references - shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… ·...

18
REFERENCES 1. Kaushik, S.C, Review of Renewable Energy Resources, John Wiley and Sons, Wiley Eastern Limited, New Delhi, 1 Ed. by M.S. Sodha, S.S. Mathur and M.A.S. Malik. 231-236(1983). 2. Buffington, R.M.,Qualitative requirements for absorent- refrigerant combinations. Refrigerating Engineering, 57, 343(1949). 3. Macriss, R.A., Selecting refrigerant-absorbent fluid system for solar energy utilization, presented at the /\SHR/\E semi annual meeting, Dallas (1976). 4. Chinnappa, J.C.V., Experimental study of the intermit- tent vapour absorption refrigeration cycle employing the refrigerant absorbent systems of ammonia-water and ammonia-lithium nitrate. Solar Energy, 5, 1 (1961). 5. Loef, G.O.G., Cooling with solar energy. Proc. World Symposium. Applied Solar Energy, Phoenix, Arizona (1955). 6. Trombe, R. and Foex, M., Intermittent ammonia-water system with solar regeneration. Solar energy society and

Upload: others

Post on 08-Jul-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

REFERENCES

1. Kaushik, S.C, Review of Renewable Energy Resources,

John Wiley and Sons, Wiley Eastern Limited, New Delhi,

1 Ed. by M.S. Sodha, S.S. Mathur and M.A.S. Malik.

231-236(1983).

2. Buffington, R.M.,Qualitative requirements for absorent-

refrigerant combinations. Refrigerating Engineering, 57,

343(1949).

3. Macriss, R.A., Selecting refrigerant-absorbent fluid

system for solar energy utilization, presented at the

/\SHR/\E semi annual meeting, Dallas (1976).

4. Chinnappa, J.C.V., Experimental study of the intermit­

tent vapour absorption refrigeration cycle employing the

refrigerant absorbent systems of ammonia-water and

ammonia-lithium nitrate. Solar Energy, 5, 1 (1961).

5. Loef, G.O.G., Cooling with solar energy. Proc. World

Symposium. Applied Solar Energy, Phoenix, Arizona

(1955).

6. Trombe, R. and Foex, M., Intermittent ammonia-water

system with solar regeneration. Solar energy society and

Page 2: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

255

Engg.. 1,51 (1957).

7. Duffie, J.A. and Sheridan, N.R., Lithium bromide water

refrigeration for solar operation. lEA Mech. And Chem.

Engg. Trans. MCL, 79 (1965).

8. Swartman, R.K. and Swaminathan, C , Studies in solar

powered intermittent absorption refrigeration. Mech.

Engg. 22.(1971).

9. Farber, E.A., Design and performance of a compact

solar refrigeration systems. Proc. Solar Energy Society

Conf., Melbourne, (1970).

10. Chinnappa, J.C.V., Solar Operation of ammonia water

multistage airconditioning cycles in tropics. Solar Energy.

16, 165(1974).

11. Nielsen, P.B., Stvbier, B. and Schmidt, P.W., A critical

survey of intermittent absorption systems for solar

refrigeration. Proc. XIV International Congress of

Refrigeration, Moscow, IV 659 (1975).

12. Ward, D.S. and Loef, G.O.G., Design and construction

oi a residential solar heating and cooling system. Solar

Energy 17, 13(1975).

13. Namkoong, D., Performances of a LiBr water chiller in a

laboratory scale, experimental solar system test loop.

Proc. International Solar Energy Society Conference,

Winnipeg, 3 (1976).

Page 3: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

256

14. San Martin, R.L., La Planet, D., Packard, C. and Shaw,

H., Twenty months of operating experience with a solar

heated and cooled office building. Proc. 1977 Annual

Meeting of American Section of International Solar

Energy Society, Orlando, Florida, 1 (1977).

15. Jacobsen, A.S., Solar heating and cooling of mobile

homes, test results. Proc. 1977 Annual Meeting of

American Section of International Solar Energy Society,

Orlando, Florida, 1 (1977).

16. Ward, D.S., Smith, C.C. and Ward, J.C, Operational

Modes of solar heating and cooling system. Solar

Energy, 19,55(1977).

17. Ward, D.S., Duff, W.S., Ward, J.C. and Loef, G.O.G.,

Integration of evacuated tubular solar collector with

lithium bromide absorption cooling systems. Solar

Energy 22, 335-341 (1979).

18. Johnston, A.M., Ammonia/water absorption cycles with

relatively high generator temperatures. Solar Energy 25,

242-254(1980).

19. Bong, T.Y., Ng., K.C. and Tay, A.O., Performance study

of solar powered air conditioning systems. Solar Energy,

39, 173-182(1987).

20. Kouremenos, DA., Antonopolous, K.A., and Rogdakis,

Page 4: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

257

E., Performance of solar NHg/HjO absorption cycles in

the Athens area. Solar Energy, 39, 187-195 (1987).

21. Anand, D.K. and Kumar, B. Absorption machine

Irreversibility using new entropy calculations. Solar

Energy, 39, 243-256(1987).

22. Clerx, M. and Trezek, G.J., Performance of an

acqua-ammonia absorption solar refrigerator at

sub-freezing evaporator conditions. Solar Energy, 39,

379-389(1987).

23. Tyagi, K.P., Waste Heat as potential input to vapour

-absorption cycle. Proc. Eight National Symposium on

Refrigeration and Air-conditioning, IIT Kanpur, 35-142,

(1988),

24. Shmuilov, N.G. and Rozenfeld, L.M., Typical features

of the design and optimization of lithium bromide

absorption refrigerating machines, translation from

Khimicheskoe i Neftyanoe Mashinostroenie, N.I2, 6-9,

December (1983) Chemical and Petroleum Engineering,

514(1984).

25. Dunganow, G.V., Timofeevskii, L.S., Rozko, V.F. and

Shtompel, A.I., Use of absorption refrigerating machines

in mine air conditioning systems, translation from

Khimicheskoe i Neftyance Mashinostroenie, N. 12, 1-12

December (1983) Chemical and Petroleum Engineering.

Page 5: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

258

522(1984).

26. McLinden, M.O. and Klein, S.A., Simulation of an

absorption heat pump solar heating and cooling system.

Solar Energy, 31, 473 (1983).

27. Prasad, M., Optimum generator temperature for

LiBr-water absorption system. I.I.F.-I.I.R. Commissions

B,, B , E , Ej, Mons, Beligum, 265 (1980).

28. Siddiqui, M. Altamush, Prasad M. and Sahay, B.,

Economic evaluation of biogas for optimizing generator

temperature in a vapour absorption system. Energy

Conversion and Management, 261, 83-89 (1986).

29. Chung, R., Loef, G.O.G. and Duffie, J.A., Solar space

cooling. Chemical Engineering Progress, 56, 74 (1959).

30. Loef, G.O.G. and Tybout, R.A., The design and cost of

optimised systems for residential heating and cooling by

solar energy. Solar Energy, 16, 9 (1974).

31. Ward, D.S., Solar absorption cooling feasibility. So/ar

Energy, 22,259(1979).

32. Ayyash, S.C, An assessment of the feasibility of solar

absorption and vapour compression cooling systems.

Solar Energy 21, 163 (1981).

33. Prasad, M. and Gupta, V.K., Optimum generator

temperature for solar powered absorption system.

Page 6: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

259

Solar Energy Symposium, Baghdad, Iraq (1981).

34. Alizadeh, S., Bahar, F., and Geoola, Design and

optimisation of an a bsorption refrigeration system

operated by solar energy. Solar Energy, 22, 149-154

(1979).

35. Shiran, Y., Shitzer, A. and Degani, D., Computerized

design and economic evaluation of an aqua-ammonia

solar operator absorption system. Solar Energy, 29,

43-54(1982).

36. Siddiqui, M. Altamush, Economic analysis of biogas for

optimum generator temperature of four vapour

absorption systems. Energy Conversion and

Management, 27, 163-169 (1987).

37. Siddiqui, M. Altamush, Optimal cooling and heating

performance coefficient of four biogas powered

absorption systems. Energy Conversion and

Management, 31, 39-49 (1991).

38. Siddiqui, M. Altamush, Economic biogas and cooling

water rates in a lithium bromide-water absorption

system. Internatiopnal Journal of Refrigeration, 14,

32-38(1991).

39. Siddiqui, M. Altamush, Economic analysis of the

operating costs in four absorption cycles for optimizing

Page 7: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

260

generator and the condensing temperatures. Energy

conversion and Management, 35, 517-534 (1994).

40. Siddiquj, M. Altamash, Economic analysis of biogas/

solar operated lithium bromide water absorption

systems. Proc. of the 25' Intersociety Energy Conversion

Engg. Conference, American Institute of Chemical

Engineering, New York, 2, 211-216, (1990).

41. Siddiqui, M. Altamush, Optimisation of operating

variables In four absorption cycles using renewable

energies. Proc. of the 25* Intersociety Energy

Conversion Engg ., Conference, American Institute of

Chemical Engineers, New York, 2, 277-282, (1990).

42. Siddiqui, M. Altamush, Economic analysis of the

absorption systems: Part A - Design and cost Evaluation.

Energy Conversion and Management, 38, 889-904

(1997).

43. Siddiqui, M. Altamush, Economic analysis of absorption

systems Part B - Optimization of various parameters.

Energy Conversion and Management, 38, 905-918

(1997).

44. Kaushik, S.C, Reviews of Renewable Sources of Energy.

M.S. Sodha. S.S. Mathur and M.A.S. Malik (Eds.) Wiley

Eastern, Delhi Ch.4. (1982).

Page 8: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

261

45. Kaushik, S.C. and Kumar, R., Thermodynamic feasibility

of an absorber heat recovery cycle for solar air

conditioning. Heat Recovery Systems, 5, 117 (1985).

46. Kandiikar, S.G. A new absorber heat recovery cycle to

improve COP of aqua-ammonia absorption refrigeration

system. ASHRAE TRANS, 88, 141-158 (1982).

47. Kumar, R., Thermodynamic evaluation of overall

efficiency of advanced absorption cycles for solar

refrigeration. J. Inst. Engrs. India, 69, pt. ME3, Nov. 93-

97 (1988).

48. Siddiqui, M. Altamush, Optimum generator temperatures

in four absorption cycles using different sources of

energy. Energy Conversion and Management, 34,

251-266(1993).

49. Siddiqui, M. Altamush, Optimisation of operating

parameters for various absorption systems using

renewable energies. Ph.D. Thesis, A.M.U. Aligarh (1992).

50. Kaushik, S.C. and Kumar R., Computer-aided conceptual

thermodynamic design of a two-stage dual-fluid

absorption cycle for solar refrigeration. Solar Energy,

35,401-407(1985).

51. Siddiqui, M. Altamush and Riaz, M. Shamim,

Optimization of generator temperatures in two stage

Page 9: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

262

dual-fiuid absorption cycles operated by biogas. Int. J.

Refrig., 14, 148-155(1991).

52. Saghiruddin and Siddiqui, M. Altamush, Economic

analysis and performance study of an absorption cycle

with a heat recovery absorber. Proc. if^ lECEC, 3,

257-3-262, SAE, California (1992).

53. Saghiruddin and Siddiqui, M. Altamush, The effect of

using a heat recovery absorber on the performance and

operating cost of the solar ammonia absorption cycles.

J. Solar Energy Engg., 119,19-23, 1997.

54. Saghiruddin and Siddiqui, M. Altamush, Economic

analysis and performance study of three ammonia

absorption cycles using heat recovery absorber. Energy

Convers. Mgmt, 37,421-432(1996).

55. Saghiruddin and Siddiqui, M. Altamush, Economic

analysis of a tv\ o stage dual-fluid NHg-HjO/LiBr-H^O solar

absorption cycle. Presented in the National Seminar on

Economic utilization of Renewable Energy Resources,

A.M.U., Aligarh, May 11-12 (1990).

56. Saghiruddin and Siddiqui, M. Altamush, Optimization of

generator temperature in two-stage dual-fluid solar

ammonia absorption cycles. Proc. 27^ lECEC,

3.251-3.256, SAE, California (1992).

Page 10: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

263

57. Sukhatme, S.P., Solar Energy. Principles of Thermal

collection and storage, Tata McGraw Hill Publishing Co.

Ltd.. 67-85 (1984).

58. Ward, D.S., Duff, W.S., J.C. and Leof, G.O.G., Integration

of evacuated tubular solar collector with lithium bromide

absorption cooling systems. Solar Energy, 22,

335-341 (1979).

59. Ward, J.C. and Loef, G.O.G., Proc. Annual meeting Am.

Section of Int. Solar Energy Sec, Orlando, Florida 10-2

to 10-8 (1977).

60. Ghate, P.B. and Singh, K.K., In Seminar on Biogas

Production Technology, Organized by the Directorate of

Extension, Ministry of Agriclutire and Irrigation, New

Delhi (Sep.1978).

61. Gupta, B.D., In Proc. All India Seminar on Alternative

Energy Sources, (1983).

62. Kadambi, V. and Prasad, M., An Introduction to Energy

Conversion, Vol. II, Energy Conversion Cycles, Wiley

Eastern, India, 23-49 (1974).

63. Mansoori, G.A. and Patel, V., Thermodynamics basis for

the choice of working fluids for solar absorption cooling

system. Solar Energy, 22, 483 (1979).

64. ASHRAE Handbook Fundamentals (1981)

Page 11: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

264

65. Adegoke, CO. and Gosney, W.B., Vapour pressure data

for (2LiBr+ZnBr2)-H20 solutions. Int. J. Refrig., 14,

39-45(1991).

66. Adgoke, CO., Solubility of the water lithium-bromide-

zinc-bromide combination. Int. J. Refrig., 16, 45-48

(1993).

67. lyoki, S., Yamanaka, R. and Uemura, T., Physical and

thermal properties of the water-lithium bromide-lithium

nitrate system. Int. J. Refrig., 16, 191-200 (1993).

68. lyoki, S., Iwasaki, S., Uemura, T., Vapour pressures of

the water-lithium bromide-zinc bromide-lithium chloride

system at low temperatures. Ind. Eng. Chem. Res., 28,

1564-1567(1989).

69. lyoki, S. and Uemura, T., Vapour pressure of the water-

lithium bromide system and the water-lithium bromide-

zinc bromide-l i thium chlor ide system at high

temperatures. Int. J. Refrig., 12, 278-282 (1989).

70. lyoki, S. and Uemura, T., Physical and thermal properties

of the water-lithium bromide-zinc bromide-lithium chloride

system. ASHRAE Trans., 96 Part 2, 322-328 (1990).

71. lyoki, S., Iwasaki, S., Uemura, T , Vapour pressures of

the water lithium bromide-lithium iodide system. J. Chem.

Eng. Data, 35, 429-433 (1990).

Page 12: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

265

72. lyoki, S., Ohmori, S., Uemura, T., Heat capacities of the

water-lithium bromide-lithium iodide system. J. Chem.

Eng. Data, 35, 317-320 (1990).

73 lyoki, S. and Uemura, T., Physical and thermal properties

of the water-l i thium bromide-zinc chloride-calcium

bromide system. Int. J. Refrig., 12, 272-277 (1989).

74. Uemura, T., lyoki, S., Studies on the water-lithium

bromide-zinc chloride absorption refrigerating machine.

Proc. 1982 Japanese Assoc. Refrig. Annual Conf.,

17-20(1982).

75. Won, S.H. and Kang, Y.H., Thermodynamic analysis and

design data for a double effect absorption heat pump

system using four working pairs. Heat Recovery Systems

andCHP, 13,49-56(1993).

76. Kaushi, S.C. Modeling and simulation studies on single/

double-ef fect absorpt ion cycle using water-muit i

component salt (MCS) mixture. Solar Energy, 40,

431-441 (1988).

77. Won, S.H., Ching, H.S. and Lee, H., Simulation and

thermodynamic design data study on double-effect

absorption cooling cycle using water LiBr-LiSCN mixture.

Heat Recovery Systems And CHP, 11,161-168

(1991).

Page 13: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

266

78. Uemura, T., Studies on the specific heat of water-lithium

bromide- ethylene glycol system. Refrigeration (in

Japanese), 47,103-104(1972).

79. lyoki, S., Uemura, T., Studies on the water-lithium

bromide ethylene glycol absorption refrigerating

machine, Refrigeration (in Japanese), 56, 279-288

(1981).

80. Eisa, M.A.R., Diggory, P.J., Holland, F.A., A study of the

operating characteristics of an experimental absorption

cooler using water-lithium bromide-ethylene glycol as a

ternary working system. Int. J. Energy Res., 12, 459-472

(1988).

81. lyoki, S., Koshiyama, H., Uemura, T., Studies on the

water-lithium bromide-Y-butyrolactone absorption

refrigerating machine. Refrigeration (In Japanese), 58,

239-246(1983).

82. Grover, G.S., Devotta, S. and Holland, F.A.,

Thermodynamic design data for absorption heat pump

systems operating on water-lithium chloride-l. Cooling

Heat Recovery Systems and CHP, 8, 33-41 (1988).

83. Patil, K.R., Chaudhuri, S.K. and Katti, S.S.,

Thermodynamic design data for absorption heat pump

systems operating on water-lithium-iodide- Part-I.

Cooling Heat Recovery Systems and CHP, 11, 341-350

Page 14: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

267

(19991)

84. Bach., R.O. and Bourdman, W.W., Vapour pressure of

aqueous lithium Iodide solution. ASHRAE J., 9, 33-36

(1967).

85. lyoki, S., Nakanishi, M., Yoshida, H., Okuda, T. and

Uemura, T., Thermodynamic properties for the

quarternary system H20+CH30H+LiBr+ ZnClj- Int. J.

Refrig.. 16,274-281 (1993).

86. Uemura, T. and Hasaba, S., Investigation of absorption

refrigerating machine operating on solution of methanol

and lithium bromide. Reito, 43, 784-797(1968).

87. Renz, M. and Steimie, F., Thermodynamic properties of

the binary system: methanol-lithium bromide. Int. J.

Refrig. 4,97-101 (1981).

88. lyoki, S., Takigawa, T. and Uemura, T., Thermal and

physical properties of the methanol-lithium bromide-zinc

chloride system. Int. J. Refrig., 14, 78-85 (1991).

89. Hasaba, S., and Uemura, T, Studies on the methanol-

lithium bromide zinc bromide absorption refrigerating

machine. Reito., 44, 720-730 (1969).

90. Renz, M., Thermodynamic characteristics of the ternary

substance system methanol-lithium bromide-Zinc

bromide. Klima-Kalte-Heizung, 9, 411- 414 (1981).

Page 15: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

268

91 . Uemura, T., Studies on the methanol-lithium iodide zinc

bromide absorption refrigerating machine. Reito, 50,

95-101 (1975).

92. Zeigier, B. and Trepp. Ch., Equation of state of ammonia-

water mixtures. Int. J. Refrig., 72, 101-106 (1984).

93. Bogart, Marcel, Ammonia Absorption Refrigeration in

Industrial Process. Gulf publishing Co., Houston, Texas,

446-469(1981).

94. Jain, P.S. and Gable, G.K., Equilibrium property data

equation for aqua-ammonia mixtures. ASHRAE Trans.,

77,2181 (1971).

95. Infante Ferreira, C.A., Thermodynamic and Physical

Property Data Equation for Ammonia-Lithium Nitrate and

Ammonia-Sodium Thiocynate Solutions. Solar Energy,

32,231 (1984).

96. Best, R., Rivera, W., Hernandez, J. and Oskam, A.,

Thermodynamic design data for absorption heat pump

systems operating on ammonia-sodium thiocynate-l.

Cooling Heat Recovery Systems and CHP, 13,1-9 (1993).

97. Best, R., Porras, L. and Holland, F.A., Thermodynamic

design data for absorption heat pump systems operating

on ammonia-lithium nitrate- I. Cooling Heat Recovery

System and CHP, 11,49-61 (1991).

Page 16: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

269

98. Pilarowsky, I., Rivera, W., Best, R. and Holland, FA.,

Thermodynamic design data for absorption heat pump

systems operating on monomethylamine water, Part II:

Heating. Heaf Recovery System and CHP, 15,

571-581 (1995).

99. Uemura, T., Higuchi, Y. and Hasaba, S., Studies on the

monmethylamine- water absorption refrigerating

machine. Refrigeration, 42, 2-13 (1967).

100. Antonapoulos, K.A., Absorption panel cooling using a

TFF-NMP mixture. Heat Recovery systenris and CHP, 12,

203-210(1992).

101. Bokelman, H. Ehmke, H.J. and Steimie, F., Calorific

diagrams of the working fluids TFE-NMP, R123a-DTG

and R22-DTRG. Absorption Heat Pumps Congress,

13-22, Commission of the European Communities EUR

1007 E.N. Paris, 20-22 March (1985).

102. Badrinarayanan, K., Srinivasa Murthy, S. and Krishna

Murthy, M.V., Thermodynamic analysis of R21-DMF

vapour absorption refrigeration systems for solar energy

applications. Int. J. Refrig., 5 (2), 115-119 (1982).

103. George, J.M. and Srinivasa Murthy, S., Experiments on

a vapour absorption heat transfer. Rev. Ingt. Froid, 16,

107-119(1993).

Page 17: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

270

104. Bapat, S.L., Ph.D. Thesis, (l.l.T. Delhi, 1981)

105. Takeshita, I., Hozumi, S., A direct solar-heated R22-DMF

absorption refrigerator. Sun, 11, 744-748 (1978).

106. Uemura, T., Hasaba, S., Studies on the R22-absorbent

absorption refrigerating machine. Reito (Japan), 43,

1241-1254(1968).

107. Jelinek, M., Borde, I., Yaron, T., Enthalpy concentration

diagram of the system R22-DMF and performance

characteristics of refrigeration cycle operating with this

system ASHRAE Trans., 84, 60-67 (1978).

108. Das, M.S., Agarwal, R.S., Proc. Fourth ISME Conf.

Roorkee, India 181 (1981).

109. Ando, E. and Takeshita, I., Residential gas-fired

absorption heast pump based on R22-DEG DME pair.

Part 1 thermodynamic properties of the R22-DEG DME

pair. International Journal of Refrigeration, 7, 181 -185,

May (1984).

110. Bhaduri, S.C. and Varma, H.K., P-T-X behaviour of R22

with five different absorbent. Int. J. Refrig., 9, 362-366,

Nov. (1986).

111. Das, K. and Mani, A., Comparative study of cycle

performance for a two stage intermittent solar refrigerator

working with R22-absorbent combinations. Energy

Convers. Mgmt, 37, 87-93 (1996).

Page 18: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/52200/16/16_references.… · analysis and performance study of an absorption cycle with a heat recovery absorber

271

112. Kriebel, M., Loffler, H.J., Thermodynamische

Eigenschaften des binaren systems R22-

Telraathylenglykol dimethy lather Kaltetechnik, 17,

266-271 (1965).

113. Lateshev, V.P., Heat capacity of dibutylphthalate,

telraethylene glycol dimethyl ether and heat of their

mixing with R22. Kholod Tekh, 8, 31-34 (1969).

114. Seliverstov, B.M., Enthalpy-concentration diagram of

R22-dibutyl phthalate. Kholod Tekh, 4, 36-38 (1966).

115. Perry, H.R. and Chilton H.C., Chemical Engineers Hand

Book, 5^^ edition, McGraw Hill, New York, 3-68 (1973).

116. Arora, C.P., Refrigeration and Air Conditioning., Tata

McGraw Hill Publishing Company (1983).

117. Kays, W.M., Convective Heat and Mass Transfer, 364,

Tata McGraw Hill (1975).

118. Perry, H.R. and Green, D., Perry's chemical Engineers

Hand Book,, 6' edition, McGraw Hill International

editions. Japan (1988).