurs Lemma 220, 253SchurCohn 178semi-flow 3, 235, 236semidefinite 25, 26, 27, 148, 149semidirect product 120, 182, 243semidirect sum 243semigroup 16, 18, 40

concatenation 17, 18, 201203discrete parameter 128, 130discrete-time 132Lie 116matrix S 16topological 201transition matrices, S 18, 84with Pd property 94

semiorbit 236semisimple 77, 80, 82, 231, 254shuffle 145, 206sigma-algebra 207sign pattern 7signature 37, 57, 132similarity 216, 217, 223, 229

invariants 87simple 253256

algebra of Lie group 242group 239Lie algebra 231

Singular 65sliding mode 174175small-controllable 104smooth 232solvable see Lie algebraspan-reachable 154, 156, 157, 160spectrum 193, 217

in unit disc 129Lyapunov 209

stabilityasymptotic 25, 26, 27basin of 26, 83, 107, 123by feedback 32exponential 7globally asymptotic 26neutral 7UES, uniform exponential stability

176, 178uniform under switching 176

stability subgroup 71stabilization 83

by constant feedback 8589by state feedback 107113practical 113115

stabilizer see isotropystate space 2step function 15stochastic bilinear systems 166, 208213strong accessibility see accessibilitystructure tensor 229subalgebra

associative 217, 219isotropy 244, 258Lie 36, 226244

subgrouparc-wise connected 245closed 47, 53, 71connected 20dense 46isotropy 244Lie 242normal 92, 239one-parameter 19

submanifold 233subsemigroup 16subspace

u-observable 150unobservable 150

successor 3, 129, 137switching

autonomous 174

280 Index

controlled 176hybrid 176

Sylvester criterion 7Sylvester equation 8, 222symmetric bilinear systems 11, 3358system composition

cascade 145parallel 144product 145

T

tangent bundle 235tangent space 235Theorem

Ado 230AscoliArzela 202BJKS 122, 140Boothby A 64Boothby B 253CairnsGhys 199CampbellBakerHausdorff 3948Cartan solvability 231CayleyHamilton 218Correspondence 244EnestrmKakeya 129existence of log 219Generic Transitivity 79GrasselliIsidori 150Hrmander 212Hilberts Basis 248Inverse Function 234JurdjevicSallet 122, 140Kuranishi 80Lie, solvable algebras 88, 230M. Hall 227Malcev 53Morrey 234Poincar 188Rank 232Rectification 188Schur 194, 219StoneWeierstrass 206Whitney 233Whitney Embedding 234Yamabe 245

time-set 2, 9, 236time-shift 9time-variant bilinear system 11topology

group 239matrix norm 217of subgroup 241of tangent bundle 235

product 213uniform convergence 202, 206weak 202, 203Zariski 250

trajectory 56, 235concatenation 237controlled 21

transition mappingreal-analytic 199

transition mapping 2, 3, 4, 14, 24on a manifold 236real-analytic 187

transition matrix see matrix, transitiontransitivity 90, 239, 255258

Lie algebra 54, 66Lie group 5482on Rn 23weak 58, 69, 79

translation 45, 48, 49, 53, 240, 241trap 92, 133, 137, 169triangular see matrixtriangularization, simultaneous 88Trotter product formula 244

U

UES, uniform exponential stability 178unit, of semigroup 16, 18

V

variety see affine varietyvector bundle 28vector field 25

C 56, 57, 205, 234, 235affine 12, 238complete 236invariant 241left-invariant 240linear 45, 238right-invariant 44, 50, 70, 116, 240, 241,

244Volterra series 161163

discrete 163

W

weakly transitive see transitivity, 58Wiener process 210, 213

Z

Zariski closure 78, 250

ReferencesIndex

/ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /Warning /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 600 /MonoImageMinResolutionPolicy /Warning /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 600 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

/Description >>> setdistillerparams> setpagedevice