references - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_bookbackmatter.pdf · bohr, n. 1938. the...

18
References Archive for the history of quantum physics (University of Pittsburg). http://www.library.pitt.edu /libraries/special/asp/quantum.html. Aspect, A., J. Dalibard, and G. Roger. 1982. Experimental test of Bell’s inequalities using time- varying analyzers. Physical Review Letters 49: 1804. Atmanspacher, H., and H. Primas, eds. 2009. Recasting reality: Wolfgang Pauli philosophical ideas and contemporary science. Berlin: Springer. Beckett, S. 1981. Endgame. New York: Grove. Beckett, S. 2008. In Waiting for Godot, ed. H. Bloom. New York: Chelsea House. Beckett, S. 2009. Three novels: Molloy, Malone Dies, and the unnamable. New York: Grove. Bell, J.S. 2004. Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press. Beller, M. 1999. Quantum dialogue: The making of a revolution. Cambridge: Cambridge University Press. Bertlmann, R.A. and A. Zeilinger, eds. 2002. Quantum (un)speakables: From bell to quantum information. Berlin: Springer. Bohr, A., B.R. Mottelson, and O. Ulfbeck. 2004. The principles underlying quantum mechanics. Foundations of Physics 34: 405. Bohr, N., Niels Bohr archive. College Park, MD: Copenhagen and American Institute of Physics. Bohr, N. 1913. On the constitution of atoms and molecules (part 1). Philosophical Magazine 26: 1. Bohr, N. 1925. Atomic theory and mechanics. In Philosophical writings of Niels Bohr, 3 vols, ed. N. Bohr, vol. 1, 25–51. Woodbridge, CN: Ox Bow Press, 1987. Bohr, N. 1927. The quantum postulate and the recent development of atomic theory. In Philosophical writings of Niels Bohr, 3 vols, ed. N. Bohr, vol. 1, 52–91. Woodbridge, CN: Ox Bow Press, 1987. Bohr, N. 1929a. The quantum of action and the description of nature. In Philosophical writings of Niels Bohr, 3 vols. ed. N. Bohr, vol. 1, 92–101. Woodbridge, CN: Ox Bow Press, 1987. Bohr, N. 1929b. Introductory survey. In Philosophical writings of Niels Bohr, 3 vols, ed. N. Bohr, vol. 1, 1–24. Woodbridge, CN: Ox Bow Press, 1987. Bohr, N. 1931. Space-time continuity and atomic physics. In Niels Bohr: Collected works, vol. 6, 361–370. Amsterdam: Elsevier, 1972–1996. Bohr, N. 1935. Can quantum-mechanical description of physical reality be considered complete? Physical Review 48: 696. Bohr, N. 1937. Causality and complementarity. In The philosophical writings of Niels Bohr, volume 4: Causality and complementarity, supplementary papers, eds. J. Faye and H.J. Folse, 83–91. Woodbridge, CT: Ox Bow Press, 1998. A. Plotnitsky, Niels Bohr and Complementarity, SpringerBriefs in Physics, DOI: 10.1007/978-1-4614-4517-3, Ó Arkady Plotnitsky 2013 181

Upload: others

Post on 02-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

References

Archive for the history of quantum physics (University of Pittsburg). http://www.library.pitt.edu/libraries/special/asp/quantum.html.

Aspect, A., J. Dalibard, and G. Roger. 1982. Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters 49: 1804.

Atmanspacher, H., and H. Primas, eds. 2009. Recasting reality: Wolfgang Pauli philosophicalideas and contemporary science. Berlin: Springer.

Beckett, S. 1981. Endgame. New York: Grove.Beckett, S. 2008. In Waiting for Godot, ed. H. Bloom. New York: Chelsea House.Beckett, S. 2009. Three novels: Molloy, Malone Dies, and the unnamable. New York: Grove.Bell, J.S. 2004. Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge

University Press.Beller, M. 1999. Quantum dialogue: The making of a revolution. Cambridge: Cambridge

University Press.Bertlmann, R.A. and A. Zeilinger, eds. 2002. Quantum (un)speakables: From bell to quantum

information. Berlin: Springer.Bohr, A., B.R. Mottelson, and O. Ulfbeck. 2004. The principles underlying quantum mechanics.

Foundations of Physics 34: 405.Bohr, N., Niels Bohr archive. College Park, MD: Copenhagen and American Institute of Physics.Bohr, N. 1913. On the constitution of atoms and molecules (part 1). Philosophical Magazine 26: 1.Bohr, N. 1925. Atomic theory and mechanics. In Philosophical writings of Niels Bohr, 3 vols, ed.

N. Bohr, vol. 1, 25–51. Woodbridge, CN: Ox Bow Press, 1987.Bohr, N. 1927. The quantum postulate and the recent development of atomic theory. In

Philosophical writings of Niels Bohr, 3 vols, ed. N. Bohr, vol. 1, 52–91. Woodbridge, CN: OxBow Press, 1987.

Bohr, N. 1929a. The quantum of action and the description of nature. In Philosophical writings ofNiels Bohr, 3 vols. ed. N. Bohr, vol. 1, 92–101. Woodbridge, CN: Ox Bow Press, 1987.

Bohr, N. 1929b. Introductory survey. In Philosophical writings of Niels Bohr, 3 vols, ed. N. Bohr,vol. 1, 1–24. Woodbridge, CN: Ox Bow Press, 1987.

Bohr, N. 1931. Space-time continuity and atomic physics. In Niels Bohr: Collected works, vol. 6,361–370. Amsterdam: Elsevier, 1972–1996.

Bohr, N. 1935. Can quantum-mechanical description of physical reality be considered complete?Physical Review 48: 696.

Bohr, N. 1937. Causality and complementarity. In The philosophical writings of Niels Bohr,volume 4: Causality and complementarity, supplementary papers, eds. J. Faye and H.J. Folse,83–91. Woodbridge, CT: Ox Bow Press, 1998.

A. Plotnitsky, Niels Bohr and Complementarity, SpringerBriefs in Physics,DOI: 10.1007/978-1-4614-4517-3, � Arkady Plotnitsky 2013

181

Page 2: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of NielsBohr, volume 4: Causality and complementarity, supplementary papers, eds. J. Faye andH.J. Folse, 94–121. Woodbridge, CT: Ox Bow Press, 1998.

Bohr, N. 1948. On the notions of causality and complementarity. In The philosophical writings ofNiels Bohr, volume 4: Causality and complementarity, supplementary papers, eds. J. Faye andH.J. Folse, 141–148. Woodbridge, CT: Ox Bow Press, 1998.

Bohr, N. 1949. Discussion with Einstein on epistemological problems in atomic physics. InPhilosophical writings of Niels Bohr, 3 vols, ed. N. Bohr, vol. 2, 32–66. Woodbridge, CN: OxBow Press, 1987.

Bohr, N. 1954. Unity of knowledge. In Philosophical writings of Niels Bohr, 3 vols, vol. 2,67–82. Woodbridge, CN: Ox Bow Press, 1987.

Bohr, N. 1956. Mathematics and natural philosophy. In The philosophical writings of Niels Bohr,volume 4: Causality and complementarity, supplementary papers, eds. J. Faye and H.J. Folse,164–169. Woodbridge, CT: Ox Bow Press, 1998.

Bohr, N. 1958. Quantum physics and philosophy—causality and complementarity. In Philosoph-ical writings of Niels Bohr, 3 vols, vol. 3, 1–7. Woodbridge, CN: Ox Bow Press, 1987.

Bohr, N. 1962. Interview with T. Kuhn, L. Rosenfeld, A. Petersen, and E. Rüdinger, 17 Nov1962. In Niels Bohr archive. College Park, MD: Copenhagen and American Institute ofPhysics. http://www.aip.org/history/ohilist/4517_1.html

Bohr, N. 1972–1999. Niels Bohr: Collected works, 10 vols. Amsterdam: Elsevier, 1972–1996.Bohr, N. 1987. The philosophical writings of Niels Bohr, 3 vols. Woodbridge, CT: Ox Bow Press,

1987.Bohr, N. 1998. Philosophical writings of Niels Bohr, volume 4: Causality and complementarity,

supplementary papers, eds. J. Faye and H.J. Folse. Woodbridge, CT: Ox Bow Press, 1998.Bohr, N., and L. Rosenfeld. 1933. On the question of the measurability of electromagnetic field

quantities. In Quantum theory and measurement, eds. J.A. Wheeler and W.H. Zurek,479–522. Princeton, NJ: Princeton University Press, 1983.

Bohr, N., and L. Rosenfeld. 1950. Field and charge measurements in quantum electrodynamics.In Quantum theory and measurement, ed. J.A. Wheeler, and W.H. Zurek, 523–534. Princeton,NJ: Princeton University Press, 1983.

Bohr, N., H.A. Kramers, and J.C. Slater. 1924. The quantum theory of radiation. PhilosophicalMagazine 47: 785.

Born, M. 1926. Quantenmechanik der Stoßvorgänge. Zeitschrift Für Physik 38: 803.Born, M. 2005. The Einstein-Born letters (trans: Born, I.). New York: Walker.Born, M., W. Heisenberg, and P. Jordan. 1926. On quantum mechanics II. In Sources of quantum

mechanics, ed. B.L. van der Warden, 321–385. New York: Dover, 1968.Born, M., and P. Jordan. 1925. In Sources in quantum mechanics, ed. B.L. van der Warden,

277–306. New York: Dover, 1968Brown, H.R., and O. Pooley. 2001. The origin of spacetime metric: Bell’s ‘Loretzian pedagogy’

and its significance in general relativity. Physics meets philosophy at the Planck scale:Contemporary theories of quantum gravity, eds. C. Callender and N. Huggett, 256–272.Cambridge: Cambridge University Press, 2001.

Cao, T. Y., ed. 2004. Conceptual Foundations of Quantum Field Theory. Cambridge: CambridgeUniversity Press

Cushing, J.T., and E. McMullin, eds. 1989. Philosophical consequences of quantum theory:Reflections on Bell’s theorem. Notre Dame, IN: Notre Dame University Press.

Derrida, J. 1992. Before the law. In Acts of literature, ed. D. Attridge. New York: Routledge.Dirac, P.A.M. 1925. The fundamental equations of quantum mechanics. In Sources of quantum

mechanics, ed. B.L. van der Warden, 307–320. New York: Dover, 1968.Dirac, P.A.M. 1927. The physical interpretation of the quantum dynamics. Proceedings of Royal

Society of London A 113: 621.Dirac, P.A.M. 1958. The principles of quantum mechanics. Oxford: Clarendon, rpt., 1995.Dyson, F.J. 1949. The S-matrix in quantum electrodynamics. Physical Review 75: 1736.

182 References

Page 3: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Dyson, F.J. 2005. Hans Bethe and quantum electrodynamics. Physics Today 58: 48.Einstein, A. 1921. Geometry and experience. In Ideas and opinions, 232–246. New York:

Random House, 1988.Einstein, A. 1925. ‘‘Quantentheorie des einatomigen idealen Gases,’’ Sitz. ber. Preuss. Akad.

Wiss. (Berlin), 3–14 (presented at the meeting of 29 Jan 1925).Einstein, A. 1936. Physics and reality. Journal of the Franklin Institute 221: 349.Einstein, A. 1948. Quantum mechanics and reality. Dialectica 2: 320–324; reprinted in English in

M. Born, The Born-Einstein letters (trans: Born, I.), 168–173. New York: Walker, 2005.Einstein, A. 1949a. Autobiographical notes (trans: Schilpp, P.A.). La Salle, IL: Open Court, 1991.Einstein, A., 1949b. Remarks to the essays appearing in this collective volume. In Albert

Einstein: Philosopher-scientist, ed. P.A. Schilpp, 663–688. New York: Tudor.Einstein, A., B. Podolsky, and N. Rosen. 1935. Can quantum-mechanical description of physical

reality be considered complete? In Quantum theory and measurement, ed. J.A. Wheeler andW.H. Zurek, 138–141. Princeton, NJ: Princeton University Press.

Ellis, J., and D. Amati, eds. 2000. Quantum reflections. Cambridge: Cambridge University Press.Ferreirós, J. 2006. Riemann’s Habilitationsvortrag at the crossroads of mathematics, physics, and

philosophy. In The architecture of modern mathematics: Essays in history and philosophy, ed.J. Ferreirós, and J.J. Gray, 67–96. Oxford: Oxford University Press.

Feynman, R. 1965. The character of physical law. Cambridge, MA: MIT Press, rpt., 1994.Feynman, R. 1985. QED: The strange theory of light and matter. Princeton, NJ: Princeton

University Press.Folse, H.J. 1985. The philosophy of Niels Bohr: The framework of complementarity. Amsterdam:

North Holland.Folse, H.J. 1987. Niels Bohr’s concept of reality. In Symposium on the foundations of modern

physics 1987: The Copenhagen interpretation 60 years after the Como lecture, eds. P. Lahtiand P. Mittelstaedt, 161–180. Singapore: World Scientific.

Folse, H.J. 2002. Bohr’s conception of the quantum-mechanical state of a system and its role inthe framework of complementarity. In Quantum theory: Reconsiderations of foundations, ed.A. Khrennikov, 83–98. Växjö: Växjö University Press.

Gieser, S. 2005. The innermost kernel: depth psychology and quantum physics. Wolfgang Pauli’sDialogue with C. G. Jung. Berlin and Heidelberg: Springer.

Gomatam, R. 2007. Niels Bohr’s interpretation and the Copenhagen interpretation—are the twoincompatible. Philosophy of Science 74: 736.

Gottfried, K. 2000. Does quantum mechanics carry the seeds of its own destruction. In Quantumreflections, eds. J. Ellis and D. Amati, 165–185. Cambridge: Cambridge University Press.

Gray, J. 2008. Plato’s ghost: The modernist transformation of mathematics. Princeton, NJ:Princeton University Press.

Greenberger, D.M., M.A. Horne, and A. Zeilinger. 1989. Going beyond Bell’s theorem. In Bell’stheorem, quantum theory and Conceptions of the universe, ed. M. Kafatos, 69–72. Dordrecht:Kluwer.

Greenberger, D.M., M.A. Horne, A. Shimony, and A. Zeilinger. 1990. Bell’s theorem withoutinequalities. American Journal of Physics 58: 1131.

Hardy, L. 1993. Nonlocality for two particles without inequalities for almost all entangled states.Foundations of Physics 13: 1665.

Heidegger, M. 1967. What is a thing? (trans: W.B. Barton, Jr. and V. Deutsch). South Bend, IN:Gateway.

Heisenberg, W. 1925. Quantum-theoretical re-interpretation of kinematical and mechanicalrelations. In Sources of quantum mechanics, ed. B.L. Van der Waerden, 261–277. New York:Dover, 1968.

Heisenberg, W. 1927. The physical content of quantum kinematics and mechanics. In Quantumtheory and measurement, eds. J.A. Wheeler and W.H. Zurek, 62–86. Princeton, NJ: PrincetonUniversity Press, 1983.

References 183

Page 4: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Heisenberg, W. 1930. The physical principles of the quantum theory (trans: K. Eckhart and F.C. Hoyt). New York: Dover, rpt. 1949.

Heisenberg, W. 1935, ‘‘Ist eine deterministische Ergänzung der Quantenmechanik möglich?’’Archive for the history of quantum physics (microfilm 45, section 11), English translation byE. Crull and G. Bacciagaluppi, translation of: W. Heisenberg, ‘‘Ist eine deterministischeErgänzung der Quantenmechanik möglich?’’. http://philsci-archive.pitt.edu/8590/1/Heis1935_EPR_Final_translation.pdf

Heisenberg, W. 1962. Physics and philosophy: The revolution in modern science. New York:Harper & Row.

Heisenberg, W. 1967. Quantum theory and its interpretation. In Niels Bohr: His life and work asseen by his friends and colleagues, ed. S. Rozental, 94–108. Amsterdam: North-Holland.

Heisenberg, W. 1971. Physics and beyond: Encounters and conversations. London: G. Allen &Unwin.

Heisenberg, W. 1989. Encounters with Einstein, and other essays on people, places, andparticles. Princeton, NJ: Princeton University Press.

Held, K. 2006. The Kochen-Specker theorem. In Stanford encyclopedia of philosophy.http://plato.stanford.edu/entries/kochen-specker/.

Howard, D. 2004. Who invented the ‘Copenhagen interpretation’? A study in mythology.Philosophy of Science 71(5): 669.

Jaeger, G. 2007. Quantum information: An overview. New York: Springer.James, W. 2007. The principles of psychology, vol. 1. New York: Cosimo Classics.Kafatos, M., ed. 1989. Bell’s theorem, quantum theory and conceptions of the universe.

Dordrecht: Kluwer.Kant, I. 1997. Critique of pure reason (trans: P. Guyer and A.W. Wood). Cambridge: Cambridge

University Press.Landau, L., and R. Peierls. 1931. Extension of the uncertainty principle to relativistic quantum

theory. In Quantum theory and measurement, eds. J.A. Wheeler and W.H. Zurek, 465–479.Princeton, NJ: Princeton University Press.

Mehra, J. and H. Rechenberg. 2001. The historical development of quantum theory, 6 vols.Berlin: Springer.

Mermin, N.D. 1990. Boojums all the way through. Cambridge: Cambridge University Press.Mermin, N.D. 1998. What is quantum mechanics trying to tell us? American Journal of Physics

66: 753.Mermin, N.D. 2007. Quantum computer science: An introduction. Cambridge: Cambridge

University Press.Murdoch, D. 1987. Niels Bohr’s philosophy of physics. Cambridge: Cambridge University Press.Pais, A. 1982. Subtle is the lord: The science and the life of Albert Einstein. Oxford: Oxford

University Press.Pais, A. 1986. Inward bound: Of matter and forces in the physical world. Oxford: Oxford

University Press.Pais, A. 1991. Niels Bohr’s times, in physics, philosophy, and polity. Oxford: Clarendon.Pauli, W. 1994. Writings on physics and philosophy. Berlin: Springer.Peres, A. 1993. Quantum theory: Concepts and methods. Dordrecht: Kluwer.Petruccioli, S. 2011. Complementarity before uncertainty. Archive for the History of Exact

Sciences 65: 591.Petersen, A. 1985. The philosophy or Niels Bohr. In Niels Bohr: A centenary volume, eds. A.P.

French, and P.J. Kennedy. Cambridge, MA: Harvard University Press.Plotnitsky, A. 2002. The knowable and the unknowable: Modern science, nonclassical thought,

and the ‘‘two cultures’’. Ann Arbor, MI: University of Michigan Press.Plotnitsky, A. 2006. Reading Bohr: Physics and philosophy. Dordrecht: Springer.Plotnitsky, A. 2009. Epistemology and probability: Bohr, Heisenberg, Schrödinger and the

nature of quantum-theoretical thinking. New York: Springer.

184 References

Page 5: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Plotnitsky, A. 2012. ‘To be, To be, What Does It Mean to Be?’: On quantum-like literary models.In Foundations of probability of physics-6, eds. M. D’Ariano et al., 463–487. Melville, NY:American Institute of Physics.

Randall, L. 2005. Warped passages: Unraveling the mysteries of the universe’s hiddendimensions. New York: Harpers Collins.

Riemann, B. 1954. On the hypotheses that lie at the foundations of geometry. In Beyondgeometry: Classic papers from Riemann to Einstein, ed. P. Pesic, 23–40. Mineola, NY: Dover.

Rosenfeld, L. 1963. Introduction. In On the constitution of atoms and molecules. Papers of 1913reprinted from the philosophical magazine, ed. N. Bohr. Copehagen: Munksgaard; New York:W. A. Benjamin.

Rosenfeld, L. 1967. Niels Bohr in the thirties: Consolidation and extension of the conception ofcomplementarity. In Niels Bohr: His life and work as seen by his friends and colleagues, ed.S. Rozental. Amsterdam: North Holland.

Schilpp, P. A., ed. 1949. Albert Einstein: Philosopher-scientist. New York: Tudor.Schlosshauer, M. 2007. Decoherence and the quantum-to-classical transition. Heidelberg:

Springer.Schrödinger, E. 1935. The present situation in quantum mechanics. In Quantum theory and

measurement, eds. J.A. Wheeler, and W.H. Zurek. Princeton, NJ: Princeton University Press.Schweber, S.S. 1994. QED and the men who made it: Dyson, Feynman, Schwinger, and

Tomonaga. Princeton, NJ: Princeton University Press.Shimony, A. 2004. ‘‘Bell’s theorem’’. In Stanford encyclopedia of philosophy.

http://plato.stanford.edu/entries/bell-theorem/Stapp, H.P. 2007. Mindful universe: Quantum mechanics and participating observer. Heidelberg:

Springer.Teller, P. 1995. An interpretive introduction to quantum field theory. Princeton, NJ: Princeton

University Press.Ulfbeck, O., and A. Bohr. 2001. Genuine fortuitousness: Where did that click come from?

Foundations of Physics 31: 757.Van der Waerden, B.L., ed. 1968. Sources of quantum mechanics. New York: Dover.Von Neumann, J. 1932. Mathematical foundations of quantum mechanics (trans: R.T. Beyer).

Princeton, NJ: Princeton University Press, rpt., 1983).Weinberg, S. 2005. The quantum theory of fields, volume 1: Foundations. Cambridge: Cambridge

University Press.Weizsäcker, C.F. 1971. The copenhagen interpretation. In Quantum theory and beyond, ed.

T. Bastin. Cambridge: Cambridge University Press.Wheeler, J.A. 1983. Law without law. In Quantum theory and measurement, eds. J.A. Wheeler

and W.H. Zurek. Princeton, NJ: Princeton University Press.Wheeler, J.A. 1994. Foreword. In The continuum: A critical examination of the foundation of

analysis (trans: S. Pollard and T. Bole), 9–14. New York: Dover, rpt., 1918.Wheeler, J.A. 1998. Geons, black holes, and quantum foam: A life in physics. New York: W.

W. Norton.Wheeler, J.A., and W.H. Zurek (eds.). 1983. Quantum theory and measurement. Princeton, NJ:

Princeton University Press.Whitehead, A.N. 1929. Process and reality: An essay on cosmology. New York: Simon and

Schuster, rpt., 1979.Wilczek, F. 2005. In search of symmetry lost. Nature 423: 239.Wittgenstein, L. 1924. Tractatus Logico-Philosophicus (trans: C.K. Ogden). London: Routledge,

rpt., 1985.Zeilinger, A., G. Weihs, T. Jennewein, and M. Aspelmeyer. 2005. Happy centenary, photon.

Nature 433: 230.Zurek, W.H. 2003. Decoherence, einselection and the quantum origin of the classical. Review of

Modern Physics 75: 715.

References 185

Page 6: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Further Reading

Favrhold, D. 1992. Niels Bohr’s philosophical background. Copenhagen: Det Kongelige DanskeVidenskabernes Selskab.

Faye, J. 1991. Niels Bohr: His heritage and legacy. An anti-realist view of quantum mechanics.Dordrecht: Kluwer.

Faye, J., and H. Folse, eds. 1994. Niels Bohr and contemporary philosophy. Dordrecht: Kluwer.Folse, H.J. 1985. The philosophy of Niels Bohr: The framework of complementarity. Amsterdam:

North Holland.French A.P., and P.J. Kennedy, eds. 1985. Niels Bohr: A centenary volume. Cambridge, MA:

Harvard University Press.Heisenberg, W. 1962. Physics and philosophy: The revolution in modern science. New York:

Harper & Row.Heisenberg, W. 1971. Physics and beyond: Encounters and conversations. London: G. Allen &

Unwin.Honner, J. 1987. The description of nature: Niels Bohr and the philosophy of quantum physics.

Oxford: Clarendon, 1987.Jammer, M. 1989. The conceptual development of quantum mechanics: Interpretations of

quantum mechanics in historical perspective. Melville, NY: American Institute of Physics.Murdoch, D. 1987. Niels Bohr’s philosophy of physics. Cambridge: Cambridge University Press.Pais, A. 1991. Niels Bohr’s times, in physics, philosophy, and polity. Oxford: Clarendon.Petruccioli, S. 2006. Atoms, metaphors and paradoxes: Niels Bohr and the construction of new

physics (trans: I. McGilvray). Cambridge: Cambridge University Press.Rozental, S. 1967. Niels Bohr: His life and work as seen by his friends and colleagues.

Amsterdam: North-Holland.

186 References

Page 7: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Author Index

AAbel, N.H., 178Amati, D., 113n5, 183Aspect, A., 109, 181Aspelmeyer, M., 185Atmanspacher, H., 159n6, 181

BBeckett, S., 160–165, 181Bell, J. S., 107, 113n5, 123, 181Beller, M., 27n1, 181Bertlmann, R. A., 113n5, 118Bethe, H., 97Bohr, A., 82n6, 182, 185Bohr, H., 175Bohr, N.Boltzmann, L., 160Born, M., 2, 13, 29–33, 36–38, 81, 90, 92, 110,

130, 150, 155–157, 163, 182Bothe, W., 3, 108Brown, H. R., 170n1, 182

CCantor, G., 178Cauchy, A-L., 173Cayley, A., 137Coleman, S., 161Cushing, J. T., 113, 182

DDalibard, J., 181Darwin, C., 160

De Broglie, L., 44, 56, 77n4, 81, 84Dedekind, R., 178Democritus, x, 148, 149Derrida, J., 160n7, 182Dirac, P. A. M., x, 2, 2n1, 8, 30, 35–38,

41, 49, 51, 54, 55, 84, 90–94,98–105, 182

Dirichlet, G. L., 173–175Dostoyevsky, F., 162Dyson, F., 97–99, 182

EEinstein, A.Ellis, J., 113, 183

FFaraday, M., 91Favrhold, D., 19n1, 175, 186Faye, J., 2n1, 181, 182, 186Fermi, E., 91, 93Ferreirós. J., 177, 178n4, 183Feynman, R., 74n3, 77, 97, 140, 164, 183Folse, H., 2n1, 148n5, 181–183, 186French, A. P., 184, 186Freud, S., 159n6

GGalileo, 5, 19, 30, 37, 40, 158Galois, E., 178Gauss, K. F., 177, 178Geiger, H., 3, 108, 156Gieser, S., 159, 167, 183

A. Plotnitsky, Niels Bohr and Complementarity, SpringerBriefs in Physics,DOI: 10.1007/978-1-4614-4517-3, � Arkady Plotnitsky 2013

187

Page 8: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

G (cont.)Gomatam, R., 27n1, 183Gottfried, K., 113n5, 183Gray, J., 177n3, 183Greenberger, D.M., 109, 183

HHardy, L., 109, 183Haydn, J., 160Hegel, G.W.F., 13, 13n6Heidegger, M., 40, 50, 183Heisenberg, W.Held, K., 113n5, 184Hermite, C., 37Hoffding, H., 50, 164Honner, J., 186Horne, M. A., 109, 183Howard, D., 27n1, 184Hume, D., x, 13, 13n6, 152, 160

JJaeger, G., 109, 184James, W., 10, 159n, 6, 184Jammer, M., 186Jennewein, T., 185Jordan, P., 2, 8, 29–40, 90–92, 182Joyce, J., 160, 162Jung, K. G., 159n6

KKafatos, M., 113n5, 183, 184Kafka, F., 160, 162Kalckar, J., 42n1, 47n3Kant, I., x, 9, 13, 13n6, 64, 152, 153,

160, 165, 184Kennedy, P. J., 184, 186Kierkegaard, S., xKlein, O., 90Kramers, H., 3, 32, 90, 97, 98, 182Kronecker, L., 178

LLandau, L., 90, 91, 95, 96, 184Locke, J., 13n6Lucretius, T. C., 10

MMaxwell, J. C., 76, 91, 92, 160McMullin, E., 182

Mehra, J., 36, 108, 113n5, 184Mermin, N. D., 109, 113n5, 123n10,

124n11, 184Metzinger, J., 160Minkowski, H., 176Mottelson, B. R., 82n6, 182Murdoch, D., 111n4, 184, 186Musil, R., 160

NNewton, Isaac, Sir., 5, 13, 101Nietzsche, F., 13, 159n6

PPais, A., 3n3, 18, 21, 22, 90n1, n2, 105, 106,

160, 184, 186Pauli, W., vii, 2, 4, 60, 90–93, 95, 101, 141,

159n6, 184Peierls, R., 90, 91, 95, 96, 184Peres, A., 85, 113n5, 123n10, 184Petersen, A., 142n2, 171, 182, 184Petruccioli, S., 42n1, 184, 186Planck, M., x, xii, 1, 2n1, 3, 13, 17, 18, 20, 46,

59, 62, 65, 69, 77, 148, 152, 160Plotnitsky, A., 28n1, 109n1, 122n9, 124n12,

160, 162, 177n2, 184, 185Podolsky, B., 6, 107, 124, 183Pooley, O., 170n1, 182Primas, H., 159n6, 181

RRandall, L., 162, 185Rechenberg, H., 36, 108, 113n5, 184Riemann, G. B., x, 15, 173, 175–179, 185Roger, G., 181Ron, S., 178n4Rosen, N., 6, 107, 124, 183Rosenfeld, L., xi, 18, 89–91, 91n3, 95–99, 171,

182, 185Rozental, S., 184–186Rudinger, E., 171, 182Rutherford, E., 17–23, 49

SSchilpp, P. A., 111, 138, 167, 183, 185Schlosshauer, M., 80n5, 145n4, 185Schoenberg, A., 160Schrödinger, E., ix–x, 1, 2, 2n1, 8, 10, 28–30,

34n2, 38, 41, 44, 46, 54–56, 71, 89–93,93n5, 109, 150, 163, 185

188 Author Index

Page 9: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Schweber, S. S., 91n4, 97n7, 99, 185Schwinger, J., 97Shakespeare, W., 162Shelley, P. B., 164Shimony, A., 113n5, 185Slater, J., 3, 128, 182Sommerfeld, A., 30, 160Stapp, H., 148n5, 185Stravinsky, I., 160

TTeller, P., 91n4, 97n7, 185t’Hooft, G., 97, 100Tomonaga, S-I., 97

UUlfbeck, O., 82n6, 182, 185

VVan der Waerden, B. L., 2n1, 185Veltman, M., 97, 100

Volta, A., 42Von Neumann, J., 2n1, 37, 55, 93n6, 146, 185

WWeber, W., 177Weihs, G., 185Weinberg, S., 91n4, 185Weizsäcker, von, C. F., vii, viii, 185Weyl, H., 178, 178n4Wheeler, J. A., 5, 15, 50, 82, 82n7, 133, 135,

161, 164, 178n4, 182–185Whitehead, A. N., 148n5, 185Wilczek, F., 105, 185Wittgenstein, L., 11, 153, 185

YYukawa, H., 93

ZZurek, W., 5, 15, 80n5, 145n4, 182–185

Author Index 189

Page 10: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Subject Index

AAbstraction, 56, 94, 99, 179

the concepts of particle and wave as, 29,44, 55, 56, 82n6

mathematical, 94, 99, 179Ambiguity, 49, 57, 83, 109, 143, 149

of EPR’s criterion of reality (according toBohr), 57, 114, 117, 124–127, 168

Amplification, irreversible amplification, 66,81, 144, 145, 145n4

Amplitude, or probability amplitude, 33, 34,34n2, 81, 150

Atomicity (Bohr’s concept of), v, vii, 28, 43,45, 46, 55, 57, 94, 104, 105, 137, 138,147, 148, 148n5, 149–153

BBell’s theorem, 109, 112, 113, 113n5, 131, 156Biology, 6, 158, 159BKS (Bohr, Kramers, and Slater) theory

(see Bohr, Kramers, and Slater [BKS]theory)

Black holes, 171Bohmian mechanics, theories (see also hidden

variables theories), 2n1, 9, 14, 27n1,54n4, 77n4, 81, 112, 142

The Bohr–Einstein debate, vi, 19, 78, 86,131–136, 167

concerning the EPR and related experi-ments (see also Bohr’s reply to EPR’sand related arguments by Einstein), 86,107–136, 153–157

Bohr’s interpretation ofquantum mechanics

Como version (argument, lecture), v, 4, 7,8, 27–29, 34, 41–57, 59–65, 67, 69, 71,78–79, 84, 90, 92, 93, 116, 138, 143,145n4, 147, 151, 172

different versions of, v–viii, 27, 28, 42–44,53, 78

the intermediate (pre-EPR) version(of 1929), 28, 59–70

the ultimate (post-EPR) version, 4, 10, 28,29, 45, 60, 78, 79, 137–165

Bohr, Kramers, and Slater (BKS)theory, 3, 29, 108

Bohr’s reply to EPR’s and related argumentsby Einstein, 107–136, 153–157

ambiguity of EPR’s criterion of reality(see also Ambiguity: of EPR’s criterionof reality [according to Bohr]), 57, 114,117, 124–127, 168

complementarity and the EPR experiment,111, 122, 124, 127

completeness/incompleteness of quantummechanics, 5, 14, 56, 69, 77, 78, 86, 87,95, 107–131, 136–138, 144, 153–158,164

disturbance, 112, 114, 116, 118, 120,124–129, 126

Einstein’s commentaries on, 6, 111, 112,129, 155, 167

influence (Bohr’s concept of), 124–129locality/nonlocality, 9, 78, 86, 107–131,

153–158measurement and measuring instruments,

109–112, 114–131probability and statistics, 110, 116, 123,

123n111, 124, 153–158

A. Plotnitsky, Niels Bohr and Complementarity, SpringerBriefs in Physics,DOI: 10.1007/978-1-4614-4517-3, � Arkady Plotnitsky 2013

191

Page 11: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

B (cont.)the uncertainty relations, 111, 112, 114,

117, 119, 121, 122, 129, 131, 134, 155Born’s probabilistic interpretation of the wave

function (see Wave or probabilityfunction (w): Born’s probabilisticinterpretation of)

Born’s rule, 33, 34, 34n2, 81, 115n8, 129, 146,150, 163

CCausality (and/vs. noncausality), ix, x, 4, 5, 7,

8, 10–15, 21, 22, 28, 41, 43–57, 60–63,65, 69, 78, 79, 110, 128, 138, 142, 143,149–161, 163–165, 168, 169, 171

causal interpretations of quantum mechan-ics and causal quantum theories, 4,12–14, 54n4, 128, 157

in classical physics, 3, 5, 8, 11, 12, 117, 150definition of, 10, 11vs. determinism, 1012, 153local causality, 110mathematical causality or determination, 53in philosophy, 13, 152, 159, 160, 165and reality, realism, 8, 10–15, 50, 56, 151,

153, 154, 157, 159, 161, 171and relativity, 169, 171of undisturbed quantum behavior vs.

observational disturbance, 79, 14, 44,51–56, 60

Chance or randomness, 9, 12, 15, 150and probability, 9, 12, 87, 150

Chaos theory, 11‘‘Choice of nature’’, 21, 22, 47, 49, 50

Classical (or Newtonian) mechanics, ix,2n1, 3, 5, 8, 11, 12, 21, 23, 31–39, 43,46, 53, 55, 62, 77, 78, 86, 92, 96, 101,103, 110, 114, 116–118, 123, 143,146–147, 151, 152, 157

causal and/or realist character of, 5, 8, 11,12, 53, 92, 117

descriptive character of, 5, 11, 53, 78, 92,110, 116, 117

deterministic character of, 11, 117Classical physical concepts in quantum theory

(according to Bohr), 65–69Classical physics, theory, v, 1, 2n1, 3–10,

10n5, 11, 14, 15, 18, 21–23, 31, 40, 43,45–47, 51–53, 54n4, 56, 62–68, 73–77,79, 82n6, 83, 83n8, 93, 96, 99,101–104, 110, 114, 116–118, 123, 130,131, 140–147, 150–152, 154, 163, 168,169, 173, 178

causal and/or realist character of, 48, 10,10n5, 11, 39, 40, 53, 117–119

descriptive character of, 4, 11, 32, 39, 40,53, 117, 118

Classical statistical physics (or mechanics), 3,11, 12, 30, 34, 34n2, 35, 53, 62, 69,110, 150–152, 156, 157

Complementarityand ‘‘the basic principles of science,’’, 124,

127, 128, 169definition of, 6, 52of experimental arrangements, 45, 60, 79,

117, 121, 122, 130, 133–136, 143, 155,156

and idealization of observation and defini-tion, 44, 45

of particles and fields, 93of position and momentum, 7, 52, 79of space–time coordination and the claim

of causality, 89, 14, 28, 43–45, 51–54,60, 61, 63, 65, 78

of space–time coordination and conserva-tion laws, 59, 60, 65, 78, 79, 85, 143, 144

and the uncertainty relations, 59, 79, 85,143, 144

wave-particle complementarity, 8, 44, 45,93, 140

Completeness/incompleteness of quantummechanics, 5, 14, 56, 69, 77, 78, 86, 87,95, 107–131, 136–138, 144, 153–158,164

and locality/nonlocality, 77, 78, 86,107–131, 136, 154–157

Complex numbers (also imaginary numbers),34n2, 48, 56, 92, 101, 172–176

Concept(s)the definition (or concept) of, 6role in defining observation, 13, 13n6, 24classical (see Classical physical concepts in

quantum theory [according to Bohr];Measurement, measuring instruments:classical aspects of measuringinstruments)

Conservation laws, 3, 7, 28, 33, 37, 43, 45, 52,58, 65, 79, 85, 108, 122, 143, 144

Copenhagen interpretation of quantummechanics, v, 27n1

vs. ‘‘the spirit of Copenhagen’’, v, 27n1Correlations (see also Entanglement, quan-

tum), 12, 86, 101–103, 109, 110, 123,123n11, 150, 151, 153

as order or pattern, 12, 86, 153quantum nature of, 12, 109, 110statistical nature of, 101–103, 110, 123n11

192 Subject Index

Page 12: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Correspondence principle, 31, 33, 35–38, 96,99, 101, 143, 147

and the cut, 37, 147mathematical form of, 31, 35, 36, 99, 101pre-quantum-mechanical form of, 31, 35, 36in quantum electrodynamics, 101

Counterfactual argumentation, 123, 123n10Creation and annihilation (birth and dis-

appearance) of particles in quantumfield theory (see also Virtual particleformation), 104–106

The Cut, 37, 146, 147

DDecoherence, 80n5, 145n4Delayed-choice experiment, 50, 82, 133, 135Detached observer, 95, 140, 141Determinism, deterministic, 4, 10–14, 44, 51,

117, 143, 153and causality, 10–14, 51, 117, 153

Dirac’s equation, 90, 102, 103Discontinuity (see also Atomicity [Bohr’s

concept of]), 1, 3, 20, 45, 46, 55, 62,148, 149

and Bohr’s concept of phenomena oratomicity, 148, 149

and individuality, 46, 148, 149Discreteness, (see also Atomicity [Bohr’s

concept of]), 1, 46, 148, 149and Bohr’s concept of phenomena or

atomicity, 148, 149and individuality, 148, 149

Disturbance, of quantum objects by measure-ment, 8, 9, 43, 44, 47, 51, 54, 54n2, 67,74, 112–114, 116, 118, 124–129,136, 141

Bohr’s critique of the concepts of‘‘creation’’ and ‘‘disturbance’’by measurement, 43, 47

and the EPR experiment, 112–114, 116,118, 124–129, 136, 141

vs. interference, 51, 53Double-slit experiment, 15, 28, 34n2, 49, 59,

61, 71–88, 122, 133–136, 139–140and probability, 86–88and the uncertainty relations, 79, 84–88

EEffects (quantum), 8, 9, 31, 38, 44, 46, 50, 56,

62–64, 67, 73–79, 81, 82, 84, 87, 100,102, 105, 133–138, 141, 144, 145,148–150, 165

amplification effects, 81, 144individuality of quantum effects, 64, 82,

84, 148of the interaction between quantum objects

and measuring instruments (see Mea-surement, measuring instruments:interaction, effects of the interactionbetween quantum objects and measur-ing instruments and other macro-objects)

language and concept of effects in Bohr,63, 133, 144

particle-like (discrete) individual effects, 8,77, 78, 81, 82

wave or interference collective effects, 8,76–78, 81, 82, 133, 134

Einstein–Podolsky–Rosen’s (EPR) argument(see EPR’s [Einstein, Podolsky, andRosen’s] argument and related argu-ments by Einstein)

Einstein–Podolsky–Rosen’s (EPR) experiment(see EPR’s [Einstein, Podolsky, andRosen’s] and related experiments)

Electrodynamics, classical (also Maxwell’s),20, 76, 77, 83n8, 152, 160

Electrodynamics, quantum (see Quantumelectrodynamics)

Electron(s), 2–4, 11, 12, 17, 20–22, 30, 34–36,49, 71n1, 74, 78, 80–81, 82n7, 83n8,89–92, 96–106, 120, 133, 135, 139,145, 150, 152, 163

Empiricism, 13, 13n6, 19, 20, 24, 31and positivism, 13n6

Entanglement, quantum, 109, 110, 115, 115n7Epistemology

Bohr’s, 4, 9, 10, 23, 29, 38, 43, 47, 51, 61,63, 64, 79, 89, 94, 95, 100, 104–106,108, 111, 113n6, 119, 131, 132, 137,141, 142n2, 146, 148n5, 150–153,158–179

Bohr’s and/vs. Kant’s, 9, 10, 64, 153classical, 80, 104Heisenberg’s, 23, 29, 38Kant (phenomena vs. noumena or things in

themselves), 9, 10, 64, 153of quantum electrodynamics and quantum

field theory, 89, 94, 95, 98, 100, 102,104–106

EPR’s (Einstein, Podolsky, and Rosen’s)argument and related arguments byEinstein, 6, 41, 57, 63, 86, 90, 91, 94,107–116, 131–137, 153–158

completeness/incompleteness of quantummechanics, 86, 114–134

Subject Index 193

Page 13: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

E (cont.)completeness/incompleteness vs. locality/

nonlocality of quantum mechanics, 86,114–137

criterion of completeness, 114criterion of reality, 112, 114–137, 154disturbance, 112, 114, 116, 118, 120,

124–129, 126locality/nonlocality of quantum mechanics,

9, 78, 86, 114–134statistical nature of quantum mechanics in

Einstein’s arguments of the EPR-type,153–158

and the uncertainty relations, 112, 117,131, 134, 155

EPR’s (Einstein, Podolsky, and Rosen’s) andrelated experiments, 9, 15, 68, 71n1,73n2, 78, 86, 107–137

Bohm’s version, 70n1, 109, 123, 123n11Bohr’s argument concerning (see Bohr’s

reply to EPR’s [Einstein, Podolsky, andRosen’s] and related arguments byEinstein)

as distinguished from EPR’s argument, 107Heisenberg on, 73n2, 146probability and statistics in EPR-type

experiment and measurements, 110,116, 123, 123n11, 124, 153–158

Equations of motion, 30, 31, 33descriptive classical vs. predictive quantum-

mechanical use of (see also Heisen-berg’s ‘‘new kinematics’’), 30, 31, 33

Exclusion principle (Pauli’s), 104

FFeynman diagrams, 103, 104Field theory

classical (see also Electrodynamics;classical or Maxwell’s), 91, 92, 96, 97

quantum (see Quantum field theory)

GGravity, gravitation, 97, 99, 106, 176

quantum (see Quantum gravity)

HHawking’s radiation, 171Heisenberg’s microscope, 67, 84Heisenberg’s ‘‘new kinematics’’, 32, 35

vs. classical kinematics, 32

Heisenberg’s (matrix) quantum mechanics (seeMatrix or Heisenberg’s quantummechanics)

Hidden variables theories (see also Bohmianmechanics, theories), 27n1, 112, 113

Hilbert space, 32, 93n6, 101, 103, 104, 115n8,121, 175, 178

in quantum field theory, 101, 103, 104

IIdealization, idealized models, 5, 8–11, 53, 74,

83n7, 96, 98, 99, 101, 102, 116, 128,142, 146, 171, 178

classical (causal and realist, or descriptive)idealization and models, 5, 6, 8–11, 53,74, 76, 83n7, 102, 116, 128, 142,146, 178

difficulty/impossibility of classical-likeidealization and models in quantumtheory, 10, 102, 128, 178

of observation and definition (in Bohr), 44,45, 51–53

in quantum electrodynamics and quantumfield theory, 96, 98, 99

in quantum mechanics, 9–11, 83n7,101, 102

in relativity, 171, 178Imaginary numbers (see Complex numbers)Individuality (see also Atomicity [Bohr con-

cept of]; Quantum phenomena, alsoatomic phenomena, as defined by therole of Planck’s constant h: Bohr’sconcept of)

Bohr’s concept of individuality, 46, 69,123, 148–151, 153

individual vs. collective phenomena inquantum physics, 85, 139, 140

individual quantum objects, processes,behavior, phenomena, and events, 3, 4,11–15, 24, 32, 34, 35, 35n3, 38, 53, 62,69, 78, 80–87, 105, 108–110, 116, 123,137, 139, 140, 148–150, 153–157,162, 168

and probability in quantum theory, 4, 12,14, 15, 24, 32, 35, 60, 80, 81, 108, 109,140, 151, 153–157, 162

of quantum effects, 64, 82, 84, 148, 150Indivisibility or wholeness of quantum

phenomena (see also Atomicity [Bohr’sconcept of]; Quantum phenomena, alsoatomic phenomena, as defined by therole of Planck’s constant h: in Bohr’s

194 Subject Index

Page 14: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

sense, Bohr’s concept of [definition]),50, 67, 145–153

Interference, interference effects or pattern,34n2, 49, 75–86, 133, 134, 139

as correlational pattern, 76Intuition (see also Visualization, pictorial

representation, conception), 39, 40, 171as Anschaulichkeit, 39, 40, 171

JJosephson’s junctures, 63

KKinematics (see Heisenberg’s ‘‘new

kinematics’’)Klein–Gordon equation, 89Knowledge, nature of knowledge (see also

Epistemology), 9, 10, 13n6, 15, 24, 49,56, 176

as changed by quantum physics, 15, 49, 56in quantum physics, 15, 49, 56, 62, 64, 84,

87, 128, 164, 176unity (harmonies) of knowledge in Bohr,

169–171The Kochen–Specker theorem, 109, 113,

113n5, 113n6, 123n10

LLocality/nonlocality, 9, 10n5, 14, 54n4, 77,

78, 85, 86, 107–131 , 136, 148n5,154–157

and completeness/incompleteness of quan-tum mechanics (see Completeness/incompleteness of quantum mechanics:and locality/nonlocality)

MMany-worlds interpretation of quantum

mechanics, 54n4Mathematics

Bohr on mathematics in quantum theory,vii, 37–40, 89, 94

mathematics, physics, and philosophy inBohr, 171, 173, 177–179

Matrices, matrix variables (see also Matrix orHeisenberg’s (quantum) mechanics),23, 32, 33, 37, 92, 101, 104, 178

multiplication rules for, 32, 33

Matrix or Heisenberg’s quantum mechanics,ix, 1, 28, 29, 32–36, 46, 55, 56, 90, 92,93, 93n5, 100

mathematical equivalence to wave orSchrödinger’s quantum mechanics,93n5

and wave or Schrödinger’s quantummechanics, ix, 1, 28, 35, 55, 56, 93,93n5

Measurement, measuring instruments (see alsoDisturbance [of quantum objects bymeasurement]; Uncertainty relations[also the uncertainty principle, indeter-minacy relations, indeterminacy prin-ciple]: and measurement and measuringinstruments), 7–9, 11, 14, 29, 31–32,35, 37, 39, 40, 43, 44, 46, 47, 50–57,63–69, 73, 78–85, 87–105, 109–151,154, 155, 157, 163, 168–171, 173

classical aspects of measuring instruments,14, 29, 31, 32, 43, 54n5, 56, 66–68, 79,80, 130, 144, 147, 151

in classical physics, 47, 54n5, 145, 169discrimination between measuring instru-

ments and quantum objects, 68, 117, 118erasure by measurement, 68, 130, 134, 146,

163‘‘finite and uncontrollable interaction’’

between quantum objects and measur-ing instruments, 118, 122, 124, 127, 142

identical preparation of measuring instru-ments, 14, 110

interaction, effects of the interactionbetween quantum objects and measur-ing instruments and other quantumobjects (see also Quantum phenomena,also atomic phenomena, as defined byPlanck’s constant h: Bohr’s conceptof), 8, 9, 31, 44, 46, 50, 56, 63, 64, 67,73, 79, 82, 84, 87, 100, 102, 105, 117,135–138, 144–150, 157, 173

irreducible role of, in quantum physics, 39,40, 44, 47, 51, 53–55, 66, 68, 69, 109,112, 116–125, 129, 131–134, 138, 140,142, 145, 147, 154, 163, 171

quantum (or atomic) aspects of measuringinstruments, 66, 67, 80, 94–100, 104,110, 117, 132, 133, 141, 144, 147, 169

in quantum field theory, 89–105, 141and relativity, 169–171and the uncertainty relations, 85–87

Mechanics

Subject Index 195

Page 15: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

M (cont.)classical (see Classical mechanics)the concept of, 3, 38, 86, 110quantum (see Quantum mechanics)

Models (see Idealization, idealized models)

NNoncommutativity (of multiplication in quan-

tum-mechanical formalism), 32, 33Nonlocality (see Locality/nonlocality)

OObject(s)

classical, physical (of classical physics), 6,11, 32, 53, 63, 77, 80, 82, 83n8, 92,102, 23

as idealization (vis-à-vis nature) inclassical physics, 6, 10–12, 83n2

quantum (see Quantum objects andprocesses)

as noumenon or things in itself (vs.phenomenon) in Kant, 64, 153

Objectivity, 9, 63, 64, 140–142, 161,167–170, 173

as unambiguous communication in Bohr,64, 140, 167–170

Old quantum theory, 1–3, 21, 29–36, 53, 108,149, 160

Ontology, ontological, ix, 9, 13, 14, 50, 79, 80,161, 164

Orbits, orbital motion of electrons in atoms(see also Stationary states, of electronsin atoms), 11, 20, 21, 30–32, 173

PParticle(s), 3, 8, 29, 33, 44, 46, 55, 56, 64, 66,

74, 76–83, 90–93, 99, 100, 103–106,127, 133–135, 149, 150, 160

as abstraction, 29, 44, 55, 56, 82n6in classical physics, the classical concept

of, 74, 76, 77, 83, 92elementary particles, 79, 83n8, 99, 149, 150and fields in quantum field theory, 92, 93particle-like behavior, 46, 74, 76–83, 92,

93n8, 140particle-like phenomena or effects, 44, 45,

76, 82, 83and/vs. waves, 8, 44, 77, 77n4, 81, 160

Phenomena

and noumena or things in themselves(in Kant), 64

quantum (see Quantum phenomena, alsoatomic phenomena, as defined by therole of Planck’s constant h)

Philosophy, v, 6, 13, 13n6, 18, 19, 23, 39, 152,159, 160, 165, 171, 173, 177–179

and physics (see Physics: physics and phi-losophy; mathematics, physics, andphilosophy in Bohr)

of physics (also of quantum theory), vii, ix,xi, 19, 23, 24, 91n4

of quantum field theory, 91n4Photon(s), 4, 12, 20, 22, 50, 53, 73–76, 78,

80–83, 91, 94, 103, 105, 120, 133, 164the concept of, 20, 81relativistic motion of, 171

Photon-box experiment (of Einstein),134–136, 176

Physics (see also Classical mechanics;Classical physics; Classical statisticalphysics [or mechanics]; Quantummechanics)

physics and philosophy; mathematics,physics, and philosophy in Bohr, 19,20, 171, 173, 177–179

Planck’s constant (h), the quantum of action, 1,2n1, 7, 37, 46, 49, 51, 55, 55n5, 62, 63,65, 66, 68, 69, 81, 144, 148, 152, 169

irrationality of, 49, 63symbolic nature of, 46, 55, 65

Planck’s discovery of quantum physics, xii, 3,13, 46, 62, 65, 77, 148, 152, 160

Planck’s (black-body radiation) law, 1, 3, 150Planck’s discreteness postulate, 12, 46Positivism, positivist, 1313n6, 19, 20, 24, 31Prediction(s)

EPR predictions, the special character of(see also Bohr’s reply to EPR’s andrelated arguments by Einstein; EPR’s[Einstein, Podolsky, and Rosen’s]argument and related argument byEinstein, EPR’s [Einstein, Podolsky,and Rosen’s] and related experiments),112, 114, 115, 118–123, 125–133,135–136, 154

probabilistic or statistical nature of quantumpredictions, 3–5, 9, 11, 12, 14, 24, 29,32–35, 38, 54, 55, 64, 68–69, 80–81, 84,86, 87, 92, 96, 100–103, 108–111, 117,120, 123, 128, 134, 139, 140, 142n2,144, 149–158, 162, 163, 173

196 Subject Index

Page 16: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

quantum vs. those of classical and classicalstatistical physics, 4, 5, 11, 32, 34, 38,69, 150, 151

and verification, 119, 130Pre-Socratic philosophy, 19, 50, 159, 162Probability

and the Bohr-Einstein debate, 110, 111,153–158

definition of, 12and/vs. chance or randomness (see Chance

or randomness: and probability)Kant on, 165probabilistic nature of quantum theory (see

Prediction(s): probabilistic or statisticalnature of quantum predictions; Predic-tion(s): quantum vs. those of classicaland classical statistical physics)

propagation of (in Born), 163in quantum electrodynamics and quantum

field theory, 96, 101–106quantum rules for probability (see Ampli-

tude, or probability amplitude)and quantum waves (see Wave or prob-

ability function (w))and/vs. statistics, 12

Probability amplitude (see Amplitude, orprobability amplitude)

QQ-numbers (in Dirac’s formalism), 36, 92Quantum of action (see Planck’s constant (h),

the quantum of action)Quantum chromodynamics, 91Quantum electrodynamics (see also Quantum

field theory), 2, 2n1, 6, 37, 62, 74, 74n3,89–106

Quantum field theory, 89–106measurement in, 89–106epistemology of, 89–91, 93–95, 98, 100,

102, 104–106philosophy of, 91n4vs. quantum mechanics, 89–91, 91n4,

93–94, 98, 102, 104–106Quantum gravity, 100, 171Quantum information theory, 109Quantum jumps (see Transitions between

stationary states)Quantum measurement paradox, 76Quantum mechanics

debate concerning, ix, 5, 19, 105, 107, 109,115n8, 167

matrix (see Matrix or Heisenberg’squantum mechanics)

as probabilistically predictive theory (seePrediction(s): probabilistic or statisticalnature of quantum predictions; quan-tum predictions vs. those of classicalphysics and classical statistical physics)

as a rational theory, 29, 32, 37, 48, 172and relativity (see Relativity: and/vs.

quantum theory)symbolic nature of, 23, 46, 54–56, 62, 92,

139, 143wave mechanics (see Wave or Schrödin-

ger’s quantum mechanics)Quantum objects and processes

inaccessible, inconceivable, unthinkablenature of, 9, 10, 15, 20, 24, 31, 35, 39,40, 47, 48, 60, 63, 64, 73, 100, 112,137, 138, 145, 147–149, 151, 153, 157,160, 164, 168, 172, 176

independent existence of, 9, 10, 31, 79macroscopic or composite, 54n5, 63, 73, 79and measuring instruments (see Measure-

ment, measuring instruments: dis-crimination between measuringinstruments and quantum objects;‘‘finite and uncontrollable interaction’’between quantum objects and measur-ing instruments; interaction, effects ofthe interaction, between quantumobjects and measuring instruments andother macro objects)

Quantum phenomena, also atomic phenomena,as defined by the role of Planck’s con-stant h (see also Atomicity [Bohr’sconcept of ]); Individuality: individualquantum objects, processes, behavior,phenomena, and events; Indivisibility orwholeness of quantum phenomena;Measurement, measuring instruments:discrimination between measuringinstruments and quantum objects; inter-action, effects of the interaction,between quantum objects and measuringinstruments and other macro objects)

Bohr’s concept of, v, viii, 28, 29, 43–46,50, 57, 59, 60, 67, 82, 83, 94, 105, 108,111n3, 130, 131, 133, 137–153, 158,167, 168

Bohr’s concept of (definition), 138, 139vs. classical phenomena, 62, 103, 117, 118,

154

Subject Index 197

Page 17: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

Q (cont.)closed (in Bohr’s sense), 141, 145, 148as defined by Planck’s constant, 2n1individual (see Individuality: individual

quantum objects, processes, behavior,phenomena, and events; individualityof quantum effects)

vs. quantum objects (see Quantum objectsand processes: inaccessible, inconceiv-able, unthinkable nature of)

Quantum postulate, 41, 44–51, 55, 62, 172‘‘irrationality’’ of, 47, 48, 172

Quantum states (state vectors), 115n8, 145n4Quantum statistics, 3, 12, 104, 150, 157Quantum theory

definition of the term, vi (n3)and relativity (see Relativity: and/vs.

quantum theory)

RRandomness (see Chance, or randomness)Realism, realist, 4, 5, 8, 9–15, 19, 22, 80, 108,

128, 157, 161, 169–171definition of realism, 9, 10

Reality, ix, 9, 10, 13, 24, 47, 49, 50, 62, 64, 107,110, 112, 114–120, 122, 124–130, 135,143, 154, 159, 161, 165, 168, 169, 173

element(s) of reality (according to Einsteinand EPR), 112, 114–119, 122, 125

EPR’s criterion of, 112, 114–120, 122,124–130, 135, 154, 168

Real numbers, 33, 34n2, 173and/vs. complex numbers, 34n2, 173

Reciprocity (as complementarity) in Bohr, 60,61, 64, 67, 68

Relativity theory, v, ix, 1, 3, 4, 9, 10n5, 12, 14,18, 31, 47, 51, 62–64, 66, 77, 86, 91,92, 101, 102, 106, 107, 110, 110n2,113, 113n5, 129, 131, 141, 161,169–171, 173, 171–179

general theory, 106, 134, 169, 171,176–179

and/vs. quantum theory, 51, 63, 66, 101,102, 131, 141, 169–171, 178, 179

special theory, 1, 91, 106, 171, 176Renormalization, 97–102Retroaction in time, 77Riemann’s geometry, 176–179Riemann’s surfaces, 173–177Riemann’s theory of functions of complex

variables, x, 15, 173–175

SSchrödinger’s or wave equation, 44, 53–55,

89, 93n5, 99–101, 103Schrödinger’s mechanics (see Wave or

Schrödinger’s quantum mechanics)Spectra, atomic, 3, 21, 23, 30, 92Spin, 71n1, 92, 101, 109, 115n7, 121, 123,

123n11‘‘Spooky actions at a distance’’ (according to

Einstein), 86, 110, 128, 129Spooky predictions at a distance (as opposed

to ‘‘spooky actions at a distance’’), 128,129

Standard model (of particle physics), 91, 97Stationary states, of electrons in atoms, 20–22,

30, 31, 33, 34, 49, 150Statistical physics (see Classical statistical

physics, or mechanics)Statistics (see Probability: and/vs. statistics)String and brane theories, 100, 105, 179

TThermodynamics, 152, 160Transformation theorems, 146Transformation theory (of Dirac and Jordan),

30, 49, 51, 54, 84, 93, 100Transition between stationary states, 3, 2021,

24, 32–34, 150probabilities of, 33, 34, 150

UUncertainty relations (also the uncertainty

principle, indeterminacy relations), 7, 8,14, 24, 28–39, 33, 37, 41, 43–45, 52,54, 56, 57, 59–61, 65–69, 71, 72, 78,79–81, 83–87, 90, 91, 95, 99, 103, 111,121, 122, 134, 140, 142–145, 155

in Bohmian theories, 14and classical physical concepts, 65–69and complementarity, 7, 8, 28, 29, 30, 43,

45, 52, 59–61, 64, 67, 79, 84, 85, 140and the double-slit experiment, 71, 72, 80,

81, 85, 86and the EPR experiment, and in EPR’s

argument and Bohr’s reply to EPR,111, 112, 114, 117, 119, 121, 122, 155

as a law of nature, 86and measurement and measuring instru-

ments, 65–69

198 Subject Index

Page 18: References - cds.cern.chcds.cern.ch/.../978-1-4614-4517-3_BookBackMatter.pdf · Bohr, N. 1938. The causality problem in atomic physics. In The philosophical writings of Niels Bohr,

physical meaning or interpretation of, 71,72, 122

and probability and statistics, 65–69, 80,81, 84–87, 144

and quantum field theory, 91, 95, 99and quantum-mechanical formalism, 84and quantum randomness, 8, 60, 66–69,

85–87relativistic invariance of, 129

VVisualization, pictorial representation, con-

ception (see also Intuition), 38–40, 56,64, 93, 104, 156, 159, 170, 171, 173

Virtual particle formation, 95

WWaves, wave phenomena in quantum physics,

8, 29, 44, 45, 55, 56, 75–77, 80, 81,82n6, 83, 84, 92, 93, 104, 160

as abstraction, 29, 44, 55, 56, 82n6in Bohmian theories, 77n4vs. classical waves, 74, 83and particles (see Particle(s): and waves)pattern (see Interference, interference effects

or pattern)

and/as probabilities (see Wave (w) or proba-bility function)symbolic, 80, 81, 92

wave or wave-like attributes, features, behav-ior, processes, 8, 44–46, 56, 75, 76, 80,81, 140

wave or wave-like phenomena or effects (seealso Interference, interference effects orpattern), 76, 82

Wave-particle complementarity (see Com-plementarity: wave-particlecomplementarity)

Wave or probability function (w), 34n2, 53,101, 103, 116, 121, 128, 129, 150, 163

Born’s probabilistic interpretation of, 34n2,81, 150, 163

as expectation catalogue, 163Wave or Schrödinger’s quantum mechanics,

ix, 1, 8, 28–30, 35, 41, 44, 46, 54, 92,93, 93n5, 150

and matrix mechanics (see Matrix or Hei-senberg’s quantum mechanics: mathe-matical equivalence to wave orSchrödinger’s quantum mechanics; andwave or Schrödinger’s quantummechanics)symbolic, 55, 98

Subject Index 199